
CS-GY :ࠂ676 Lecture ࠃ
High Dimensional Geometry, the
Johnson-Lindenstrauss Lemma

NYU Tandon School of Engineering, Prof. Christopher Musco
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UNIFYING THEME OF THE COURSE

How do we deal with data (vectors) in high-dimensions?

• High-dimensional similarity search.
• Iterative methods for optimizing functions in
high-dimensions.

• SVD + low-rank approximation to find and visualize
low-dimensional structure.

• Convert large graphs to high-dimensional vector data to
uncover interesting things.
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HIGH DIMENSIONAL IS NOT LIKE LOW DIMENSIONAL

Often visualize data and algorithms in ,ࠁ,ࠀ or ࠂ dimensions.

First part of lecture: Prove that high-dimensional space looks
very different from low-dimensional space. These images are

rarely very informative!
ࠂ



SKETCHING AND DIMENSIONALITY REDUCTION

Second part of lecture: Ignore our own advice.

Learn about sketching, aka dimensionality reduction
techniques that seek to approximate high-dimensional vectors
with much lower dimensional vectors.

• Johnson-Lindenstrauss lemma for ࠁ! space.
• MinHash for binary vectors (next class) .

First part of lecture should help you understand the potential
and limitations of these methods. ࠃ



ORTHOGONAL VECTORS

Recall the inner product between two d dimensional vectors:

→x, y〉 = xTy = yTx =
d)

j=ࠀ

x[j]y[j]

→x, y〉 = cos(θ) · ‖x‖ࠁ · ‖y‖ࠁ
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ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors
xࠀ, . . . , xt in d-dimensional space? I.e. with inner product

|xTi xj| = ߿ for all i, j.
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ORTHOGONAL VECTORS

What is the largest set nearly orthogonal unit vectors xࠀ, . . . , xt
in d dimensions. I.e., with inner product |xTi xj| ≤ ε for all i, j.

Consider the case when ε is a constant. E.g. ε = .߿ࠀ/ࠀ
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ORTHOGONAL VECTORS

What is the largest set nearly orthogonal unit vectors xࠀ, . . . , xt
in d dimensions. I.e., with inner product |xTi xj| ≤ ε for all i, j.

Consider the case when ε is a constant. E.g. ε = .߿ࠀ/ࠀ

.ࠀ d .ࠁ Θ(d) .ࠂ Θ(dࠁ) .ࠃ (d)!ࠁ
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ORTHOGONAL VECTORS

Claim: There is an exponential number of nearly orthogonal
unit vectors in d dimensional space (i.e., ∼ .(dࠁ

Formally: In d-dimensional space, there are (dࠁε)!ࠁ unit vectors
with all pairwise inner products ≤ ε.

Proof strategy: Use the Probabilistic Method! For t = ,(dࠁε)!ࠁ
define a random process which generates random vectors
xࠀ, . . . , xt that are unlikely to have large inner product.

.ࠀ Claim that, with non-zero probability, |xTi xj| ≤ ε for all i, j.
.ࠁ Conclude that there must exists some set of t unit vectors

with all pairwise inner-products bounded by ε.
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PROBABILISTIC METHOD

Claim: There is an exponential number (i.e., ((d)!ࠁ of nearly
orthogonal unit vectors in d dimensional space.

Proof: Let xࠀ, . . . , xt all have independent random entries, each
set to ± √ࠀ

d
with equal probability.

• ‖xi‖ࠁࠁ =

• E[xTi xj] =

• Var[xTi xj] =

߿ࠀ
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INFORMAL PROOF

Let Z = xTi xj =
[d

i=ࠀ Ci where each Ci is random ± ࠀ
d .

Z is a sum of many i.i.d. random variables, so looks
approximately Gaussian. Roughly, we expect that:

Pr[|Z− EZ| ≥ α · σ] ≤ O(e−αࠁ
)

By a union bound, we can claim that the above holds for all
pairs in a set of size: ࠀࠀ
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FORMAL PROOF

Use an exponential concentration inequality!

Theorem (Chernoff Bound)
Let Xࠀ, Xࠁ, . . . , Xd be independent ,߿} valued-{ࠀ random
variables and let S =

[d
i=ࠀ Xi. We have for any ε < ࠀ :

Pr[|S− E[S]| ≥ εE[S]] ≤ eࠁ
−εࠁE[S]

ࠂ .

Does not immediately apply because we have random
variables that are ,d/ࠀ± not ,߿ .ࠀ

Common trick: shift and scale to transform to the binary case.
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FORMAL PROOF

xTi xj = Z =
d)

i=ࠀ

Ci =
ࠁ
d

d)

i=ࠀ

d
ࠁ
· Ci

=
ࠁ
d
·
] d)

i=ࠀ

Bi − ࠁ/ࠀ
)

=
ࠁ
d
·
]
−d
ࠁ
+

d)

i=ࠀ

Bi

)

where each Bi is uniform in ,߿} .{ࠀ
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FORMAL PROOF

xTi xj = Z =
ࠁ
d
·
]
−d
ࠁ
+

d)

i=ࠀ

Bi

)

where each Bi is uniform in ,߿} .{ࠀ

Pr[|Z| > ε] = Pr

[ d)

i=ࠀ

Bi ≥
d
ࠁ
+

εd
ࠁ

]
+ Pr

[ d)

i=ࠀ

Bi ≤
d
ࠁ
− εd

ࠁ

]

= Pr

[ d)

i=ࠀ

Bi ≥ +ࠀ) ε)E
[ d)

i=ࠀ

Bi

]]

+ Pr

[ d)

i=ࠀ

Bi ≤ −ࠀ) ε)E
[ d)

i=ࠀ

Bi

]]
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CHERNOFF BOUND

Theorem (Chernoff Bound)
Let Xࠀ, Xࠁ, . . . , Xd be independent ,߿} valued-{ࠀ random
variables and let S =

[d
i=ࠀ Xi. We have for any ε < ࠀ :

Pr[|S− E[S]| ≥ εE[S]] ≤ eࠁ
−εࠁE[S]

ࠂ .

Apply with Xࠀ, . . . , Xd = Bࠀ, . . . ,Bd:

Pr[|S− E[S]| ≥ εE[S]] ≤

ࠄࠀ
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PROBABILISTIC METHOD

Conclusion from Chernoff bound:

For any i, j pair, Pr[|xTi xj| < ε] ≥ −ࠀ .ࠅ/dࠁe−εࠁ

By a union bound:

For all i, j pairs simultaneously, Pr[|xTi xj| < ε] ≥ −ࠀ
(
t
ࠁ

)
· .ࠅ/dࠁe−εࠁ
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ORTHOGONAL VECTORS

Final result: In d-dimensional space, there are (dࠁε)!ࠁ unit
vectors with all pairwise inner products ≤ ε.

Corollary of proof: Random vectors tend to be far apart (and
roughly equidistant) in high-dimensions.

ࠆࠀ
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CURSE OF DIMENSIONALITY

Curse of dimensionality: Suppose we want to use e.g.
k-nearest neighbors to learn a function or classify points in Rd.
If our data distribution is truly random, we typically need an
exponential amount of data.

The existence of lower dimensional structure is our data is
often the only reason we can hope to learn.

ࠇࠀ
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CURSE OF DIMENSIONALITY

Low-dimensional structure.

For example, data lies on low-dimensional subspace, or does
so after transformation. Or function can be represented by a
restricted class of functions, like neural net with specific

architecture.

ࠈࠀ
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UNIT BALL IN HIGH DIMENSIONS

Let Bd be the unit ball in d dimensions:

Bd = {x ∈ Rd : ‖x‖ࠁ ≤ .{ࠀ

What percentage of volume of Bd falls with ε of its surface?

Volume of radius R ball is πd/ࠁ

(d/ࠁ)! · R
d.
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ISOPERIMETRIC INEQUALITY

All but a vanishing small (εd)!−ࠁ fraction of a unit ball’s volume
is within ε of its surface.

Isoperimetric Inequality: the ball has the minimum surface
area/volume ratio of any shape.

• If we randomly sample points from any high-dimensional
shape, nearly all will fall near its surface.

• ‘All points are outliers.’ ࠀࠁ
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INTUITION

:Dࠀ surface cubes
total cubes =

:Dࠁ surface cubes
total cubes =

:Dࠂ surface cubes
total cubes =

ࠁࠁ
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SLICES OF THE UNIT BALL

What percentage of the volume of Bd falls within ε of its
equator?

S = {x ∈ Bd : |xࠀ| ≤ ε}
ࠂࠁ
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SLICES OF THE UNIT BALL

What percentage of the volume of Bd falls within ε of its
equator? Answer: all but a (dࠁε)!−ࠁ fraction.

By symmetry, this is true for any equator:
St = {x ∈ Bd : xTt ≤ ε}. ࠃࠁ
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BIZARRE SHAPE OF UNIT BALL

.ࠀ −ࠀ) ((εd)!−ࠁ fraction of volume lies ε close to surface.
.ࠁ −ࠀ) ((dࠁε)!−ࠁ fraction of volume lies ε close to any equator.

High-dimensional ball looks nothing like Dࠁ ball! ࠄࠁ
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CONCENTRATION AT EQUATOR

Claim: All but a (dࠁε)!−ࠁ fraction of the volume of the ball falls
within ε of its equator.

Equivalent: If we draw a point x randomly from the unit ball,
|xࠀ| ≤ ε with probability ≥ −ࠀ .(dࠁε)!−ࠁ

ࠅࠁ
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CONCENTRATION AT EQUATOR

Let w = x
‖x‖ࠁ . Because ‖x‖ࠁ ≤ ,ࠀ

Pr [|xࠀ| ≤ ε] ≥ Pr [|wࠀ| ≤ ε] .

Claim: |wࠀ| ≤ ε with probability ≥ −ࠀ .(dࠁε)!−ࠁ This then proves
our statement from the previous slide.

How can we generate w, which is a random vector taken from
the unit sphere (the surface of the ball)?

ࠆࠁ
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IMPORTANT FACT IN HIGH DIMENSIONAL GEOMETRY

Rotational Invariance of Gaussian distribution: Let g be a
random Gaussian vector, with each entry drawn from N ,߿) .(ࠀ
Then w = g/‖g‖ࠁ is distributed uniformly on the unit sphere.

Why? Consider the probability density function of a high
dimensional Gaussian:

p(g) = p(g[ࠀ]) · . . . · p(g[d]) =
d∏

i=ࠀ

ce−g[i]ࠁ/ࠁ

= cde
∑d

i=ࠀ −g[i]ࠁ/ࠁ

= cde−‖g‖ࠁ/ࠁࠁ

ࠇࠁ

- -

=L"""'"'-e-
1411911?¥000

O

f t . . . 11¥)↳ t o . e"%-



PROOF STRATEGY

Draw g ∼ N .(I.߿) Show that first entry of w = g/‖g‖ࠁ ≤ ε with
very high probability.

.ࠀ Prove that with high probability, the first entry of g/
√
d is

small.
.ࠁ Prove that g/

√
d is very very close to g/‖g‖ࠁࠁ, so this vector

also has small first entry. ࠈࠁ
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CONCENTRATION AT EQUATOR

Let g be a random Gaussian vector and w = g/‖g‖ࠁ.

• E[‖g‖ࠁࠁ] =

Excersize for home: Prove that Pr
[
‖g‖ࠁࠁ ≤ ࠀ

‖E[‖gࠁ
ࠁ
[ࠁ
]
≤ .(d)!−ࠁ

This should intuitively make sense. Can you tell me why?
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CONCENTRATION AT EQUATOR

For −ࠀ (d)!−ࠁ fraction of vectors g, ‖g‖ࠁ ≥
√

d/ࠁ. Condition on
the event that we get a random vector in this set.

Recall that w = g
‖g‖ࠁ . Given this event:

Pr [|wࠀ| ≤ ε] = Pr [|gࠀ/‖g‖ࠁ| ≤ ε]

≥ Pr
[
|gࠀ|/

√
d/ࠁ ≤ ε

]

= Pr
[
|gࠀ| ≤ ε ·

√
d/ࠁ
]

≥ −ࠀ θ−ࠁ
(
(ε·
√

d/ࠁ(ࠁ
)

By union bound, overall we have:

Pr [|wࠀ| ≤ ε] ≥ −ࠀ (dࠁε)!−ࠁ − θ(d)−ࠁ

ࠀࠂ
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BIZARRE SHAPE OF UNIT BALL

.ࠀ −ࠀ) ((εd)!−ࠁ fraction of volume lies ε close to surface.
.ࠁ −ࠀ) ((dࠁε)!−ࠁ fraction of volume lies ε close to any equator.

High-dimensional ball looks nothing like Dࠁ ball! ࠁࠂ



HIGH DIMENSIONAL CUBE

Let Cd be the d-dimensional cube:

Cd = {x ∈ Rd : |x(i)| ≤ ࠀ ∀i}.

In two dimensions, the cube is pretty similar to the ball.

But volume of Cd is dࠁ while volume of unit ball is
√
πd

(d/ࠁ)! .

This is a huge gap! Cube has O(d)O(d) more volume. ࠂࠂ
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HIGH DIMENSIONAL CUBE

Some other ways to see these shapes are very different:

• maxx∈Bd ‖x‖ࠁࠁ =
• maxx∈Cd ‖x‖ࠁࠁ =

ࠃࠂ
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HIGH DIMENSIONAL CUBE

Some other ways to see these shapes are very different:

• Ex∼Bd‖x‖ࠁࠁ
• Ex∼Cd‖x‖ࠁࠁ =

ࠄࠂ
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HIGH DIMENSIONAL CUBE

Almost all of the volume of the unit cube falls in its corners,
and these corners lie far outside the unit ball.

ࠅࠂ
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RECENT ARTICLE

See The Journey to Define Dimension from Quanta Magazine
for another fun example comparing cubes to balls!

Place dࠁ unit balls in box with side length .ࠃ Look at sphere
they enclose. It has radius

√
d− .ࠀ

So for d > ,ࠈ it sticks out of the box...
ࠆࠂ
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DIMENSIONALITY REDUCTION

Despite all this warning that low-dimensional space looks
nothing like high-dimensional space, next we are going to
learn about how to compress high dimensional vectors to low
dimensions.

We will be very careful not to compress things too far. An
extremely simple method known as Johnson-Lindenstrauss
Random Projection pushes right up to the edge of how much
compression is possible.

ࠇࠂ



EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, (ࠃ98ࠀ
For any set of n data points qࠀ, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
εࠁ

)
such that for all

i, j,

−ࠀ) ε)‖qi − qj‖ࠁ ≤ ‖Πqi −Πqj‖ࠁ ≤ +ࠀ) ε)‖qi − qj‖ࠁ.

ࠈࠂ



EUCLIDEAN DIMENSIONALITY REDUCTION

This is equivalent to:

Lemma (Johnson-Lindenstrauss, (ࠃ98ࠀ
For any set of n data points qࠀ, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
εࠁ

)
such that for all

i, j,

−ࠀ) ε)‖qi − qj‖ࠁࠁ ≤ ‖Πqi −Πqj‖ࠁࠁ ≤ +ࠀ) ε)‖qi − qj‖ࠁࠁ.

because for small ε, +ࠀ) ε)ࠁ = +ࠀ O(ε) and −ࠀ) ε)ࠁ = −ࠀ O(ε).

߿ࠃ



TONS OF APPLICATIONS

Make pretty much any computation involving vectors faster
and more space efficient.

• Faster vector search (used in image search, AI-based web
search, Retrieval Augmented Generation (RAG), etc.).

• Faster machine learning (next class we will see an
application to speeding up clustering).

• Faster numerical linear algebra.

Only useful if we can explicity construct a JL map Π and apply
efficiently to vectors.

ࠀࠃ



EUCLIDEAN DIMENSIONALITY REDUCTION

Remarkably, Π can be chosen completely at random!

One possible construction: Random Gaussian.

Πi,j =
√ࠀ
k
N ,߿) (ࠀ

The map Π is oblivious to the data set. This stands in contrast
to other vector compression methods you might know like PCA.

[Indyk, Motwani [ࠇࠈࠈࠀ [Arriage, Vempala [ࠈࠈࠈࠀ [Achlioptas [ࠀ߿߿ࠁ
[Dasgupta, Gupta .[ࠂ߿߿ࠁ

Many other possible choices suffice – you can use random
{ࠀ−,ࠀ+} variables, sparse random matrices, pseudorandom Π.
Each with different advantages.

ࠁࠃ



RANDOMIZED JL CONSTRUCTIONS

Let Π ∈ Rk×d be chosen so that each entry equals √ࠀ
k
N ,߿) .(ࠀ

... or each entry equals √ࠀ
k
± ࠀ with equal probability.

A random orthogonal matrix Q also works. I.e. with QQT = Ik×k.
For this reason, the JL operation is often called a “random

projection”, even though it technically is not a projection when
Π′s entries are i.i.d.

ࠂࠃ



RANDOM PROECTION

Can anyone see why Π is similar to a projection matrix? I.e., a
matrix satisfying QQT = Ik×k.

ࠃࠃ



RANDOM PROJECTION

Intuition: Multiplying by a random matrix mimics the process
of projecting onto a random k dimensional subspace in d
dimensions. ࠄࠃ



EUCLIDEAN DIMENSIONALITY REDUCTION

Intermediate result:
Lemma (Distributional JL Lemma)
Let Π ∈ Rk×d be chosen so that each entry equals √ࠀ

k
N ,߿) ,(ࠀ

where N ,߿) (ࠀ denotes a standard Gaussian random variable.

If we choose k = O
(
log(ࠀ/δ)

εࠁ

)
, then for any vector x, with

probability −ࠀ) δ):

−ࠀ) ε)‖x‖ࠁࠁ ≤ ‖Πx‖ࠁࠁ ≤ +ࠀ) ε)‖x‖ࠁࠁ

Given this lemma, how do we prove the traditional
Johnson-Lindenstrauss lemma?

ࠅࠃ



JL FROM DISTRIBUTIONAL JL

We have a set of vectors qࠀ, . . . ,qn. Fix i, j ∈ ,ࠀ . . . ,n.

Let x = qi − qj. By linearity, Πx = Π(qi − qj) = Πqi −Πqj.

By the Distributional JL Lemma, with probability −ࠀ δ,

−ࠀ) ε)‖qi − qj‖ࠁ ≤ ‖Πqi −Πqj‖ࠁ ≤ +ࠀ) ε)‖qi − qj‖ࠁ.

Finally, set δ = ࠀ
nࠁ . Since there are < nࠁ total i, j pairs, by a

union bound we have that with probability ,߿ࠀ/ࠈ the above will
hold for all i, j, as long as we compress to:

k = O
(
log(ࠀ/(ࠀ/nࠁ))

εࠁ

)
= O

(
log n
εࠁ

)
dimensions.

ࠆࠃ



PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability −ࠀ) δ),

−ࠀ) ε)‖x‖ࠁࠁ ≤ |Πx‖ࠁࠁ ≤ +ࠀ) ε)‖x‖ࠁࠁ

Claim: E‖Πx‖ࠁࠁ = ‖x‖ࠁࠁ.
Some notation:

So each πi contains N ,߿) (ࠀ entries. ࠇࠃ



PROOF OF DISTRIBUTIONAL JL

Intermediate Claim: Let π be a length d vector with N ,߿) (ࠀ
entries.

E
[
‖Πx‖ࠁࠁ

]
= E

[
(→π, x〉)ࠁ

]
.

Goal: Prove E‖Πx‖ࠁࠁ = ‖x‖ࠁࠁ.

ࠈࠃ



PROOF OF DISTRIBUTIONAL JL

→π, x〉 = Zࠀ · x[ࠀ] + Zࠁ · x[ࠁ] + . . .+ Zd · x[d]

where each Zࠀ, . . . , Zd is a standard normal N ,߿) .(ࠀ

We have that Zi · x[i] is a normal N ,߿) x[i]ࠁ) random variable.

Goal: Prove E‖Πx‖ࠁࠁ = ‖x‖ࠁࠁ. Established: E‖Πx‖ࠁࠁ = E
[
(→π, x〉)ࠁ

]

߿ࠄ



STABLE RANDOM VARIABLES

What type of random variable is →π, x〉?

Fact (Stability of Gaussian random variables)

N (µࠀ,σ
ࠁ
ࠀ ) +N (µࠁ,σ

ࠁ
(ࠁ = N (µࠀ + µࠁ,σ

ࠁ
ࠀ + σࠁ

(ࠁ

→π, x〉 = N ,߿) x[ࠀ]ࠁ) +N ,߿) x[ࠁ]ࠁ) + . . .+N ,߿) x[d]ࠁ)
= N ,߿) ‖x‖ࠁࠁ).

So E‖Πx‖ࠁࠁ = E
[
(→π, x〉)ࠁ

]
= E

[
N ,߿) ‖x‖ࠁࠁ)

]
= ‖x‖ࠁࠁ, as desired.

ࠀࠄ



PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability −ࠀ) δ),

−ࠀ) ε)‖x‖ࠁࠁ ≤ ‖Πx‖ࠁࠁ ≤ +ࠀ) ε)‖x‖ࠁࠁ

.ࠀ E‖Πx‖ࠁࠁ = ‖x‖ࠁࠁ.
.ࠁ Need to use a concentration bound.

‖Πx‖ࠁࠁ =
ࠀ
k

k)

i=ࠀ

(→πi, x〉)ࠁ =
ࠀ
k

k)

i=ࠀ

N ,߿) ‖x‖ࠁࠁ)

“Chi-squared random variable with k degrees of freedom.”

ࠁࠄ



CONCENTRATION OF CHI-SQUARED RANDOM VARIABLES

Lemma
Let H be a Chi-squared random variable with k degrees of
freedom.

Pr[|EH− H| ≥ εEH] ≤ ࠇ/ࠁe−kεࠁ

Goal: Prove ‖Πx‖ࠁࠁ concentrates within ±ࠀ ε of its expectation,
which equals ‖x‖ࠁࠁ. ࠂࠄ



CONNECTION TO EARLIER PART OF LECTURE

If high dimensional geometry is so different from
low-dimensional geometry, why is dimensionality reduction
possible?

Doesn’t Johnson-Lindenstrauss tell us that high-dimensional
geometry can be approximated in low dimensions?

ࠃࠄ



CONNECTION TO DIMENSIONALITY REDUCTION

Hard case: xࠀ, . . . , xn ∈ Rd are all mutually orthogonal unit
vectors:

‖xi − xj‖ࠁࠁ = ࠁ for all i, j.

When we reduce to k dimensions with JL, we still expect these
vectors to be nearly orthogonal. Why?

ࠄࠄ



CONNECTION TO DIMENSIONALITY REDUCTION

Hard case: xࠀ, . . . , xn ∈ Rd are all mutually orthogonal unit
vectors:

‖xi − xj‖ࠁࠁ = ࠁ for all i, j.

From our result earlier, in O(log n/εࠁ) dimensions, there exists
log·ࠁO(εࠁ n/εࠁ) ≥ n unit vectors that are close to mutually
orthogonal. O(log n/εࠁ) = just enough dimensions.

Alternative view: Without additional structure, we expect that
learning/inference in d dimensions requires O(d)ࠁ data points.
If we really had a data set that large, then the JL bound would
be vacous, since log(n) = O(d).

ࠅࠄ


