
CS-GY 6763: Lecture 5
Dimensionality reduction, near neighbor
search in high dimensions

NYU Tandon School of Engineering, Prof. Christopher Musco

1

DIMENSIONALITY REDUCTION

Despite all our warning from last class that low-dimensional
space looks nothing like high-dimensional space, next we are
going to learn about how to compress high dimensional
vectors to low dimensions.

We will be very careful not to compress things too far. An
extremely simple method known as Johnson-Lindenstrauss
Random Projection pushes right up to the edge of how much
compression is possible.

2

EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points q1, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
ϵ2

)
such that for all

i, j,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1+ ϵ)∥qi − qj∥2.

3

EUCLIDEAN DIMENSIONALITY REDUCTION

This is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points q1, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
ϵ2

)
such that for all

i, j,

(1− ϵ)∥qi − qj∥22 ≤ ∥Πqi −Πqj∥22 ≤ (1+ ϵ)∥qi − qj∥22.

because for small ϵ, (1+ ϵ)2 = 1+ O(ϵ) and (1− ϵ)2 = 1− O(ϵ).

4

TONS OF APPLICATIONS

Make pretty much any computation involving vectors faster
and more space efficient.

• Faster vector search (used in image search, AI-based web
search, Retrieval Augmented Generation (RAG), etc.).

• Faster machine learning (today we will see an application
to speeding up clustering).

• Faster numerical linear algebra.

Only useful if we can explicity construct a JL map Π and apply
efficiently to vectors.

5

EUCLIDEAN DIMENSIONALITY REDUCTION

Remarkably, Π can be chosen completely at random!

One possible construction: Random Gaussian.

Πi,j =
1√
k
N (0, 1)

The map Π is oblivious to the data set. This stands in contrast
to other vector compression methods you might know like PCA.

[Indyk, Motwani 1998] [Arriage, Vempala 1999] [Achlioptas 2001]
[Dasgupta, Gupta 2003].

Many other possible choices suffice – you can use random
{+1,−1} variables, sparse random matrices, pseudorandom Π.
Each with different advantages.

6

RANDOMIZED JL CONSTRUCTIONS

Let Π ∈ Rk×d be chosen so that each entry equals 1√
k
N (0, 1).

... or each entry equals 1√
k
± 1 with equal probability.

A random orthogonal matrix Q also works. I.e. with QQT = Ik×k.
For this reason, the JL operation is often called a “random

projection”, even though it technically is not a projection when
Π′s entries are i.i.d.

7

RANDOM PROECTION

Can anyone see why Π is similar to a projection matrix? I.e., a
matrix satisfying QQT = Ik×k.

8

RANDOM PROJECTION

Intuition: Multiplying by a random matrix mimics the process
of projecting onto a random k dimensional subspace in d
dimensions. 9

APPLICATION: THE NEW PARADIGM FOR SEARCH

Use neural network (BERT, CLIP, etc.) to convert documents,
images, etc. to high dimensional vectors. Results matching
search should have similar vector embeddings.

10

APPLICATION: THE NEW PARADIGM FOR SEARCH

Finding results for a query reduces to finding the nearest
vector in a vector database, with similarity typically measured
by Euclidean distance. This is a massive algorithmic challenge!

11

ANOTHER EXAMPLE OF VECTOR SEARCH

Shazam can match a song clip against a library of 8 million
songs (32 TB of data) in a fraction of a second. Whole system

based on vector embeddings + search.

Spectrogram extracted from audio
clip.

Processed spectrogram: used to
construct audio “fingerprint”
x ∈ Rd.

12

ANOTHER EXAMPLE OF VECTOR SEARCH

Shazam can match a song clip against a library of 8 million
songs (32 TB of data) in a fraction of a second. Whole system

based on vector embeddings + search.

Spectrogram extracted from audio
clip.

Processed spectrogram: used to
construct audio “fingerprint”
x ∈ Rd.

12

VECTOR SEARCH

Tons of new startups in the space (offering managed vector
databases) and all major tech companies are franticly working
on speeding up vector search.

Two main ingredients:

1. Vector indexing methods (second half of lecture).
2. Vector compression methods (like

Johnson-Lindenstrauss).

13

APPLICATION: THE NEW PARADIGM FOR SEARCH

Main computational cost is repeatedly computing ∥q− xi∥2 for
candidate result xi.

Vector compression leads to faster distance computations. Not
only is computational complexity reduced, but we can fit more
database vectors in memory. 14

EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)
Let Π ∈ Rk×d be chosen so that each entry equals 1√

k
N (0, 1),

where N (0, 1) denotes a standard Gaussian random variable.

If we choose k = O
(
log(n)
ϵ2

)
, then with probability 99/100, for

for all i, j,

(1− ϵ)∥qi − qj∥22 ≤ ∥Πqi −Πqj∥22 ≤ (1+ ϵ)∥qi − qj∥22.

15

EUCLIDEAN DIMENSIONALITY REDUCTION

Intermediate result:
Lemma (Distributional JL Lemma)
Let Π ∈ Rk×d be chosen so that each entry equals 1√

k
N (0, 1),

where N (0, 1) denotes a standard Gaussian random variable.

If we choose k = O
(
log(1/δ)

ϵ2

)
, then for any vector x, with

probability (1− δ):

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1+ ϵ)∥x∥22

Given this lemma, how do we prove the traditional
Johnson-Lindenstrauss lemma?

16

JL FROM DISTRIBUTIONAL JL

We have a set of vectors q1, . . . ,qn. Fix i, j ∈ 1, . . . ,n.

Let x = qi − qj. By linearity, Πx = Π(qi − qj) = Πqi −Πqj.

By the Distributional JL Lemma, with probability 1− δ,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1+ ϵ)∥qi − qj∥2.

Finally, set δ = 1
100n2 . Since there are < n2 total i, j pairs, by a

union bound we have that with probability 99/100, the above
will hold for all i, j, as long as we compress to:

k = O
(
log(1/(1/100n2))

ϵ2

)
= O

(
log n
ϵ2

)
dimensions.

17

PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability (1− δ),

(1− ϵ)∥x∥22 ≤ |Πx∥22 ≤ (1+ ϵ)∥x∥22

Claim: E∥Πx∥22 = ∥x∥22.
Some notation:

So each πi contains N (0, 1) entries. 18

PROOF OF DISTRIBUTIONAL JL

Intermediate Claim: Let π be a length d vector with N (0, 1)
entries.

E
[
∥Πx∥22

]
= E

[
(⟨π, x⟩)2

]
.

Goal: Prove E∥Πx∥22 = ∥x∥22.

19

PROOF OF DISTRIBUTIONAL JL

⟨π, x⟩ = Z1 · x[1] + Z2 · x[2] + . . .+ Zd · x[d]

where each Z1, . . . , Zd is a standard normal N (0, 1).

We have that Zi · x[i] is a normal N (0, x[i]2) random variable.

Goal: Prove E∥Πx∥22 = ∥x∥22. Established: E∥Πx∥22 = E
[
(⟨π, x⟩)2

]

20

STABLE RANDOM VARIABLES

What type of random variable is ⟨π, x⟩?

Fact (Stability of Gaussian random variables)

N (µ1, σ
2
1) +N (µ2, σ

2
2) = N (µ1 + µ2, σ

2
1 + σ2

2)

⟨π, x⟩ = N (0, x[1]2) +N (0, x[2]2) + . . .+N (0, x[d]2)
= N (0, ∥x∥22).

So E∥Πx∥22 = E
[
(⟨π, x⟩)2

]
= E

[
N (0, ∥x∥22)2

]
= ∥x∥22, as desired.

21

PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability (1− δ),

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1+ ϵ)∥x∥22

1. E∥Πx∥22 = ∥x∥22.
2. Need to use a concentration bound.

∥Πx∥22 =
1
k

k∑
i=1

(⟨πi, x⟩)2 =
1
k

k∑
i=1

N (0, ∥x∥22)2

“Chi-squared random variable with k degrees of freedom.”

22

CONCENTRATION OF CHI-SQUARED RANDOM VARIABLES

Lemma
Let H be a Chi-squared random variable with k degrees of
freedom.

Pr[|EH− H| ≥ ϵEH] ≤ 2e−kϵ2/8

Goal: Prove ∥Πx∥22 concentrates within 1± ϵ of its expectation,
which equals ∥x∥22. 23

CONNECTION TO EARLIER PART OF LECTURE

If high dimensional geometry is so different from
low-dimensional geometry, why is dimensionality reduction
possible?

Doesn’t Johnson-Lindenstrauss tell us that high-dimensional
geometry can be approximated in low dimensions?

24

CONNECTION TO DIMENSIONALITY REDUCTION

Hard case: x1, . . . , xn ∈ Rd are all mutually orthogonal unit
vectors:

∥xi − xj∥22 = 2 for all i, j.

When we reduce to k dimensions with JL, we still expect these
vectors to be nearly orthogonal. Why?

25

CONNECTION TO DIMENSIONALITY REDUCTION

Hard case: x1, . . . , xn ∈ Rd are all mutually orthogonal unit
vectors:

∥xi − xj∥22 = 2 for all i, j.

From our result last class, in O(log n/ϵ2) dimensions, there
exists 2O(ϵ2·log n/ϵ2) ≥ n unit vectors that are close to mutually
orthogonal. O(log n/ϵ2) = just enough dimensions.

26

SECOND APPLICATION

k-means clustering: Give data points a1, . . . , an ∈ Rd, find
centers µ1, . . . ,µk ∈ Rd to minimize:

Cost(µ1, . . . ,µk) =
n∑
i=1

min
j=1,...,k

∥µj − ai∥22

27

SAMPLE APPLICATION

k-means clustering: Give data points a1, . . . , an ∈ Rd, find
centers µ1, . . . ,µk ∈ Rd to minimize:

Cost(µ1, . . . ,µk) =
n∑
i=1

min
j=1,...,k

∥µj − ai∥22

28

SAMPLE APPLICATION

k-means clustering: Give data points a1, . . . , an ∈ Rd, find
centers µ1, . . . ,µk ∈ Rd to minimize:

Cost(µ1, . . . ,µk) =
n∑
i=1

min
j=1,...,k

∥µj − ai∥22

29

K-MEANS CLUSTERING

Equivalent form: Find clusters C1, . . . , Ck ⊆ {1, . . . ,n} to
minimize:

Cost(C1, . . . , Ck) =
k∑

j=1

1
2|Cj|

∑
u,v∈Cj

∥au − av∥22.

Exercise: Prove this to your self. 30

K-MEANS CLUSTERING

NP-hard to solve exactly, but there are many good
approximation algorithms. All depend at least linearly on the
dimension d.

Approximation scheme: Find clusters C̃1, . . . , C̃k for the
k = O

(
log n
ϵ2

)
dimension data set Πa1, . . . ,Πan.

Argue these clusters are near optimal for a1, . . . , an.
31

K-MEANS CLUSTERING

Cost(C1, . . . , Ck) =
k∑

j=1

1
2|Cj|

∑
u,v∈Cj

∥au − av∥22

C̃ost(C1, . . . , Ck) =
k∑

j=1

1
2|Cj|

∑
u,v∈Cj

∥Πau − Πav∥22

Claim: For any clusters C1, . . . , Ck:

(1− ϵ)Cost(C1, . . . , Ck) ≤ C̃ost(C1, . . . , Ck) ≤ (1+ ϵ)Cost(C1, . . . , Ck)

32

K-MEANS CLUSTERING

Suppose we use an approximation algorithm to find clusters
B1, . . . ,Bk such that:

C̃ost(B1, . . . ,Bk) ≤ (1+ α)C̃ost
∗

Then:

Cost(B1, . . . ,Bk) ≤
1

1− ϵ
C̃ost(B1, . . . ,Bk)

≤ (1+ O(ϵ))(1+ α)C̃ost
∗

≤ (1+ O(ϵ))(1+ α)(1+ ϵ)Cost∗

= (1+ O(α+ ϵ)) Cost∗

Cost∗ = minC1,...,Ck Cost(C1, . . . , Ck) and
C̃ost

∗
= minC1,...,Ck C̃ost(C1, . . . , Ck) 33

DIMENSIONALITY REDUCTION

The Johnson-Lindenstrauss Lemma let us sketch vectors and
preserve their ℓ2 Euclidean distance.

We also have dimensionality reduction techniques that
preserve alternative measures of similarity.

34

JACCARD SIMILARITY

Often vector embeddings used in semantic search are binary.
For such vectors, Jaccard similarity is often used instead of
Euclidean distance or inner product to compute similarity.

Definition (Jaccard Similarity)

J(q, y) = |q ∩ y|
|q ∪ y| =

of non-zero entries in common
total # of non-zero entries

Natural similarity measure for binary vectors. 0 ≤ J(q, y) ≤ 1.

35

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

How many words do a pair of documents have in common?

36

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

How many bigrams do a pair of documents have in common?

37

APPLICATIONS: DOCUMENT SIMILARITY

• Finding duplicate or new duplicate documents or
webpages.

• Change detection for high-speed web caches.
• Finding near-duplicate emails or customer reviews which
could indicate spam.

38

JACCARD SIMILARITY FOR SEISMIC DATA

Feature extract pipeline for earthquake data.

(see paper by Rong et al. posted on course website)

39

SIMILARITY ESTIMATION

Goal: Design a compact sketch C : {0, 1} → Rk:

Want to use C(q), C(y) to approximately compute the Jaccard
similarity J(q, y) = |q∩y|

|q∪y| .

40

MINHASH

MinHash (Broder, ’97):

• Choose k random hash functions
h1, . . . ,hk : {1, . . . ,n} → [0, 1].

• For i ∈ 1, . . . , k,
• Let ci = minj,qj=1 hi(j).

• C(q) = [c1, . . . , ck].

41

MINHASH

• Choose k random hash functions
h1, . . . ,hk : {1, . . . ,n} → [0, 1].

• For i ∈ 1, . . . , k,
• Let ci = minj,qj=1 hi(j).

• C(q) = [c1, . . . , ck].

42

MINHASH ANALYSIS

Claim: For all i, Pr[ci(q) = ci(y)] = J(q, y) = |q∩y|
|q∪y| .

Proof:

1. For ci(q) = ci(y), we need that argmini∈q h(i) = argmini∈y h(i).

43

MINHASH ANALYSIS

Claim: Pr[ci(q) = ci(y)] = J(q, y).

2. Every non-zero index in q ∪ y is equally likely to produce the
lowest hash value. ci(q) = ci(y) only if this index is 1 in both q
and y. There are q ∩ y such indices. So:

Pr[ci(q) = ci(y)] =
|q ∩ y|
|q ∪ y| = J(q, y)

44

MINHASH ANALYSIS

Let J = J(q, y) denote the Jaccard similarity between q and y.

Return: J̃ = 1
k
∑k

i=1 1[ci(q) = ci(y)].

Unbiased estimate for Jaccard similarity:

ẼJ =

The more repetitions, the lower the variance.

45

MINHASH ANALYSIS

Let J = J(q, y) denote the true Jaccard similarity.

Estimator: J̃ = 1
k
∑k

i=1 1[ci(q) = ci(y)].

Var[̃J] =

Plug into Chebyshev inequality. How large does k need to be
so that with probability > 1− δ, |J− J̃| ≤ ϵ?

46

MINHASH ANALYSIS

Chebyshev inequality: As long as k = O
(1
ϵ2δ

)
, then with prob.

1− δ,

J(q, y)− ϵ ≤ J̃ (C(q), C(y)) ≤ J(q, y) + ϵ.

And J̃ only takes O(k) time to compute! Independent of
original vector dimension, d.

Can be improved to log(1/δ) dependence?

47

VECTOR SEARCH / NEAR NEIGHBOR SEARCH

Goal: Find all vectors in database q1, . . . ,qn ∈ Rd that are close
to some input query vector y ∈ Rd. I.e. find all of y’s “nearest
neighbors” in the database.

How does similarity sketching help in these applications?

• Improves runtime of “linear scan” from O(nd) to O(nk).
• Improves space complexity from O(nd) to O(nk). This can
be super important – e.g. if it means the linear scan only
accesses vectors in fast memory.

Can we also reduce the dependence on n?

48

BEYOND A LINEAR SCAN

Goal: Sublinear o(n) time to find near neighbors.

49

BEYOND A LINEAR SCAN

This problem can already be solved in low-dimensions using
space partitioning approaches (e.g. kd-tree).

Runtime is roughly O(d ·min(n, 2d)), which is only sublinear for
d = o(log n).

50

HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

Only been attacked much more recently:

• Locality-sensitive hashing [Indyk, Motwani, 1998]
• Spectral hashing [Weiss, Torralba, and Fergus, 2008]
• Vector quantization [Jégou, Douze, Schmid, 2009]
• Graph-based vector search [Malkov, Yashunin, 2016,
Subramanya et al., 2019]

Key ideas behind all of these methods:

1. Trade worse space-complexity + preprocessing time for
better time-complexity. I.e., preprocess database in data
structure that uses Ω(n) space.

2. Allow for approximation.

51

LOCALITY SENSITIVE HASH FUNCTIONS

Let h : Rd → {1, . . . ,m} be a random hash function.

We call h locality sensitive for similarity function s(q, y) if
Pr [h(q) == h(y)] is:

• Higher when q and y are more similar, i.e. s(q, y) is higher.
• Lower when q and y are more dissimilar, i.e. s(q, y) is
lower.

52

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q, y) equal to Jaccard similarity:

• Let c : {0, 1}d → [0, 1] be a single instantiation of MinHash.
• Let g : [0, 1] → {1, . . . ,m} be a uniform random hash
function.

• Let h(q) = g(c(q)).

53

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

• Let c : {0, 1}d → [0, 1] be a single instantiation of MinHash.
• Let g : [0, 1] → {1, . . . ,m} be a uniform random hash
function.

• Let h(x) = g(c(x)).

If J(q, y) = v,

Pr [h(q) == h(y)] =

54

NEAR NEIGHBOR SEARCH

Basic approach for LSH-based near neighbor search in a
database.

Pre-processing:

• Select random LSH function h : {0, 1}d → 1, . . . ,m.
• Create table T with m = O(n) slots.1

• For i = 1, . . . ,n, insert qi into T(h(qi)).

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors q ∈ T(h(y)) and return any
that are close to y. Time required is O(d · |T(h(y)|).

1Enough to make the O(1/m) term negligible.

55

NEAR NEIGHBOR SEARCH

56

NEAR NEIGHBOR SEARCH

Two main considerations:

• False Negative Rate: What’s the probability we do not find
a vector that is close to y?

• False Positive Rate: What’s the probability that a vector in
T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime – we
need to compute S(q, y) for every q ∈ T(h(y)) to check if it’s
actually close to y.

Note: The meaning of “close” and “not close” is application
dependent. E.g. we might specify that we want to find anything
with Jaccard similarity > .4, but not with Jaccard similarity < .2.

57

REDUCING FALSE NEGATIVE RATE

Let’s use Jaccard similarity as a running example. We will
discuss LSH for inner product/Euclidean distance as well.
Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we do not find q?

58

REDUCING FALSE NEGATIVE RATE

Pre-processing:

• Select t independent LSH’s h1, . . . ,ht : {0, 1}d → 1, . . . ,m.
• Create tables T1, . . . , Tt, each with m slots.
• For i = 1, . . . ,n, j = 1, . . . , t,

• Insert qi into Tj(hj(qi)).

59

REDUCING FALSE NEGATIVE RATE

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors in
T1(h1(y)) ∪ T2(h2(y)) ∪ . . . , Tt(ht(y)).

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we find q?

(10, 99%)

60

WHAT HAPPENS TO FALSE POSITIVES?

Suppose there is some other database point z with J(y, z) = .2.

What is the probability we will need to compute J(z, y) in our
hashing scheme with one table? I.e. the probability that y
hashes into at least one bucket containing z.

In the new scheme with t = 10 tables?

(89%)

61

REDUCING FALSE POSITIVES

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let c1, . . . , cr : {0, 1}d → [0, 1] be independnt random MinHash’s.

• Let g : [0, 1]r → {1, . . . ,m} be a uniform random hash function.

• Let h(x) = g(c1(x), . . . , cr(x)).

62

REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let c1, . . . , cr : {0, 1}d → [0, 1] be random MinHash.

• Let g : [0, 1]r → {1, . . . ,m} be a uniform random hash function.

• Let h(x) = g(c1(x), . . . , cr(x)).

If J(q, y) = v, then Pr [h(q) == h(y)] =

63

TUNABLE LSH

64

TUNABLE LSH

Full LSH cheme has two parameters to tune:

65

TUNABLE LSH

Effect of increasing number of tables t on:

False Negatives False Positives

Effect of increasing number of bands r on:

False Negatives False Positives

66

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

r = 5, t = 5
67

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ 1− (1− vr)t

r = 5, t = 40
68

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ 1− (1− vr)t

r = 40, t = 5
69

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

1− (1− vr)t

Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity. 70

FIXED THRESHOLD

Use Case 1: Fixed threshold.

• Shazam wants to find match to audio clip y in a database of 10
million clips.

• There are 10 true matches with J(y,q) > .9.

• There are 10,000 near matches with J(y,q) ∈ [.7, .9].

• All other items have J(y,q) < .7.

With r = 25 and t = 40,

• Hit probability for J(y,q) > .9 is ≳ 1− (1− .925)40 = .95

• Hit probability for J(y,q) ∈ [.7, .9] is ≲ 1− (1− .925)40 = .95

• Hit probability for J(y,q) < .7 is ≲ 1− (1− .725)40 = .005

Upper bound on total number of items checked:

10+ .95 · 10, 000+ .005 · 9, 989, 990 ≈ 60, 000 ≪ 10, 000, 000. 71

FIXED THRESHOLD

Space complexity: 40 hash tables ≈ 40 · O(n).

Directly trade space for fast search.

72

WORSE CASE GUARANTEES

Near Neighbor Search Problem

Concrete worst case result:
Theorem (Indyk, Motwani, 1998)
If there exists some q with ∥q− y∥0 ≤ R, return a vector q̃ with
∥q̃− y∥0 ≤ C · R in:

• Time: O
(
n1/C).

• Space: O
(
n1+1/C).

∥q− y∥0 = “hamming distance” = number of elements that
differ between q and y.

73

APPROXIMATE NEAREST NEIGHBOR SEARCH

Theorem (Indyk, Motwani, 1998)
Let q be the closest database vector to y. Return a vector q̃
with ∥q̃− y∥0 ≤ C · ∥q− y∥0 in:

• Time: Õ
(
n1/C).

• Space: Õ
(
n1+1/C).

Similar results can be proven for other metrics, including
Euclidean distance. But you need a good LSH function.

74

OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other
similarity measures.

Cosine similarity cos (θ(x, y)) = ⟨x,y⟩
∥x∥2∥y∥2 :

−1 ≤ cos (θ(x, y)) ≤ 1.

75

COSINE SIMILARITY

Cosine similarity is natural “inverse” for Euclidean distance.

Euclidean distance ∥x− y∥22:

• Suppose for simplicity that ∥x∥22 = ∥y∥22 = 1.

76

SIMHASH

Locality sensitive hash for cosine similarity:

• Let g ∈ Rd be randomly chosen with each entry N (0, 1).
• Let f : {−1, 1} → {1, . . . ,m} be a uniformly random hash
function.

• h : Rd → {1, . . . ,m} is definied h(x) = f (sign(⟨g, x⟩)).

If cos(θ(x, y)) = v, what is Pr[h(x) == h(y)]?

77

SIMHASH ANALYSIS IN 2D

Theorem (to be proven): If cos(θ(x, y)) = v, then

Pr[h(x) == h(y)] = 1− θ

π
+

θ/π

m = 1− cos−1(v)
π

+
θ/π

m

78

SIMHASH

SimHash can be banded, just like our MinHash based LSH
function for Jaccard similarity:

• Let g1, . . . , gr ∈ Rd be randomly chosen with each entry
N (0, 1).

• Let f : {−1, 1}r → {1, . . . ,m} be a uniformly random hash
function.

• h : Rd → {1, . . . ,m} is defined
h(x) = f ([sign(⟨g1, x⟩), . . . , sign(⟨gr, x⟩)]).

Pr[h(x) == h(y)] ≈
(
1− θ

Π

)r

79

SIMHASH ANALYSIS IN 2D

To prove: Pr[h(x) == h(y)] ≈ 1− θ
π , where h(x) = f (sign(⟨g, x⟩))

and f is uniformly random hash function.

Pr[h(x) == h(y)] = z+ 1− z
m ≈ z.

where z = Pr[sign(⟨g, x⟩) == sign(⟨g, y⟩)] 80

SIMHASH ANALYSIS 2D

Pr[h(x) == h(y)] ≈ probability x and y are on the same side of
hyperplane orthogonal to g.

81

SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix U such that Ux,Uy are
spanned by the first two-standard basis vectors and have the
same cosine similarity as x and y.

82

SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix U such that x, y are
spanned by the first two-standard basis vectors.

Note: A rotation matrix U has the property that UTU = I. I.e., UT

is a rotation matrix itself, which reverses the rotation of U.

83

SIMHASH ANALYSIS HIGHER DIMENSIONS

Claim:

Pr[sign(⟨g, x⟩) == sign(⟨g, y⟩) = Pr[sign(⟨g,Ux⟩) == sign(⟨g,Uy⟩)]
= Pr[sign(⟨g[1, 2], (Ux)[1, 2]⟩) == sign(⟨g[1, 2], (Uy[1, 2]⟩)]

= 1− θ

π
.

The first step is the trickiest here. Why does it hold?

84

