
CS-GY 6763: Lecture 2
Hashing + Fingerprinting, Chebyshev’s
Inequality

NYU Tandon School of Engineering, Prof. Christopher Musco
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NOTE ON MATHEMATICAL PROOFS

It can be hard to know how formal to be. We will try to provide
feedback on first problem set for anyone who is either too rigorous
or too loose. It’s a learning process.

Things that are generally fine:

• Can assume input size n is > C for some constant c. E.g.
n > n,ࠁ > .߿ࠀ

• Similarly can assume ε < c for constant c. E.g. ε < ,ࠀ. ε < .ࠀ߿.

• If I write O(z), you are free to choose the constant. E.g., it’s fine
if your analysis of CountSketch only works for tables of size
߿߿߿ࠀ ·m.

• Derivatives, integrals, etc. can be taken from e.g. WolframAlpha
without working through steps.

• Basic inequalities can be used without proof, as long as you
verify numerically. Don’t need to include plot on problem set. ࠁ



EXAMPLE INEQUALITY

+ࠀ ε → ࠀ
−ࠀ ε

→ +ࠀ εࠁ for ε ∈ ,߿] .[ࠄ.

Proof by plotting:

ࠂ
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EXAMPLE INEQUALITY

−ࠀ ε → ࠀ
+ࠀ ε

→ −ࠀ εࠄ. for ε ∈ ,߿] .[ࠀ

Proof by plotting:

ࠃ



GENERAL ADVICE

Tip: When confronted with a complex expression, try to simplify by
using big-Oh notation, or just rounding things off. Then clean-up
your proof after you get to a solution.

Examples:

• To start: (m− (ࠀ ≈ m. Later: m/ࠁ → m− ࠀ → m.

• To start: ࠀ
n −

ࠀ
nࠁ ≈ ࠀ

n . Later: ࠀ
nࠁ →

ࠀ
n −

ࠀ
nࠁ → ࠀ

n .

• log(n/ࠁ) ≈ log(n) Later: log(n)/ࠁ → log(n/ࠁ) → log(n).

ࠄ



DEFINITIONS OF INDEPENDENCE

Suppose we have random variables Xࠀ, . . . , Xk. We say that a
pair of random variables Xi and Xj are independent if, for all
possible values vi, vj,

Pr[Xi = vi and Xj = vj] = Pr[Xi = vi] · Pr[Xj = vj].

We say Xࠀ, . . . , Xk are pairwise independent if Xi, Xj are
independent for all i, j ∈ ,ࠀ} . . . , k}.

We say Xࠀ, . . . , Xk are mutually independent if, for all possible
values vࠀ, . . . , vk,

Pr[Xࠀ = vࠀ, . . . , Xk = vk] = Pr[Xࠀ = vࠀ] · . . . · Pr[Xk = vk].

Mutual independence implies pairwise independence, but
pairwise independence does not imply mutual independence.
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DEFINITIONS OF INDEPENDENCE

Give an example of three random variables that are pairwise
independent but not mutually independent.

Xࠀ, . . . , Xk are pairwise independent if for all i, j, vi, vj,

Pr[Xi = vi and Xj = vj = Pr[Xi = vi] · Pr[Xj = vj].

Xࠀ, . . . , Xk are mutually independent if, for all vࠀ, . . . , vk,

Pr[Xࠀ = vࠀ, . . . , Xk = vk] = Pr[Xࠀ = vࠀ] · . . . · Pr[Xk = vk].

ࠆ
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LINEARITY OF VARIANCE

If we have two independent random variables X, Y, then:

Var[X+ Y] = Var[X] + Var[Y].

If we have a set of pairwise independentࠀ random variables
Xࠀ, . . . , Xk then:

Var

[ k∑

i=ࠀ

Xi

]
=

k∑

i=ࠀ

Var[Xi].

Mutual independence is not necessary!

,Technicallyࠀ pairwise uncorrelated suffices, which is a weaker assumption. ࠇ
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UNIFORMLY RANDOM HASH FUNCTION

Let h be a random function from |U|→ ,ࠀ} . . . ,m}. This means
that h is constructed by an algorithm using a seed of random
numbers, but then the function is fixed. Given input x ∈ U , it
always returns the same output, h(x).

Recall: Uniformly Random Hash Function. A random function
h : U → ,ࠀ} . . . ,m} is called uniformly random if:

• Pr[h(x) = i] = ࠀ
m for all x ∈ U , i ∈ ,ࠀ} . . . ,m}.

• h(x),h(y),h(z), . . . are mutually independent random
variables for all x, y, z, . . . ∈ U .

• Which implies that Pr[h(x) = h(y)] =

• Which implies that Pr[h(x) = h(y) = h(z)] =

U = universe of possible keys, m = number of values hashed to.
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UNIFORMLY RANDOM HASH FUNCTION

The only way to implement a truly random hash function is to
create a giant lookup table, where the numbers on the right

are chosen independently at random from ,ࠀ} . . . ,m}.

x h(x)
1 14
2 25
3 99
4 16
...

...
|U| 87

If we’re hashing ࠄࠂ char ASCII strings (e.g. urls) the length of
the table is greater than the number of atoms in the universe.

߿ࠀ
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UNIVERSAL HASH FUNCTIONS

For the application to CountMin from last class we can weaken
our assumption that h is uniformly random.

Definition (Universal hash function)
A random hash function h : U → ,ࠀ} . . . ,m} is universal if, for
any fixed x, y ∈ U ,

Pr[h(x) = h(y)] → ࠀ
m
.

Claim: A uniformly random hash-function is universal.

ࠀࠀ
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UNIVERSAL HASH FUNCTIONS

Definition (Universal hash function)
A random hash function h : U → ,ࠀ} . . . ,m} is universal if, for
any fixed x, y ∈ U ,

Pr[h(x) = h(y)] → ࠀ
m
.

Efficient alternative: Let p be a prime number between |U| and
.|U|ࠁ Let a,b be random numbers in ,߿ . . . ,p, a &= .߿

h(x) = [a · x+ b (mod p)] (mod m)

is universal. Lecture notes with proof posted on website.
Requires some abstract algebra.

How much space does this hash function take to store?

ࠁࠀ



LIMITED INDEPENDENCE HASH FUNCTIONS

Similar alternative definition:

Definition (Pairwise independent hash function)
A random hash function h : U → ,ࠀ} . . . ,m} is pairwise
independent if, for any fixed x, y ∈ U , i, j ∈ ࠀ} . . . ,m},

Pr[h(x) = i and h(y) = j] = ࠀ
mࠁ .

Basically same construction as universal hash, except we don’t
restrict a &= ߿ and m to be a prime power.

Claim: A pairwise independent hash-function is universal.

ࠂࠀ
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LIMITED INDEPENDENCE HASH FUNCTIONS

Definition (k-wise independent hash function)
A random hash function h : U → ,ࠀ} . . . ,m} is k-wise
independent if, for any fixed x, y ∈ U , i, j ∈ ࠀ} . . . ,m},

Pr[h(uࠀ) = vࠀ and h(uࠁ) = vࠁ and . . .h(uk) = vk] =
ࠀ
mk ,

for all uࠀ, . . . ,uk ∈ U and vࠀ, . . . , vk ∈ ,ࠀ} . . . ,m}.

Strictly stronger than pairwise independence and needed for
some applications. But we will never need k > O(log n) in this
class.

Example: For random coefficients c߿, . . . , ck ∈ ,߿} . . . ,p},

h(x) =
[
c߿ + cࠀx+ cࠁxࠁ + . . . ckxk (mod p)

]
(mod m)

ࠃࠀ
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PSEUDORANDOM HASH FUNCTIONS

We won’t prove that random polynomials provide good hash
functions, but I want to give a flavor of what is involved (e.g.,
why do prime numbers show up?).

ࠄࠀ



FINGERPRINTING

Goal: Construct a compact “fingerprint” h(f) for any given file f
with two properties:

• The fingerprints h(fࠀ) and h(fࠁ) should be different with
high probability if the contents of fࠀ and fࠁ differ at all.

• If the contents of fࠀ and fࠁ are identical, we should have
h(fࠀ) = h(fࠁ).

(Basically the same goal as most applications of hashing.) ࠅࠀ
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APPLICATIONS OF FINGER PRINTING

• Quickly check if two versions of the same file are identical
(e.g. in version control systems like Git). Do not need to
communicate the entire file between servers. Also used in
webcaching and content delivery networks.

• Check that a file pieced together from multiple parts is not
missing anything.

ࠆࠀ



APPLICATIONS OF FINGER PRINTING

ࠇࠀ



APPLICATIONS OF FINGER PRINTING

Fingerprints used as file names for the images to make sure we
did not reupload new images that we already had, and to
detect duplicate images and listings. ࠈࠀ



FINGERPRINTING

Goal: Construct a compact “fingerprint” function h(f) such that:

• h(fࠀ) &= h(fࠁ) if fࠀ &= fࠁ with high probability.

Ideally, length of h(fࠀ) (i.e. the size of the integers hashed to) is
much less than the file size.

߿ࠁ



RANDOM FINGERPRINTING

Rabin Fingerprint (1981): Let file f = ߿ࠀ߿ . . . ࠀ߿ࠀࠀ of length n be
interpreted as an n bit integer. So something between ߿ and .nࠁ

Construct h randomly: Choose random prime number p
between ࠁ and tn log(tn) for a constant t.

h(f) = f (mod p).

How many bits does h(f) take to store?

ࠀࠁ
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RANDOM FINGERPRINTING

h(f) = f (mod p) for random prime p ∈ ,ࠁ} . . . , tn log(tn)}

Claim: If fࠀ &= fࠁ then h(fࠀ) = h(fࠁ) with probability → ࠁ
t .

Since our fingerprint only takes O(log n+ log t) space, we can
set t to be super large, so effectively the probability of h(fࠀ)
and h(fࠁ) colliding is negligible for all real-world applications.

E.g. set fingerprint length to log n+ ࠇࠁ bits and you are more
likely to win Megamillions.

ࠁࠁ
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RANDOM FINGERPRINTING

How do we sample a random prime between ,ࠁ . . . , tn log n?

Keep in mind that n is pretty large here. For a kb߿߿ࠁ image,
n ≈ ࠅ.ࠀ million.

ࠂࠁ
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FROM PRIME TESTING TO PRIME GENERATION

Rejection sampling:

• Pick a random q bit number.
• Check if it’s prime. Can be done in O(qࠂ) time.
• If not, repeat.

Here we would have q ≈ log(tn log n) ≈ ࠇࠃ for the example
above. So each iteration is efficient, but is this efficient overall?

Roughly how many tries do you expect this to take?

ࠃࠁ
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PRIME NUMBER THEOREM

Let π(x) denote the number of primes less than some integer
x. Informally:

π(x) ∼ x
ln(x)

ࠄࠁ
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PRIME NUMBER THEOREM

Formally: For x > ,ࠆࠀ
x

ln(x)
→ π(x) → x

ln(x)− ࠃ

So if we select a random q = ࠇࠃ bit number, the chance that it
is prime is great than:

ࠀ
ln(ࠁq)

≥ ࠀ
ࠃࠂ

After a few hundred tries, we will almost definitely find a prime
number. In general, need O(q) tries in expectation to find a
prime with q bits.

Remark: Finding large prime numbers is important in some
other applications beyond hashing.

ࠅࠁ

- I
¥ , -x--io

-

@
0187



RANDOM FINGERPRINTING

h(f) = f (mod p) for prime p ∈ ,ࠁ} . . . , tn log(tn)}

Claim: If fࠀ &= fࠁ then h(fࠀ) = h(fࠁ) with probability → ࠁ
t .

First observation: If h(fࠀ) = h(fࠁ), then:

(fࠀ − fࠁ) (mod p) = .߿

In other words, we only fail if |fࠀ − fࠁ| is divisible by p.

ࠆࠁ
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RANDOM FINGERPRINTING

Question: What is the chance that |fࠀ − fࠁ| is divisible by a
random prime p ∈ ,ࠁ} . . . , tn log(tn)}?

ࠇࠁ
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RANDOM FINGERPRINTING

Number of distinct prime factors of fࠀ − fࠁ: At most n.

Number of primes between ,ࠁ} . . . , tn log(tn)}: At least
tn log(tn)

log(tn log(tn)) via prime number theorem.

Chance we pick a prime factor of fࠀ − fࠁ is less than:
n

tn log(tn)
log(tn log(tn))

=
log(tn log(tn))

t log(tn)
→ ࠁ log(tn)

t log(tn)
ࠈࠁ
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RANDOM FINGERPRINTING

Conclusion: The chance that a random prime
p ∈ ,ࠁ} . . . , tn log(tn)} is a factor of |fࠀ − fࠁ| is → ࠁ

t .

So, for two files fࠀ &= fࠁ, the chance that h(fࠀ) = h(fࠁ) → ࠁ
t .

Set t = ࠇࠁࠁ (the chance you win Megamillions).

Fingerprint size: At most ࠁ logࠁ(nt) = ࠁ logࠁ(n) + ࠁ log(ࠇࠁࠁ)ࠁ bits.

Suppose we are fingerprinting kb߿߿ࠁ image files.
n ≈ ,ࠀ ,߿߿ࠅ ,߿߿߿ so our fingerprint has size:

96 bits

This amounts to a x߿߿߿,ࠆࠀ reduction over sending and
comparing the original files.

߿ࠂ
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REMAINDER OF LECTURE

Last week we saw the power of Linearity of Expectation +
Markov’s. This week we will discuss two more tools:

• Linearity of Variance + Chebyshev’s Inequality

Next week:

• Union Bound + Exponential Tail Bounds

These six tools combined are surprising powerful and flexible.
They form the cornerstone of randomized algorithm design.

ࠀࠂ



CHEBYSHEV’S INEQUALITY

A new concentration inequality:

Lemma (Chebyshev’s Inequality)
Let X be a random variable with expectation E[X] and variance
σࠁ = Var[X]. Then for any k > ,߿

Pr[|X− E[X]| ≥ k · σ] → ࠀ
kࠁ

σ =
√

Var[X] is the standard deviation of X. Intuitively this bound
makes sense: it is tighter when σ is smaller. ࠁࠂ
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COMPARISON TO MARKOV’S INEQUALITY

Properties of Chebyshev’s inequality:

• Good: No requirement of non-negativity. X can be anything.

• Good: Two-sided. Bounds the probability that |X− EX| is large,
which means that X isn’t too far above or below its expectation.
Markov’s only bounded probability that X exceeds E[X].

• Bad/Good: Requires a bound on the variance of of X.

No hard rule for which to apply! Both Markov’s and Chebyshev’s are
useful in different settings.

ࠂࠂ
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PROOF OF CHEBYSHEV’S INEQUALITY

Idea: Apply Markov’s inequality to the (non-negative) random
variable S = (X− E[X])ࠁ.

Lemma (Chebyshev’s Inequality)
Let X be a random variable with expectation E[X] and variance
σࠁ = Var[X]. Then for any k > ,߿

Pr[|X− E[X]| ≥ k · σ] → ࠀ
kࠁ

Markov’s inequality: for non-negative r.v. S, Pr[S ≥ t] → E[S]/t. ࠃࠂ
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QUICK EXAMPLE

If I flip a fair coin ߿߿ࠀ times, show that with > %ࠂࠈ chance I
get between ߿ࠂ and ߿ࠆ heads.

Let Cࠀ, . . . , C߿߿ࠀ be independent random variables that are ࠀ
with probability ,ࠁ/ࠀ ߿ otherwise.

Let H =
߿߿ࠀ∑

i=ࠀ Ci be the number of heads that get flipped.

E[H] =

Var[H] =

ࠄࠂ
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QUICK EXAMPLE

If I flip a fair coin ߿߿ࠀ times, show that with %ࠂࠈ chance I get
between ߿ࠂ and ߿ࠆ heads?

Let Cࠀ, . . . , C߿߿ࠀ be independent random variables that are ࠀ
with probability ,ࠁ/ࠀ ߿ otherwise.

Let H =
߿߿ࠀ∑

i=ࠀ Ci be the number of heads that get flipped.

E[H] = ,߿ࠄ Var[H] = .ࠄࠁ

Chebyshev’s:

ࠅࠂ
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APPLICATIONS OF CHEBYSHEVS INEQUALITY

Abstract architecture of a streaming algorithm:

Have massive dataset X = xࠀ, . . . , xn with n pieces of data that
arrive in a sequential stream. There is far too much data to
store or process it in a single location.

• Still want to analyze the data: i.e. fit a model or
(approximately) compute some function f(X).

• To do so, we must compress data “on-the-fly”, storing
some smaller data structure which still contains
interesting information.

• Often can only take a single-pass over the data.

Count-Min was our first example of a streaming algorithm for
the (ε, k)-frequent items problem.

ࠆࠂ



STREAMING ALGORITHMS IN PRACTICE

Sensor data: GPS or seismometer readings to detect geological
anomalies, telescope images, satellite imagery, highway travel
time sensors.

Web traffic and data: User data for website, including e.g. click
data, web searches and API queries, posts and image uploads
on social media.

Training machine learning models: Often done in a streaming
setting when training dataset is huge, often with multiple
passes.

Lots of software frameworks exist for easy development of
streaming algorithms. ࠇࠂ



DISTINCT ELEMENTS PROBLEM

Input: xࠀ, . . . , xn ∈ U where U is a huge universe of items.

Output: Number of distinct inputs.

Example: f(ࠀ, ,߿ࠀ ,ࠁ ,ࠃ ,ࠈ ,ࠁ ,߿ࠀ →(ࠃ ࠄ

Applications:

• Distinct users hitting a webpage.
• Distinct users using a new feature or UI in a certain way.
• Distinct values in a database column (e.g. for estimating
the size of group by queries)

• Number of distinct queries to a search engine.
• Distinct motifs in DNA sequence.

Implementations widely used at Google (Sawzall, Dremel,
PowerDrill), Twitter, Facebook (Presto), etc. ࠈࠂ
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DISTINCT ELEMENTS PROBLEM

Input: dࠀ, . . . ,dn ∈ U where U is a huge universe of items.

Output: Number of distinct inputs, D.

Example: f(ࠀ, ,߿ࠀ ,ࠁ ,ࠃ ,ࠈ ,ࠁ ,߿ࠀ →(ࠃ D = ࠄ

Naive Approach: Store a dictionary of all items seen so far.
Takes O(D) space. We will aim to do a lot better than that.

Goal: Return D̃ satisfying

−ࠀ) ε)D → D̃ → +ࠀ) ε)D

using only O(ࠀ/εࠁ) space.

߿ࠃ
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DISTINCT ELEMENTS PROBLEM

Input: dࠀ, . . . ,dn ∈ U where U is a huge universe of items.

Output: Number of distinct inputs, D.

Example: f(ࠀ, ,߿ࠀ ,ࠁ ,ࠃ ,ࠈ ,ࠁ ,߿ࠀ →(ࠃ D = ࠄ

Flajolet–Martin (simplified):

• Choose random hash function h : U → ,߿] .[ࠀ
• S = ࠀ
• For i = ,ࠀ . . . ,n

• S← min(S,h(xi))
• Return: ࠀ

S − ࠀ

ࠀࠃ
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HOLD UP...

The hash function h maps from U to a random point in ,߿] ?[ࠀ

Hashing to real numbers:

• Impossible to implement h(x) in reality, but you can
replace it with g(x)

k , where g is a hash function that maps
to ,߿} ,ࠀ . . . , k} for sufficiently large k.

• All results hold if this “discrete” hash is used instead, but
the analysis is simpler if we assume access to h.

• Just like when we assumed uniform random hash
functions, this is a useful abstraction which makes
understanding and analyzing algorithms easier.

ࠁࠃ
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VISUALIZATION

Flajolet–Martin (simplified):

• Choose random hash function h : U → ,߿] .[ࠀ
• S = ࠀ
• For i = ,ࠀ . . . ,n

• S← min(S,h(xi))
• Return: D̃ = ࠀ

S − ࠀ

ࠂࠃ
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VISUALIZATION

Important: If U → ,߿] [ࠀ uniformly at random, we can assume
that there are no collisions. If we instead used a discrete grid,
it would suffice to use a hash table of size O(Dࠁ) or,
conservatively, O(|U|ࠁ).

We will not do a formal analysis, but roughly how many bits
does S takes to store?

ࠃࠃ



FM ANALYSIS

Let D equal the number of distinct elements in our stream.

Intuition: When D is larger, S will be smaller. Makes sense to
return the estimate D̃ = ࠀ

S − .ࠀ
ࠄࠃ
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FM ANALYSIS

What is ES?

Let D equal the number of distinct elements in our stream.

Lemma
ES = ࠀ

D+ࠀ .

ࠅࠃ
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THE CALCULUS PROOF

Proof:

E[S] =
∫ ࠀ

߿
Pr[S ≥ λ]dλ Exercise: Why?

=

∫ ࠀ

߿
−ࠀ) λ)Ddλ

=
−ࠀ)− λ)D+ࠀ

D+ ࠀ

∣∣∣
ࠀ

λ=߿

=
ࠀ

D+ ࠀ

ࠆࠃ
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PROOF “FROM THE BOOK”

E[S] = Pr[(D+ st(ࠀ item has the smallest hash value].

Formally, we are using the fact that:

Pr[A] = Ehࠀ,...,hD [Pr [A | hࠀ, . . . ,hD]]

ࠇࠃ
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PROOF “FROM THE BOOK”

E[S] = Pr[(D+ st(ࠀ item has the smallest hash value].

By symmetry, this equals ࠀ
D+ࠀ (since every ball is equally likely

to be first).

ࠈࠃ



PROVING CONCENTRATION

ES = ࠀ
D+ࠀ . Estimate: D̃ = ࠀ

S − .ࠀ We have for ε < ࠀ
ࠁ :

If −ࠀ) ε)ES → S → +ࠀ) ε)ES, then:

−ࠀ) ε)Dࠃ → D̃ → +ࠀ) .ε)Dࠃ

So, it suffices to show that S concentrates around its mean. I.e.
that |S− ES| → ε · ES. We will use Chebyshev’s inequality as
our concentration bound. ߿ࠄ



ε MANIPULATION TRICKS

Recall:

+ࠀ ε → ࠀ
−ࠀ ε

→ +ࠀ εࠁ for ε ∈ ,߿] .[ࠄ.

−ࠀ ε → ࠀ
+ࠀ ε

→ −ࠀ εࠄ. for ε ∈ ,߿] .[ࠀ

ࠀࠄ



CALCULUS PROOF

Lemma
Var[S] = E[Sࠁ]− E[S]ࠁ = ࠁ

(D+ࠀ)(D+ࠁ) −
ࠀ

(D+ࠀ)ࠁ →
ࠀ

(D+ࠀ)ࠁ .

Proof:

E[Sࠁ] =
∫ ࠀ

߿
Pr[Sࠁ ≥ λ]dλ

=

∫ ࠀ

߿
Pr[S ≥

√
λ]dλ

=

∫ ࠀ

߿
−ࠀ)

√
λ)Ddλ

=
ࠁ

(D+ +D)(ࠀ (ࠁ

www.wolframalpha.com/input?i=antiderivative+of+
%281-sqrt%28x%29%29%5ED

ࠁࠄ

www.wolframalpha.com/input?i=antiderivative+of+%281-sqrt%28x%29%29%5ED
www.wolframalpha.com/input?i=antiderivative+of+%281-sqrt%28x%29%29%5ED


PROOF “FROM THE BOOK”

E[Sࠁ] =??.
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FM ANALYSIS

Recall we want to show that, with high probability,
−ࠀ) ε)E[S] → S → −ࠀ) ε)E[S].

• E[S] = ࠀ
D+ࠀ = µ.

• Var[S] → ࠀ
(D+ࠀ)ࠁ = µࠁ. Standard deviation: σ → µ.

• Want to bound Pr[|S− µ| ≥ εµ] → δ.

Chebyshev’s: Pr[|S− µ| ≥ εµ] = Pr[|S− µ| ≥ εσ] → ࠀ
εࠁ
.

Vacuous bound. Our variance is way too high!

ࠃࠄ



VARIANCE REDUCTION

Trick of the trade: Repeat many independent trials and take
the mean to get a better estimator.

Given i.i.d. (independent, identically distributed) random
variables Xࠀ, . . . , Xk with mean µ and variance σࠁ, what is:

• E
[
ࠀ
k
∑k

i=ࠀ Xi
]
=

• Var
[
ࠀ
k
∑k

i=ࠀ Xi
]
=

ࠄࠄ



FM ANALYSIS

Using independent hash functions, maintain k independent
sketches Sࠀ, . . . , Sk.

Flajolet–Martin:

• Choose k random hash function hࠀ, . . . ,hk : U → ,߿] .[ࠀ
• Sࠀ = ,ࠀ . . . , Sk = ࠀ
• For i = ,ࠀ . . . ,n

• Sj ← min(Sj,hj(xi)) for all j ∈ ,ࠀ . . . , k.
• S = (Sࠀ + . . .+ Sk)/k
• Return: ࠀ

S − ࠀ ࠅࠄ



FM ANALYSIS

1 estimator:

• E[S] = ࠀ
D+ࠀ = µ.

• Var[S] = µࠁ

k estimators:

• E[S] = ࠀ
D+ࠀ = µ.

• Var[S] → µࠁ/k
• By Chebyshev, Pr[|S− ES| ≥ cµ/

√
k] → ࠀ

cࠁ .

Setting c = /ࠀ
√
δ and k = ࠀ

εࠁδ
gives:

Pr[|S− µ| ≥ εµ] → δ.

Total space complexity: O
( ࠀ
εࠁδ

)
to estimate distinct elements

up to error ε with success probability −ࠀ δ.
ࠆࠄ



FM ANALYSIS

Total space complexity: O
( ࠀ
εࠁδ

)
to estimate distinct elements

up to error ε with success probability −ࠀ δ.

• Recall that to ensure −ࠀ) ε̄)D → ࠀ
S − ࠀ → +ࠀ) ε̄)D, we

needed |S− µ| → ε̄
.µࠃ

• So apply the result from the previous slide with ε = ε̄/ࠃ.
• Need to store k = ࠀ

εࠁδ
= ࠀ

(ε̄/ࠃ)ࠁδ = ࠅࠀ
εࠁδ

counters.

ࠇࠄ



NOTE ON FAILURE PROBABILITY

O
( ࠀ
εࠁδ

)
space is an impressive bound:

• ࠁε/ࠀ dependence cannot be improved.
• No linear dependence on number of distinct elements D.ࠁ

• But... δ/ࠀ dependence is not ideal. For %ࠄࠈ success rate,
pay a ࠀ

%ࠄ = ߿ࠁ factor overhead in space.

We can get a better bound depending on O(log(ࠀ/δ)) using
exponential tail bounds. We will see next lecture.

,Technicallyࠁ if we account for the bit complexity of storing Sࠀ, . . . , Sk and
the hash functions hࠀ, . . . ,hk, the space complexity is O

(
log D
εࠁδ

)
.

ࠈࠄ



DISTINCT ELEMENTS IN PRACTICE

In practice, we cannot hash to real numbers on ,߿] .[ࠀ Instead,
map to bit vectors.

Real Flajolet-Martin / HyperLogLog:

• Estimate # distinct elements
based on maximum number of
trailing zeros m.

• The more distinct hashes we see,
the higher we expect this
maximum to be.

߿ࠅ



LOGLOG SPACE

Total Space: O
(
log log D

εࠁ
+ logD

)
for an ε approximate count.

“Using an auxiliary memory smaller than the size of this abstract, the
LogLog algorithm makes it possible to estimate in a single pass and
within a few percents the number of different words in the whole of
Shakespeare’s works.” – Flajolet, Durand.

Using HyperLogLog to count ࠀ billion distinct items with %ࠁ accuracy:

space used = O
(
log logD

εࠁ
+ logD

)

=
ࠃ߿.ࠀ · +logࠁ logࠁ D,

εࠁ
+ +logࠁ D, bits

=
ࠃ߿.ࠀ · ࠄ
ࠁࠁ߿.

+ ߿ࠂ = ߿ࠂ߿ࠂࠀ bits ≈ ࠅ.ࠀ kB!

ࠀࠅ



HYPERLOGLOG IN PRACTICE

Although, to be fair, storing a dictionary with ࠀ billion bits only
takes ࠄࠁࠀ megabytes. Not tiny, but not unreasonable.

These estimators become more important when you want to
count many different things (e.g., a software company tracking
clicks on s߿߿ࠀ of UI elements).

ࠁࠅ



DISTRIBUTED DISTINCT ELEMENTS

Also very important in distributed settings.

Distinct elements summaries are “mergeable”. No need to
share lists of distinct elements if those elements are stored on
different machines. Just share minimum hash value.

ࠂࠅ



HYPERLOGLOG IN PRACTICE

Implementations: Google PowerDrill, Facebook Presto, Twitter
Algebird, Amazon Redshift.

Use Case: Exploratory SQL-like queries on tables with s’߿߿ࠀ of
billions of rows.

• Count number of distinct users in Germany that made at least
one search containing the word ‘auto’ in the last month.

• Count number of distinct subject lines in emails sent by users
that have registered in the last week, in comparison to number
of emails sent overall (to estimate rates of spam accounts).

Answering a query requires a (distributed) linear scan over the
database: 2 seconds in Google’s distributed implementation.

Google Paper: “Processing a Trillion Cells per Mouse Click”

ࠃࠅ


