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DISTINCT ELEMENTS PROBLEM

Input: d1, . . . ,dn ∈ U where U is a huge universe of items.

Output: Number of distinct inputs, D.

Example: f(1, 10, 2, 4, 9, 2, 10, 4)→ D = 5

Flajolet–Martin (simplified):

• Choose random hash function h : U → [0, 1].
• S = 1
• For i = 1, . . . ,n

• S← min(S,h(xi))

• Return: 1
S − 1
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VISUALIZATION

Flajolet–Martin (simplified):

• Choose random hash function h : U → [0, 1].
• S = 1
• For i = 1, . . . ,n

• S← min(S,h(xi))
• Return: D̃ = 1

S − 1

3



PROOF “FROM THE BOOK”

E[S] = Pr[(D+ 1)st item has the smallest hash value].

By symmetry, this equals 1
D+1 (since every ball is equally likely

to be first).

Final Estimate: D̃ = 1
S − 1.
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PROVING CONCENTRATION

ES = 1
D+1 . Estimate: D̃ = 1

S − 1. Claim: We have for ϵ < 1
2 :

If (1− ϵ)ES ≤ S ≤ (1+ ϵ)ES, then:

(1− 4ϵ)D ≤ D̃ ≤ (1+ 4ϵ)D.

So, it suffices to show that S concentrates around its mean. I.e.
that |S− ES| ≤ ϵ · ES. We will use Chebyshev’s inequality as
our concentration bound. 5



ϵ MANIPULATION TRICKS

Recall:

1+ ϵ ≤ 1
1− ϵ

≤ 1+ 2ϵ for ϵ ∈ [0, .5].

1− ϵ ≤ 1
1+ ϵ

≤ 1− .5ϵ for ϵ ∈ [0, 1].
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CALCULUS PROOF

Lemma
Var[S] = E[S2]− E[S]2 = 2

(D+1)(D+2) −
1

(D+1)2 ≤
1

(D+1)2 .

Proof:

E[S2] =
∫ 1

0
Pr[S2 ≥ λ]dλ

=

∫ 1

0
Pr[S ≥

√
λ]dλ

=

∫ 1

0
(1−

√
λ)Ddλ

=
2

(D+ 1)(D+ 2)

www.wolframalpha.com/input?i=antiderivative+of+
%281-sqrt%28x%29%29%5ED
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PROOF “FROM THE BOOK”

E[S2] =??.
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FM ANALYSIS

Recall we want to show that, with high probability,
(1− ϵ)E[S] ≤ S ≤ (1− ϵ)E[S].

• E[S] = 1
D+1 = µ.

• Var[S] ≤ 1
(D+1)2 = µ2. Standard deviation: σ ≤ µ.

• Want to bound Pr[|S− µ| ≥ ϵµ] ≤ δ.

Chebyshev’s: Pr[|S− µ| ≥ ϵµ] = Pr[|S− µ| ≥ ϵσ] ≤ 1
ϵ2
.

Vacuous bound. Our variance is way too high!
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VARIANCE REDUCTION

Trick of the trade: Repeat many independent trials and take
the mean to get a better estimator.

Given i.i.d. (independent, identically distributed) random
variables X1, . . . , Xk with mean µ and variance σ2, what is:

• E
[
1
k
∑k

i=1 Xi
]
=

• Var
[
1
k
∑k

i=1 Xi
]
=
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FM ANALYSIS

Using independent hash functions, maintain k independent
sketches S1, . . . , Sk.

Flajolet–Martin:

• Choose k random hash function h1, . . . ,hk : U → [0, 1].
• S1 = 1, . . . , Sk = 1
• For i = 1, . . . ,n

• Sj ← min(Sj,hj(xi)) for all j ∈ 1, . . . , k.
• S = (S1 + . . .+ Sk)/k
• Return: 1

S − 1 11



FM ANALYSIS

1 estimator:

• E[S] = 1
D+1 = µ.

• Var[S] = µ2

k estimators:

• E[S] = 1
D+1 = µ.

• Var[S] ≤ µ2/k
• By Chebyshev, Pr[|S− ES| ≥ cµ/

√
k] ≤ 1

c2 .

Setting c = 1/
√
δ and k = 1

ϵ2δ
gives:

Pr[|S− µ| ≥ ϵµ] ≤ δ.
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FM ANALYSIS

• Recall that to ensure (1− ϵ̄)D ≤ 1
S − 1 ≤ (1+ ϵ̄)D, we

needed |S− µ| ≤ ϵ̄
4µ.

• So apply the result from the previous slide with ϵ = ϵ̄/4.
• Need to store k = 1

ϵ2δ
= 1

(ϵ̄/4)2δ = 16
ϵ2δ

counters.

Total space complexity: O
( 1
ϵ2δ

)
to estimate distinct elements

up to error ϵ with success probability 1− δ.
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NOTE ON FAILURE PROBABILITY

O
( 1
ϵ2δ

)
space is an impressive bound:

• 1/ϵ2 dependence cannot be improved.
• No linear dependence on number of distinct elements D.1

• But... 1/δ dependence is not ideal. For 95% success rate,
pay a 1

5% = 20 factor overhead in space.

We can get a better bound depending on O(log(1/δ)) using
exponential tail bounds. We will see next.

1Technically, if we account for the bit complexity of storing S1, . . . , Sk and
the hash functions h1, . . . ,hk, the space complexity is O

(
log D
ϵ2δ

)
.
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DISTINCT ELEMENTS IN PRACTICE

In practice, we cannot hash to real numbers on [0, 1]. Could use
a finite grid, but more popular choice is to hash to integers (bit
vectors).

Real Flajolet-Martin / HyperLogLog:

• Estimate # distinct elements
based on maximum number of
trailing zeros m.

• The more distinct hashes we see,
the higher we expect this
maximum to be.
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LOGLOG SPACE

Total Space: O
(
log log D

ϵ2
+ logD

)
for an ϵ approximate count.

“Using an auxiliary memory smaller than the size of this abstract, the
LogLog algorithm makes it possible to estimate in a single pass and
within a few percents the number of different words in the whole of
Shakespeare’s works.” – Flajolet, Durand.

Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

space used = O
(
log logD

ϵ2
+ logD

)

=
1.04 · ⌈log2 log2 D⌉

ϵ2
+ ⌈log2 D⌉ bits

=
1.04 · 5
.022 + 30 = 13030 bits ≈ 1.6 kB!

16



LOGLOG SPACE

Total Space: O
(
log log D

ϵ2
+ logD

)
for an ϵ approximate count.

“Using an auxiliary memory smaller than the size of this abstract, the
LogLog algorithm makes it possible to estimate in a single pass and
within a few percents the number of different words in the whole of
Shakespeare’s works.” – Flajolet, Durand.

Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

space used = O
(
log logD

ϵ2
+ logD

)
=

1.04 · ⌈log2 log2 D⌉
ϵ2

+ ⌈log2 D⌉ bits

=
1.04 · 5
.022 + 30 = 13030 bits ≈ 1.6 kB!

16



LOGLOG SPACE

Total Space: O
(
log log D

ϵ2
+ logD

)
for an ϵ approximate count.

“Using an auxiliary memory smaller than the size of this abstract, the
LogLog algorithm makes it possible to estimate in a single pass and
within a few percents the number of different words in the whole of
Shakespeare’s works.” – Flajolet, Durand.

Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

space used = O
(
log logD

ϵ2
+ logD

)
=

1.04 · ⌈log2 log2 D⌉
ϵ2

+ ⌈log2 D⌉ bits

=
1.04 · 5
.022 + 30 = 13030 bits ≈ 1.6 kB!

16



HYPERLOGLOG IN PRACTICE

Although, to be fair, storing a dictionary with 1 billion bits only
takes 125 megabytes. Not tiny, but not unreasonable.

These estimators become more important when you want to
count many different things (e.g., a software company tracking
clicks on 100s of UI elements).
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DISTRIBUTED DISTINCT ELEMENTS

Also very important in distributed settings.

Distinct elements summaries are “mergeable”. No need to
share lists of distinct elements if those elements are stored on
different machines. Just share minimum hash value.
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HYPERLOGLOG IN PRACTICE

Implementations: Google PowerDrill, Facebook Presto, Twitter
Algebird, Amazon Redshift.

Use Case: Exploratory SQL-like queries on tables with 100’s of
billions of rows.

• Count number of distinct users in Germany that made at least
one search containing the word ‘auto’ in the last month.

• Count number of distinct subject lines in emails sent by users
that have registered in the last week.

Answering a query requires a (distributed) linear scan over the
database: 2 seconds in Google’s distributed implementation.

Google Paper: “Processing a Trillion Cells per Mouse Click”
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BEYOND CHEBYSHEV

Motivating question: Is Chebyshev’s Inequality tight?

It is the worst case, but often not in reality.

68-95-99 rule for Gaussian bell-curve. X ∼ N(0, σ2)

Chebyshev’s Inequality:

Pr (|X− E[X]| ≥ 1σ) ≤ 100%
Pr (|X− E[X]| ≥ 2σ) ≤ 25%
Pr (|X− E[X]| ≥ 3σ) ≤ 11%
Pr (|X− E[X]| ≥ 4σ) ≤ 6%.

Truth:

Pr (|X− E[X]| ≥ 1σ) ≈ 32%
Pr (|X− E[X]| ≥ 2σ) ≈ 5%
Pr (|X− E[X]| ≥ 3σ) ≈ 1%
Pr (|X− E[X]| ≥ 4σ) ≈ .01% 20



GAUSSIAN CONCENTRATION

X ∼ N (µ, σ2) has probability density function (PDF) p with:

p(µ± x) = 1
σ
√
2π

e−x2/2σ2

Lemma (Gaussian Tail Bound)
For X ∼ N (µ, σ2):

Pr[|X− EX| ≥ k · σ] ≤ 2e−k2/2.

Compare this to:

Lemma (Chebyshev’s Inequality)
For X ∼ N (µ, σ2):

Pr[|X− EX| ≥ k · σ] ≤ 1
k2
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GAUSSIAN CONCENTRATION

Standard y-scale. Logarithmic y-scale.

Takeaway: Gaussian random variables concentrate much
tighter around their expectation than variance alone predicts
(i.e., than Chebyshevs’s inequality predicts).

Why does this matter for algorithm design?
22



CENTRAL LIMIT THEOREM

Theorem (CLT – Informal)
Any sum of mutually independent, (identically distributed)
r.v.’s X1, . . . , Xn with mean µ and finite variance σ2 converges to
a Gaussian r.v. with mean n · µ and variance n · σ2, as n→∞.

S =
n∑
i=1

Xi =⇒ N (n · µ,n · σ2).
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INDEPENDENCE

Recall:

Definition (Mutual Independence)
Random variables X1, . . . , Xn are mutually independent if, for
all possible values v1, . . . , vn,

Pr[X1 = v1, . . . , Xn = vn] = Pr[X1 = v1] · . . . · Pr[Xn = vn]

Strictly stronger than pairwise independence.
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EXERCISE

If I flip a fair coin 100 times, lower bound the chance I get between
30 and 70 heads?

Let’s approximate the probability by assuming the limit of the CLT
holds exactly – i.e., that this sum looks exactly like a Gaussian
random variable.
Lemma (Gaussian Tail Bound)
For X ∼ N (µ, σ2):

Pr[|X− EX| ≥ k · σ] ≤ 2e−k2/2.

2e−8 = .06%. Chebyshev’s inequality gave a bound of 6.25%. 25



QUANTITATIVE VERSIONS OF THE CLT

These back-of-the-envelop calculations can be made
rigorous! Lots of different “versions” of bound which do so.

• Chernoff bound
• Bernstein bound
• Hoeffding bound
• . . .

Different assumptions on random varibles (e.g. binary vs.
bounded), different forms (additive vs. multiplicative error),

etc. Wikipedia is your friend.
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QUANTITATIVE VERSIONS OF THE CLT

Theorem (Chernoff Bound)
Let X1, X2, . . . , Xn be independent {0, 1}-valued random
variables and let pi = E[Xi], where 0 < pi < 1. Then the sum
S =

∑n
i=1 Xi, which has mean µ =

∑n
i=1 pi, satisfies

Pr[S ≥ (1+ ϵ)µ] ≤ e
−ϵ2µ
2+ϵ .

and for 0 < ϵ < 1

Pr[S ≤ (1− ϵ)µ] ≤ e
−ϵ2µ

2 .
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CHERNOFF BOUND

Theorem (Chernoff Bound Corollary)
Let X1, X2, . . . , Xn be independent {0, 1}-valued random
variables and let pi = E[Xi], where 0 < pi < 1. Let S =

∑n
i=1 Xi

and E[S] = µ. For ϵ ∈ (0, 1),

Pr[|S− µ| ≥ ϵµ] ≤ 2e−ϵ2µ/3

Why does this look like the Gaussian tail bound of
Pr[|S− µ| ≥ k · σ] ≲ 2e−k2/2? What is σ(S)?
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QUANTITATIVE VERSIONS OF THE CLT

Theorem (Bernstein Inequality)
Let X1, X2, . . . , Xn be independent random variables with each
Xi ∈ [−1, 1]. Let µi = E[Xi] and σ2

i = Var[Xi]. Let µ =
∑n

i=1 µi
and σ2 =

∑n
i=1 σ

2
i . Then, for k ≤

1
2σ, S =

∑n
i=1 Xi satisfies

Pr[|S− µ| > k · σ] ≤ 2e−k2/4.
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QUANTITATIVE VERSIONS OF THE CLT

Theorem (Hoeffding Inequality)
Let X1, X2, . . . , Xn be independent random variables with each
Xi ∈ [ai,bi]. Let µi = E[Xi] and µ =

∑n
i=1 µi. Then, for any

k > 0, S =
∑n

i=1 Xi satisfies:

Pr[|S− µ| > k] ≤ 2e
−2k2∑n

i=1(bi−ai)2 .
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HOW ARE THESE BOUNDS PROVEN?

Variance is a natural measure of central tendency, but there
are others.

qth central moment: E[(X− EX)q]

q = 2 gives the variance. Proof of Chebyshev’s applies Markov’s
inequality to the random variable (X− EX)2).

Idea in brief: Apply Markov’s inequality to E[(X− EX)q] for
larger q, or more generally to f(X− EX) for some other
non-negative function f. E.g., to exp(X− EX). Doing so requires
higher-order independence.
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EXERCISE

If I flip a fair coin 100 times, lower bound the chance I get between
30 and 70 heads?

Corollary of Chernoff bound: Let S =
∑n

i=1 Xi and µ = E[S]. For
0 < ϵ < 1,

Pr[|S− µ| ≥ ϵµ] ≤ 2e−ϵ2µ/3

Here Xi = 1[ith flip is heads].

1.4%.
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CHERNOFF BOUND APPLICATION

General Statement: Flip biased coin n times: i.e. the coin is
heads with probability b. As long as n ≥ O

(
log(1/δ)

ϵ2

)
,

Pr[|# heads− b · n| ≥ ϵn] ≤ δ

Pay very little for higher probability – if you increase the
number of coin flips by 4x, δ goes from
1/10→ 1/100→ 1/10000
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LOAD BALANCING

Load balancing problem:

Suppose Google answers map search queries using servers
A1, . . . , Aq. Given a query like “new york to rhode island”,
common practice is to choose a random hash function
h→ {1 . . . ,q} and to route this query to server:

Ah(“new york to rhode island’)

Goal: Ensure that requests are distributed evenly, so no one
server gets loaded with too many requests. We want to avoid
downtime and slow responses to clients.

Why use a hash function instead of just distributing requests
randomly?
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LOAD BALANCING

Suppose we have n servers and m requests, x1, . . . , xm. Let si
be the number of requests sent to server i ∈ {1, . . . ,n} :

si =
m∑
j=1

1[h(xj) = i].

Formally, our goal is to understand the value of maximum load
on any server, which can be written as the random variable:

S = max
i∈{1,...,n}

si.
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LOAD BALANCING

A good first step is to first think about expectations. If we have
n servers and m requests, for any i ∈ {1, . . . ,n}:

E[si] =
m∑
j=1

E
[
1[h(xj) = i]

]
=

m
n .

But it’s unclear what the expectation of S = maxi∈{1,...,n} si is...
in particular, E[S] ̸= maxi∈{1,...,n} E[si].

Exercise: Convince yourself that for two random variables A
and B, E[max(A,B)] ̸= max(E[A],E[B]) even if those random
variable are independent.
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SIMPLIFYING ASSUMPTIONS

Number of servers: To reduce notation and keep the math
simple, let’s assume that m = n. I.e., we have exactly the same
number of servers and requests.

Hash function: Continue to assume a fully (uniformly) random
hash function h.

Often called the “balls-into-bins” model.

E[si] = expected number of balls per bin = m
n = 1. We would

like to prove a bound of the form:

Pr[max
i

si ≥ C] ≤ 1
10 .

for as tight a value of C. I.e., something much better than C = n. 37



BOUNDING A UNION OF EVENTS

Goal: Prove that for some C,

Pr[max
i

si ≥ C] ≤ 1
10 .

Equivalent statement: Prove that for some C,

Pr[(s1 ≥ C) ∪ (s2 ≥ C) ∪ . . . ∪ (sn ≥ C)] ≤ 1
10 .

These events are not independent, but we can apply union
bound!

n = number of balls and number of bins. si is number of balls in
bin i. C = upper bound on maximum number of balls in any bin.

38



APPLICATION OF UNION BOUND

We want to prove that:

Pr[max
i

si ≥ C] = Pr[(s1 ≥ C) ∪ (s2 ≥ C) ∪ . . . ∪ (sn ≥ C)] ≤ 1
10 .

To do so, it suffices to prove that for all i:

Pr[si ≥ C] ≤ 1
10n .

Why? Because then by the union bound,

Pr[max
i

si ≥ C] ≤
n∑
i=1

Pr[si ≥ C] (Union bound)

≤
n∑
i=1

1
10n =

1
10 .

n = number of balls and number of bins. si is number of balls in
bin i. 39



NEW GOAL

Prove that for some C,

Pr[si ≥ C] ≤ 1
10n .

Let’s try doing this with Markov’s, Chebyshev, and exponential
concentration.

40



ATTEMPT WITH MARKOV’S INEQUALITY

Goal: Prove that Pr[si ≥ C] ≤ 1
10n .

• Step 1. Verify we can apply Markov’s: si takes on
non-negative values only. Good to go!

• Step 2. Apply Markov’s: Pr[si ≥ C] ≤ E[si]
C = 1

C .

To prove our target statement, need to see C = 10n.

Meaningless! There are only n balls, so of course there can’t be
more than 10n in the most overloaded bin.

n = number of balls and number of bins. si is number of balls in
bin i. E[si] = 1. C = upper bound on maximum number of balls in
any bin. Markov’s inequality: for positive r.v. X, Pr[X ≥ t] ≤ E[X]/t.
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ATTEMPT WITH CHEBYSHEV’S INEQUALITY

Goal: Prove that Pr[si ≥ C] ≤ 1
10n .

• Step 1. To apply Chebyshev’s inequality, we need to
understand σ2 = Var[si].

Use linearity of variance. Let si,j be a {0, 1} indicator random
variable for the event that ball j falls in bin i. We have:

si =
n∑
j=1

si,j.

n = number of balls and number of bins. si is number of balls in
bin i. E[si] = 1. C = upper bound on max number of balls in bin.
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VARIANCE ANALYSIS

si,j =

1 with probability 1
n

0 otherwise.

E[si,j] =
E[s2i,j] =

So:

Var[si] = Var

 n∑
j=1

si,j

 =

n = number of balls and number of bins. si,j is event ball j lands in
bin i.
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APPLYING CHEBYSHEV’S

Goal: Prove that Pr[si ≥ C] ≤ 1
10n .

Step 1. To apply Chebyshev’s inequality, we need to
understand σ2 = Var[si].

Var[si] =
n∑
j=1

Var[si,j] =
n∑
j=1

1
n −

1
n2 = 1− 1

n ≤ 1.

Step 2. Apply Chebyshev’s inequality:

Pr [|si − E[si]| ≥ k · 1] ≤ 1
k2

n = number of balls and number of bins. si = number of balls in
bin i. si,j is event ball j lands in bin i. E[si] = 1.

44



APPLYING CHEBYSHEV’S

Goal: Prove that Pr[si ≥ C] ≤ 1
10n .

We just proved that, for any k: Pr[|si − 1| ≥ k] ≤ 1
k2 .

n = number of balls and number of bins. si is number of balls in
bin i. C = upper bound on maximum number of balls in any bin. 45



FINAL RESULT FOR CHEBYSHEV’S

When hashing n balls into n bins, the maximum bin contains
o(
√
n) balls with probability 9

10 .

Much better than the trivial bound of n!
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ATTEMPT WITH EXPONENTIAL CONCENTRATION

Goal: Prove that Pr[si ≥ C] ≤ 1
10n .

Recall: si =
∑n

j=1 si,j, where si,j = 1[ball j lands in bin i].

What bound might we use?
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ATTEMPT WITH EXPONENTIAL CONCENTRATION

Theorem (Chernoff Bound)
Let X1, X2, . . . , Xn be independent {0, 1}-valued random
variables and let pi = E[Xi], where 0 < pi < 1. Then the sum
S =

∑n
j=1 Xi, which has mean µ =

∑n
j=1 pi, satisfies

Pr[S ≥ (1+ ϵ)µ] ≤ e
−ϵ2µ
2+ϵ .

Apply with S = si, Xj = si,j.

Pr[S ≥ (1+ c log n)µ] ≤
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LOAD BALANCING

So max load for randomized load balancing is O(log n)! Best
we could prove with Chebyshev’s was O(

√
n).
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POWER OF TWO CHOICES

Power of 2 Choices: Instead of assigning job to random server,
choose 2 random servers and assign to the least loaded. With
probability 1/10 the maximum load is bounded by:

(a) O(log n) (b) O(
√
log n) (c) O(log log n) (d) O(1)
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