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Fast Johnson-Lindenstrauss Transform,
Introduction to Sparse Recovery and
Compressed Sensing

NYU Tandon School of Engineering, Prof. Christopher Musco
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ADMINISTRATIVE

This is our last class!

• Final project due next Friday.
• Exam study guide will be released shortly with practice
questions. Same rules as midterm (cheat sheet allowed).
will be a ࠄ.ࠀ hour test.

• Solutions for last problem set will be released day after
it’s due (so no late submissions).
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Main idea: Speed up classical linear algebra problems using
randomization.

Input: A ∈ Rn×d, b ∈ Rn.

Algorithm: Let x̃∗ = argminx ‖ΠAx−Πb‖ࠁࠁ.

Goal: Want ‖Ax̃∗ − b‖ࠁࠁ ≤ +ࠀ) ε)minx ‖Ax− b‖ࠁࠁ
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Theorem (Example: Randomized Linear Regression)
Let Π be a properly scaled JL matrix (random Gaussian, sign,
sparse random, etc.) with m = O

(
d
εࠁ

[
rows. Then with

probability ,߿ࠀ/ࠈ for any A ∈ Rn×d and b ∈ Rn,

‖Ax̃− b‖ࠁࠁ ≤ +ࠀ) ε)‖Ax∗ − b‖ࠁࠁ

where x̃ = argminx ‖ΠAx−Πb‖ࠁࠁ.

Reduce from a O(ndࠁ) time computation to an O(dࠂ) time
problem.

Issue discussed last time: The dimensionality reduction itself
takes O(ndࠁ) time!
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RETURN TO SINGLE VECTOR PROBLEM

Goal: Develop methods that reduce a vector x ∈ Rn down to
m ≈ log(ࠀ/δ)

εࠁ
dimensions in o(mn) time and guarantee:

−ࠀ) ε)‖x‖ࠁࠁ ≤ ‖Πx‖ࠁࠁ ≤ +ࠀ) ε)‖x‖ࠁࠁ

Recall that once the bound above is proven, linearity lets us
preserve things like ‖y− z‖ࠁࠁ or ‖Ax− b‖ࠁࠁ for all x. I.e., we get
Johnson-Lindenstrauss and subspace embeddings for free. ࠄ
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RETURN TO SINGLE VECTOR PROBLEM

Fast embeddings are useful in a lot of other applications.

• Nearest-neighbor search (locality sensitive hash functions
for for cosine similarity and ࠁ" starts with JL sketch).

• Used in FALCONN ANN librarity, Reformer fast attention
architecture, etc.

• Key/query vector compression in LLMs (needs to happen
very fast).

• Random Fourier features and other methods in machine
learning that use JL as a starting point.
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THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Subsampled Randomized Hadamard Transformࠀ (SHRT)
(Ailon-Chazelle, (ࠅ߿߿ࠁ

Theorem (The Fast JL Lemma)
Let Π = SHD ∈ Rm×n be a subsampled randomized Hadamard
transform with m = O

(
log(n/δ) log(ࠀ/δ)

εࠁ

[
rows. Then for any fixed x,

−ࠀ) ε)‖x‖ࠁࠁ ≤ ‖Πx‖ࠁࠁ ≤ +ࠀ) ε)‖x‖ࠁࠁ

with probability −ࠀ) δ) and Πx can be computed in O(n log n)
(nearly linear) time.

Very little loss in embedding dimension compared to standard JL.
Oneࠀ of my favorite randomized algorithms.
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SOLUTION FOR “FLAT” VECTORS

Let S be a random sampling matrix. Every row contains a value
of s =

]
n/m in a single location, and is zero elsewhere.

x̃ can be computed in O(m) time. Woohoo!

E[‖Sx‖ࠁࠁ] =

What is the problem with this approach? ࠇ
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VECTOR SAMPLING

Sampling only works well if y = Ax is “flat”.

Claim
If xࠁi ≤

c
n‖x‖

ࠁ
ࠁ for all i then m = O(c log(ࠀ/δ)/εࠁ) samples

suffices to ensure the −ࠀ) ε)‖x‖ࠁࠁ ≤ ‖Sx‖ࠁࠁ ≤ +ࠀ) ε)‖x‖ࠁࠁ with
probability −ࠀ δ.

This just follows from standard Hoeffding inequality.
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THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Key idea: First multiply x by a “mixing matrix” M which ensures
it cannot be too concentrated in one place.

M will have the properties that

.ࠀ ‖Mx‖ࠁࠁ = ‖x‖ࠁࠁ exactly.
.ࠁ Every entry in Mx is bounded. I.e. [Mx]ࠁi ≤

c
n‖Mx‖ࠁࠁ for some

factor c to be determined.
.ࠂ We will be able to multiply by M in O(n log n) time.

Then we will multiply by a subsampling matrix S to do the
actual dimensionality reduction:

Πx = SMx
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THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Good mixing matrices should look random:

In fact, I claim to mix any x with high probability, M needs to be
chosen randomly. Why?

Hint: Recall that ‖Mx‖ࠁ = ‖x‖ࠁ, so M is orthogonal.
ࠀࠀ
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THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Good mixing matrices should look random:

But for this approach to work, we need to be able to compute
Mx very quickly. So we will use a pseudorandom matrix

instead.
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THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Subsampled Randomized Hadamard Transform

Π = SM where M = HD:

• D ∈ n× n is a diagonal matrix with each entry uniform .ࠀ±
• H ∈ n× n is a Hadamard matrix.

The Hadarmard matrix is an orthogonal matrix closely related
to the discrete Fourier matrix. It has three critical properties:

.ࠀ ‖Hv‖ࠁࠁ = ‖v‖ࠁࠁ exactly. Thus ‖HDx‖ࠁࠁ = ‖x‖ࠁࠁ
.ࠁ ‖Hv‖ࠁࠁ can be computed in O(n log n) time.
.ࠂ All of the entries in H have the same magnitude. I.e. the

matrix is “flat”.
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HADAMARD MATRICES RECURSIVE DEFINITION

Assume that n is a power of .ࠁ For k = ,߿ ,ࠀ . . . , the kth

Hadamard matrix Hk is a kࠁ × kࠁ matrix defined by:

H߿ = ࠀ Hࠀ =
√ࠀ
ࠁ

[
ࠀ ࠀ
ࠀ ࠀ−

]
Hࠁ =

√ࠀ
ࠃ





ࠀ ࠀ ࠀ ࠀ
ࠀ ࠀ− ࠀ ࠀ−
ࠀ ࠀ ࠀ− ࠀ−
ࠀ ࠀ− ࠀ− ࠀ





Hk =
√ࠀ
ࠁ

[
Hk−ࠀ Hk−ࠀ
Hk−ࠀ −Hk−ࠀ

]

The n× n Hadamard matrix has all entries as ± √ࠀ
n .
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HADAMARD MATRICES ARE ORTHOGONAL

Property :ࠀ For any k = ,߿ ,ࠀ . . ., we have ‖Hkv‖ࠁࠁ = ‖v‖ࠁࠁ for all v.
I.e., Hk is orthogonal.
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HADAMARD MATRICES

Property :ࠁ Can compute Πx = SHDx in O(n log n) time.
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RANDOMIZED HADAMARD TRANSFORM

Property :ࠂ The randomized Hadamard matrix is a good
“mixing matrix” for smoothing out vectors.

Deterministic
Hadamard matrix.

Randomized
Hadamard PHD.

Fully random sign
matrix.

Blue squares are /ࠀ
√
n’s, white squares are /ࠀ−

√
n’s.

Pseudorandom objects like this appear all the time in
computer science! Error correcting codes, efficient hash
functions, etc. ࠆࠀ
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RANDOMIZED HADAMARD ANALYSIS

Lemma (SHRT mixing lemma)
Let H be an (n× n) Hadamard matrix and D a random ࠀ±
diagonal matrix. Let z = HDx for x ∈ Rn. With probability
−ࠀ δ, for all i simultaneously,

zࠁi ≤
c log(n/δ)

n
‖z‖ࠁࠁ

for some fixed constant c.

The vector is very close to uniform with high probability. As
we saw earlier, we can thus argue that ‖Sz‖ࠁࠁ ≈ ‖z‖ࠁࠁ. I.e. that:

‖Πx‖ࠁࠁ = ‖SHDx‖ࠁࠁ ≈ ‖x‖ࠁࠁ
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JOHNSON-LINDENSTRAUSS WITH SHRTS

The main result then follows directly from our sampling result
from earlier:

Theorem (The Fast JL Lemma)
Let Π = SHD ∈ Rm×n be a subsampled randomized
Hadamard transform with m = O

(
log(n/δ) log(ࠀ/δ)

εࠁ

[
rows. Then

for any fixed x,

−ࠀ) ε)‖x‖ࠁࠁ ≤ ‖Πx‖ࠁࠁ ≤ +ࠀ) ε)‖x‖ࠁࠁ

with probability −ࠀ) δ).
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RANDOMIZED HADAMARD ANALYSIS

SHRT mixing lemma proof: Need to prove (zi)ࠁ ≤
c log(n/δ)

n ‖z‖ࠁࠁ.

Recall that here z = HDx, so this is equivalent to proving:

(zi)ࠁ ≤
c log(n/δ)

n
‖x‖ࠁࠁ

|zi| ≤
]

c log(n/δ)
n

‖x‖ࠁ.
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RANDOMIZED HADAMARD ANALYSIS

Let hT
i be the ith row of H. zi = hT

i Dx where:

hT
i D =

√ࠀ
n

[
ࠀ ࠀ . . . ࠀ− ࠀ−

]





Dࠀ

Dࠁ
. . .

Dn





where Dࠀ, . . . ,Dn are random .s’ࠀ±

This is equivalent to

hT
i D =

√ࠀ
n

[
Rࠀ Rࠁ . . . Rn

]
,

where Rࠀ, . . . ,Rn are random .s’ࠀ±
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RANDOMIZED HADAMARD ANALYSIS

So we have, for all i, zi = hT
i Dx = √ࠀ

n
∑n

i=ࠀ Rixi.

• zi is a random variable with mean ߿ and variance ࠀ
n‖x‖

ࠁ
,ࠁ

which is a sum of independent random variables.
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RANDOMIZED HADAMARD ANALYSIS

zi is a random variable with mean ߿ and variance ࠀ
n‖x‖

ࠁ
,ࠁ which

is a sum of independent random variables.

• By Central Limit Theorem, we expect that:

Pr[|zi| ≥ t · ‖x‖ࠁ√
n
] ≤ e−O(tࠁ).

• Setting t =
]

log(n/δ), we have for constant c,

Pr

[
|zi| ≥ c

√
log(n/δ)

n
‖x‖ࠁ

]
≤ δ

n
.

• Applying a union bound to all n entries of z gives the SHRT
mixing lemma.
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RADEMACHER CONCENTRATION

Can use Bernstein-type concentration inequality to prove the
bound:

Lemma (Rademacher Concentration)
Let Rࠀ, . . . ,Rn be Rademacher random variables (i.e. uniform
.(s’ࠀ± Then for any vector a ∈ Rn,

Pr

[ n∑

i=ࠀ

Riai ≥ t‖a‖ࠁ

]
≤ e−tࠁ/ࠁ.

This is called the Khintchine Inequality. It is specialized to
sums of scaled ,s’ࠀ± and is a bit tighter and easier to apply
than using a generic Bernstein bound.
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FINISHING UP

Recall that z = HDx.

With probability −ࠀ δ, we have that for all i,

zi ≤
√

c log(n/δ)
n

‖x‖ࠁ =
√

c log(n/δ)
n

‖z‖ࠁ.

As shown earlier, we can thus guarantee that:

−ࠀ) ε)‖z‖ࠁࠁ ≤ ‖Sz‖ࠁࠁ ≤ +ࠀ) ε)‖z‖ࠁࠁ

as long as S ∈ Rm×n is a random sampling matrix with

m = O
(
log(n/δ) log(ࠀ/δ)

εࠁ


rows.

‖Sz‖ࠁࠁ = ‖SHDx‖ࠁࠁ = ‖Πx‖ࠁࠁ and ‖z‖ࠁࠁ = ‖x‖ࠁࠁ, so we are done.
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LINEAR REGRESSION WITH SHRTS

Upshot for regression: Compute ΠA in O(nd log n) time instead
of O(ndࠁ) time. Compress problem down to Ã with O(dࠁ)

dimensions.
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BRIEF COMMENT ON OTHER METHODS

O(nd log n) is nearly linear in the size of A when A is dense.

Clarkson-Woodruff ,ࠂࠀ߿ࠁ STOC Best Paper: Let O (nnz(A)) be
the number of non-zeros in A. It is possible to compute Ã with
poly(d) rows in:

O (nnz(A)) time.

Π is chosen to be an ultra-sparse random matrix. Uses totally
different techniques (you can’t do JL + ε-net).

Lead to a whole close of matrix algorithms (for regression, SVD,
etc.) which run in time:

O (nnz(A)) + poly(d, ε).
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WHAT WERE AILON AND CHAZELLE THINKING?

Simple, inspired algorithm that has been used for accelerating:

• Vector dimensionality reduction

• Linear algebra

• Locality sensitive hashing
(SimHash)

• Randomized kernel learning
methods.
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WHAT WERE AILON AND CHAZELLE THINKING?

The Hadamard Transform is closely related to the Discrete
Fourier Transform.

Fj,k = e−ࠁπi j·kn , F∗F = I.

Real part of Fj,k.

Fy computes the Discrete Fourier Transform of the vector y.
Can be computed in O(n log n) time using a divide and conquer
algorithm (the Fast Fourier Transform). ࠈࠁ
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FOURIER TRANSFORM

The real part of e−ࠁπi j·kn equals cos(ࠁπj · k). So, the jth row of F
looks like a cosine wave with frequency .πjࠁ

Computing Fx computes inner products of x with a bunch of
different frequencies, which can be used to decompose the
vector into a sum of those frequencies.
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WALSH-HADAMARD TRANSFORM





ࠀ ࠀ ࠀ ࠀ ࠀ ࠀ ࠀ ࠀ
ࠀ ࠀ− ࠀ ࠀ− ࠀ ࠀ− ࠀ ࠀ−
ࠀ ࠀ ࠀ− ࠀ− ࠀ ࠀ ࠀ− ࠀ−
ࠀ ࠀ− ࠀ− ࠀ ࠀ ࠀ− ࠀ− ࠀ
ࠀ ࠀ ࠀ ࠀ ࠀ− ࠀ− ࠀ− ࠀ−
ࠀ ࠀ− ࠀ ࠀ− ࠀ− ࠀ ࠀ− ࠀ
ࠀ ࠀ ࠀ− ࠀ− ࠀ− ࠀ− ࠀ ࠀ
ࠀ ࠀ− ࠀ− ࠀ ࠀ− ࠀ ࠀ ࠀ−
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THE UNCERTAINTY PRINCIPAL

The Uncertainty Principal (informal): A function and it’s
Fourier transform cannot both be concentrated.

Vector y. Fourier transform Fy.
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THE UNCERTAINTY PRINCIPAL

Sampling does not preserve norms, i.e. ‖Sy‖ࠁ )≈ ‖y‖ࠁ when y
has a few large entries.

Taking a Fourier transform exactly eliminates this hard case,
without changing y’s norm.

One of the central tools in the field of sparse recovery aka
compressed sensing.
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SPARSE RECOVERY/COMPRESSED SENSING PROBLEM SETUP

Goal: Recover a vector x from linear measurements.

Choose A ∈ Rm×n with m < n. Assume we can access b = Ax
via some black-box measurement process. Try to recover x
from the information in b.

• Infinite possible solutions y to Ay = b, so in general, it is
impossible to recover x from b.

• Can often be possible if x has additional structure! ࠃࠂ
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SPARSITY RECOVERY/COMPRESSED SENSING

Need to make some assumption to solve the problem. Given
A ∈ Rm×n with m < n, b ∈ Rm, want to recover x.

• Assume x is k-sparse for small k. ‖x‖߿ = k.

• In many cases can recover x with * n rows. In fact, often
∼ O(k) suffice.
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EXAMPLE APPLICATION: SINGLE PIXEL CAMERA

Typical acquisition of image by camera:

Requires one image sensor per pixel captured.

ࠅࠂ

O

G.
o



EXAMPLE APPLICATION: SINGLE PIXEL CAMERA

Compressed acquisition of image:

b =
∑

i=ࠀ

xi =
[
ࠀ
n

ࠀ
n . . . ࠀ

n

]





xࠀ
xࠁ
...
xn





Does not provide very much information about the image.
ࠆࠂ
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EXAMPLE APPLICATION: SINGLE PIXEL CAMERA

But you can get more information from other linear
measurements via masking!

bi = 〈ai, x〉 =
[
߿ ࠀ ߿ ߿ . . . ࠀ

]





xࠀ
xࠁ
...
xn





Piece together many of these masked measurements, and can
recover the whole image!

ࠇࠂ
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EXAMPLE APPLICATION: SINGLE PIXEL CAMERA

Applications in:

• Imaging outside of the visible spectrum (more expensive
sensors).

• Microscopy.
• Other scientific imaging.
• We will discuss other applications shortly.

The theory we will discuss does not exactly describe these
problems, but has been very valuable in modeling them.

ࠈࠂ



SPARSITY ASSUMPTION

Is sparsify a reasonable assumption?

For some of the approachs we will discuss, it suffices to
assume that x is sparse in any fixed (and known) basis. I.e.
that Vx is sparse for some n× n orthogonal V. E.g. images are
sparse in the Discrete Cosine Transform basis.

Sparsity is a starting point for considering other more complex
structure. ߿ࠃ
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REQUIREMENTS FOR MEASUREMENT MATRIX

What matrices A would definitely not allow us to recover x?

ࠀࠃ
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ASSUMPTIONS ON MEASUREMENT MATRIX

Many ways to formalize our intuition

• A has Kruskal rank r. All sets of r columns in A are linearly
independent.

• Recover vectors x with sparsity k = r/ࠁ.
• A is µ-incoherent. |AT

i Aj| ≤ µ‖Ai‖ࠁ‖Aj‖ࠁ for all columns
Ai,Aj, i )= j.

• Recover vectors x with sparsity k = .µ/ࠀ

• Focus today: A obeys the Restricted Isometry Property.

ࠁࠃ
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RESTRICTED ISOMETRY PROPERTY

Definition ((q, ε)-Restricted Isometry Property)
A matrix A satisfies (q, ε)-RIP if, for all x with ‖x‖߿ ≤ q,

−ࠀ) ε)‖x‖ࠁࠁ ≤ ‖Ax‖ࠁࠁ ≤ +ࠀ) ε)‖x‖ࠁࠁ.

• Johnson-Lindenstrauss type condition.
• A preserves the norm of all q sparse vectors, instead of
the norms of a fixed discrete set of vectors, or all vectors
in a subspace (as in subspace embeddings).

• Preview: A random matrix A with ∼ O(q log(n/q)) rows
satisfies RIP.

ࠂࠃ
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FIRST SPARSE RECOVERY RESULT

Theorem (minimization-߿")
Suppose we are given A ∈ Rm×n and b = Ax for an unknown
k-sparse x ∈ Rn. If A is ,kࠁ) ε)-RIP for any ε < ࠀ then x is the
unique minimizer of:

min‖z‖߿ subject to Az = b.

• Establishes that information theoretically we can recover
x. Solving the minimization-߿" problem is computationally
difficult, requiring O(nk) time. We will address faster
recovery shortly.
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FIRST SPARSE RECOVERY RESULT

Claim: If A is ,kࠁ) ε)-RIP for any ε < ࠀ then x is the unique
minimizer of minAz=b ‖z‖߿.

Proof: By contradiction, assume there is some y )= x such that
Ay = b, ‖y‖߿ ≤ ‖x‖߿.

ࠄࠃ
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ROBUSTNESS

Important note: There are robust versions of this theorem and
the others we will discuss. These are much more important
practically. Here’s a flavor of a robust result:

• Suppose b = A(x+ e) where x is k-sparse and e is dense
but has bounded norm.

• Recover some k-sparse x̃ such that:

‖x̃− x‖ࠁ ≤ ‖e‖ࠀ

or even

‖x̃− x‖ࠁ ≤ O
(

√ࠀ
k


‖e‖ࠀ.
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ROBUSTNESS

We will not discuss robustness in detail, but along with
computational considerations, it is a big part of what has
made compressed sensing such an active research area in the
last ߿ࠂ years. Non-robust compressed sensing results have
been known for a long time:

Gaspard Riche de Prony, Essay experimental et analytique: sur
les lois de la dilatabilite de fluides elastique et sur celles de la

force expansive de la vapeur de l’alcool, a differentes
temperatures. Journal de l’Ecole Polytechnique, .ࠅࠆ–ࠃࠁ .ࠄ9ࠆࠀ
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RESTRICTED ISOMETRY PROPERTY

What matrices satisfy this property?

• Random Johnson-Lindenstrauss matrices (Gaussian, sign,
etc.) with m = O(k log(n/k)

εࠁ
) rows are (k, ε)-RIP.

• item Random m ∼ O
(

k logࠁ k log n
εࠁ

[
rows of the discrete

Fourier matrix F a random m ∼ O
(

k logࠁ k log n
εࠁ

[
rows of the

discrete Fourier matrix F.

Improves on a long line of work: Candès, Tao, Rudelson,
Vershynin, Cheraghchi, Guruswami, Velingker, Bourgain.

ࠇࠃ
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THE DISCRETE FOURIER MATRIX

The n× n discrete Fourier matrix F is defined:

Fj,k = e
πiࠁ−
n j·k,

where i =
√
.ࠀ− Recall e

πiࠁ−
n j·k = cos(ࠁπjk/n)− i sin(ࠁπjk/n).

ࠈࠃ
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PSEUDORANDOM RIP MATRICES

In many applications can compute measurements of the form
Ax = SFx, where F is the Discrete Fourier Transform matrix
(what an FFT computes) and S is a subsampling matrix.

F decomposes x into different frequencies: [Fx]j is the
component with frequency j/n.

߿ࠄ
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THE DISCRETE FOURIER MATRIX

If A = SF is a subset of rows from F, then Ax is a subset of
random frequency components from x’s discrete Fourier
transform.

In many scientific applications, we can collect entries of Fx one
at a time for some unobserved data vector x.

ࠀࠄ



APPLICATION: MEDICAL IMAGING

Warning: very cartoonish explanation of very complex problem.
Medical Imaging (MRI)

How do we measure entries of Fourier transform Fx? Blast the
body with sounds waves of varying frequency.

• Using a small number of frequencies is especially
important when trying to capture something moving (e.g.
lungs, baby, child who can’t sit still).

• Can also cut down on high power requirements.
ࠁࠄ
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APPLICATION: GEOPHYSICS

Warning: very cartoonish explanation of very complex problem.

Understanding what material is beneath the crust:

ࠂࠄ
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APPLICATION: GEOPHYSICS

Vibrate the earth at different frequencies! And measure the
response.

Vibroseis Truck

Can also use airguns, controlled explosions, vibrations from
drilling, etc. The fewer measurements we need from Fx, the
cheaper and faster our data acquisition process becomes.

ࠃࠄ
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RESTRICTED ISOMETRY PROPERTY

Definition ((q, ε)-Restricted Isometry Property – Candes, Tao
(ࠄ߿’
A matrix A satisfies (q, ε)-RIP if, for all x with ‖x‖߿ ≤ q,

−ࠀ) ε)‖x‖ࠁࠁ ≤ ‖Ax‖ࠁࠁ ≤ +ࠀ) ε)‖x‖ࠁࠁ.

The vectors that can be written as Ax for q sparse x lie in a
union of q dimensional linear subspaces:

ࠄࠄ
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RESTRICTED ISOMETRY PROPERTY

Candes, Tao :ࠄ߿߿ࠁ A random JL matrix with O(q log(n/q)/εࠁ)
rows satisfies (q, ε)-RIP with high probability.

Any ideas for how you might prove this? I.e. prove that a
random matrix preserves the norm of every x in this union of

subspaces?

ࠅࠄ
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RESTRICTED ISOMETRY PROPERTY FROM JL

Theorem (Subspace Embedding from JL)
Let U ⊂ Rn be a q-dimensional linear subspace in Rn. If
Π ∈ Rm×n is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability −ࠀ δ,

−ࠀ) ε)‖v‖ࠁࠁ ≤ ‖Πv‖ࠁࠁ ≤ +ࠀ) ε)‖v‖ࠁࠁ

for all v ∈ U , as long as m = O
(

q+log(ࠀ/δ)
εࠁ

[
.

Quick argument:

ࠆࠄ



FIRST SPARSE RECOVERY RESULT

Theorem (minimization-߿")
Suppose we are given A ∈ Rm×n and b = Ax for an unknown
k-sparse x ∈ Rn. If A is ,kࠁ) ε)-RIP for any ε < ࠀ then x is the
unique minimizer of:

min‖z‖߿ subject to Az = b.

Problem: This optimization problem naively takes O(nk) time
to solve.

ࠇࠄ
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POLYNOMIAL TIME SPARSE RECOVERY

Convex relaxation of the ߿" minimization problem:

Problem (Basis Pursuit, i.e. ࠀ" minimization.)

min
z
‖z‖ࠀ subject to Az = b.

• Objective is convex.

• Optimizing over convex set.

Can be solved in poly(n) time using a linear program or using
e.g. projected gradient descent. Other similar relaxations also
work. E.g. Lasso regularization minz ‖Az− b‖ࠁ + λ‖z‖ࠀ.

ࠈࠄ
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BASIS PURSUIT ANALYSIS

Theorem
If A is ,kࠂ) ε)-RIP for ε < ࠆࠀ. and ‖x‖߿ = k, then x is the unique
optimal solution of the Basis Pursuit optimization problem.

Two surprising things about this result:

• Exponentially improve computational complexity with only
a constant factor overhead in measurement complexity.

• Typical “relax-and-round” algorithm, but rounding is not
even necessary! Just return the solution of the relaxed
problem.

Why ࠀ" norm instead of ࠁ" norm?

߿ࠅ
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BASIS PURSUIT INTUITION

Suppose A is ×ࠁ ,ࠀ so b is just a scalar and x is a
dimensional-ࠁ vector.

Vertices of level sets of ࠀ! norm
correspond to sparse solutions.

This is not the case e.g. for the ࠁ!
norm.

min
z
‖z‖ࠀ subject to Az = b.

ࠀࠅ
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BASIS PURSUIT ANALYSIS

Theorem
If A is ,kࠂ) ε)-RIP for ε < ࠆࠀ. and ‖x‖߿ = k, then x is the unique
optimal solution of the Basis Pursuit LP).

Similar proof to ߿" minimization:

• By way of contradiction, assume x is not the optimal
solution. Then there exists some non-zero ∆ such that:

• ‖x+∆‖ࠀ ≤ ‖x‖ࠀ
• A(x+∆) = Ax. I.e. A∆ = .߿

Difference is that we can no longer assume that ∆ is sparse.

We will argue that ∆ is “approximately” sparse.

ࠁࠅ



TOOLS NEEDED

First tool:

For any q-sparse vector w, ‖w‖ࠁ ≤ ‖w‖ࠀ ≤
√
q‖w‖ࠁ

Second tool:

For any norm and vectors a,b, ‖a+ b‖ ≥ ‖a‖ − ‖b‖

ࠂࠅ



BASIS PURSUIT ANALYSIS

Some definitions: S is the set of k non-zero indices in x. T̄ࠀ is the set
of kࠁ indices not in S with largest magnitude in ∆. T̄ࠁ is the set of kࠁ
indices not in S with next largest magnitudes, etc.

Tࠀ contains the kࠁ indices with largest value in ∆ that are zero in x.
Tࠁ contains the next kࠁ largest entries, etc.

ࠃࠅ



BASIS PURSUIT ANALYSIS

Recall: By way of contradiction, if x is not the minimizer of the
ࠀ" problem, then there is some ∆ such that A(x+∆) = b and
‖x+∆‖ࠀ ≤ ‖x‖ࠀ.

Claim ࠀ (approximate sparsity of ∆): ‖∆S‖ࠀ ≥ ‖∆S̄‖ࠀ

ࠄࠅ



BASIS PURSUIT ANALYSIS

Claim ࠁ ࠁ") approximate sparsity): ‖∆S‖ࠁ ≥
√
ࠁ
∑

j≥ࠁ ‖∆Tj‖ࠁ:

We have:

‖∆s‖ࠁ ≥
√ࠀ
k
‖∆S‖ࠀ ≥

√ࠀ
k
‖∆S̄‖ࠀ =

√ࠀ
k

∑

j≥ࠀ

‖∆Tj‖ࠀ.

So it suffices to show that: ‖∆Tj‖ࠀ ≥
√
ࠁ‖ࠀ+k‖∆Tjࠁ

ࠅࠅ



BASIS PURSUIT ANALYSIS

Finish up proof by contradiction: Recall that A is assumed to
have the ,kࠂ) ε) RIP property. And by way of contradiction
A(x+∆) = b.

߿ = ‖A∆‖ࠁ ≥ ‖A∆S∪Tࠁ‖ࠀ −
∑

j≥ࠁ

‖A∆Tj‖ࠁ

ࠆࠅ



BASIS PURSUIT ANALYSIS

We have that −ࠀ) ε)− √ε+ࠀ
ࠁ ≥ ߿ whenever ε < .ࠆࠀ.

Theorem
If A is ,kࠂ) ε)-RIP for ε < ࠆࠀ. and ‖x‖߿ = k, then x is the unique
optimal solution of the Basis Pursuit optimization problem,
which can be solved in polynomial time.

ࠇࠅ



FASTER METHODS

A lot of interest in developing even faster algorithms that
avoid using the “heavy hammer” of linear programming, which
runs in roughly O(nࠄ.ࠂ) time.

• Iterative Hard Thresholding: Looks a lot like projected
gradient descent. Solve minz ‖Az− b‖ with gradient
descent while continually projecting z back to the set of
k-sparse vectors. Runs in time ∼ O(nk log n) for Gaussian
measurement matrices and O(n log n) for subsampled
Fourer matrices.

• Other “first order” type methods: Orthogonal Matching
Pursuit, CoSaMP, Subspace Pursuit, etc.

ࠈࠅ



FASTER METHODS

When A is a subsampled Fourier matrix, there are now
methods that run in O(k logc n) time [Hassanieh, Indyk,
Kapralov, Katabi, Price, Shi, etc. .[+ࠁࠀ߿ࠁ

߿ࠆ



SPARSE FOURIER TRANSFORM

Corollary: When x is k-sparse, we can compute the inverse
Fourier transform F∗Fx of Fx in O(k logc n) time!

• Randomly subsample Fx.
• Feed that input into our sparse recovery algorithm to
extract x.

Fourier and inverse Fourier transforms in sublinear time when
the output is sparse.

Applications in: Wireless communications, GPS, protein
imaging, radio astronomy, etc. etc. ࠀࠆ



COMPRESSED SENSING FOR IMAGES

Compressed sensing for image data is based on the idea that
“natural images” are sparse if some basis. E.g. the DCT or
Wavelet basis.

I.e. there is some representation of the image that requires
many fewer numbers than explicitly writing down the pixels.

ࠁࠆ



COMPRESSED SENSING RELATED TO MODERN DEEP LEARNING METHOD
METHODS

ࠂࠆ
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COMPRESSED SENSING FROM GENERATIVE MODELS

For many generative models (e.g., GANs, diffusion models)
output is parameterized by a seed vector z.

Process: measure image x by computing b = Ax for a random
matrix A. Use gradient descent to find z ∈ Rk to minimize:

‖AG(z)− b‖.

Return G(z).
ࠃࠆ
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THANK YOU!

Thank you all for a great course! If you are interested in
learning even more, there are several seminars at NYU that you
might be interested in attending:

Theoretical Computer Science Seminar:
https://csefoundations.engineering.nyu.edu/seminar.html.

Math and Data Seminar: https://mad.cds.nyu.edu/seminar/.

Computational Math and Scientific Computing Seminar:
https://cims.nyu.edu/dynamic/calendars/seminars/computational-
mathematics-and-scientific-computing-seminar/.

ࠄࠆ
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