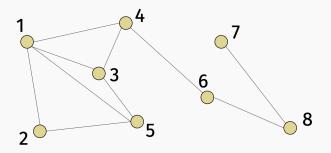
CS-GY 6763: Lecture 12 Stochastic Block Model, subspace embeddings + ϵ -net arguments

NYU Tandon School of Engineering, Prof. Christopher Musco

SPECTRAL GRAPH THEORY

Main idea: Understand <u>graph data</u> by constructing natural matrix representations, and studying that matrix's <u>spectrum</u> (eigenvalues/eigenvectors).



G = (V, E) is an undirected, unweighted graph with *n* nodes.

BALANCED CUT

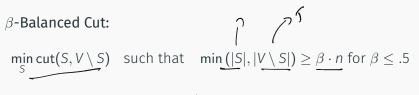
Goal: Given a graph G = (V, E), partition nodes along a cut that:

- Has few crossing edges: $|\{(u, v) \in E : u \in S, v \in T\}|$ is small.
- Separates large partitions: |S|, |T| are not too small.



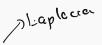
(a) Zachary Karate Club Graph

Applications: Understanding <u>community structure</u> in social networks, partitioning finite element meshes, non-linear clustering in machine learning, data visualization, etc. etc.



Last class we focused on the (extreme case where $\beta = 1/2$.)

Basic spectral clustering method:



- ·(Compute second smallest eigenvector of graph, v_{n-1} .
- $\cdot (v_{n-1})$ has an entry for every node *i* in the graph.
- If the i^{th} entry is positive, put node i in T.
- Otherwise if the i^{th} entry is negative, put i in S.

THE LAPLACIAN VIEW

(a) Zachary Karate Club Graph

For a <u>cut indicator vector</u> $\mathbf{c} \in \{-1, 1\}^n$ with $\mathbf{c}(i) = -1$ for $i \in S$ and $\mathbf{c}(i) = 1$ for $i \in T$:

$$\begin{array}{l} \cdot (\underline{c}^{\mathsf{T}}\underline{L}\underline{c}) = 4 \cdot cut(\underline{S},\underline{T}). \\ \cdot \ \mathbf{c}^{\mathsf{T}}\mathbf{1} = |\underline{T}| - |\underline{S}|. \\ \end{array} = \mathbf{0}$$

Want to minimize both $\mathbf{c}^T \mathbf{L} \mathbf{c}$ (cut size) and $|\mathbf{c}^T \mathbf{1}|$ (imbalance).

Al . y. cut votre

Perfectly balanced balanced cut problem:

$$c \in \{-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\}^n$$
 c^TLc such that c^T1 = 0.

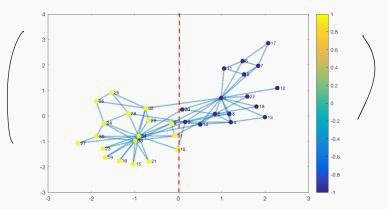
Relaxed perfectly balanced balanced cut problem:

$$\left(\min_{\|\mathbf{c}\|_2=1} \mathbf{c}^T \mathbf{L} \mathbf{c} \text{ such that } \mathbf{c}^T \mathbf{1} = 0. \right)$$

Main result: The relaxed problem is exactly minimized by the second smallest eigenvector v_{n-1} of L.

CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Final relax and round algorithm: Compute $\mathbf{v}_{n-1} = \underset{\mathbf{v} \in \mathbb{R}^{n} \text{ with } \|\mathbf{v}\| = 1, \ \mathbf{v}^{T} \mathbf{1} = \mathbf{0}}{\arg \min} \mathbf{v}^{T} L \mathbf{v}$ Set *S* to be all nodes with $\mathbf{v}_{n-1}(i) < 0$, and *T* to be all with $\mathbf{v}_{n-1}(i) \ge 0$. I.e. set $\mathbf{c} = \operatorname{sign}(\mathbf{v}_{n-1})$



earning.

So far: Showed that spectral clustering partitions a graph along a small cut between large pieces. $O(\varkappa^3)$

- No formal guarantee on the 'quality' of the partitioning.
- Can fail for worst case input graphs.

Common approach: Design a natural (generative mode)) that produces <u>random but realistic</u> inputs and analyze how the algorithm performs on inputs drawn from this model.

Very common in algorithm design and analysis. Great way to start approaching a problem. Often our best way to understand why some algorithms "just work" in practice.

 f Similar approach to Bayesian modeling in machine

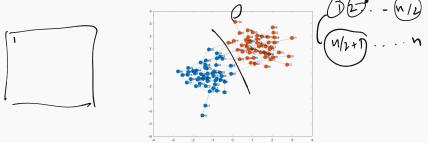
n rodes

Ideas for a generative model for social network graphs that would allow us to understand partitioning? Growthe (rougher

Stochastic Block Model (Planted Partition Model): P, & e (o, ,)

Let $G_n(\underline{p}, \underline{q})$ be a distribution over graphs on n nodes, split equally into two groups $B_n(C)$ each with n/2 nodes.

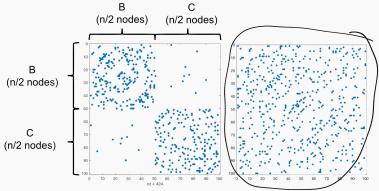
- Any two nodes in the **same group** are connected with probability pincluding self-loops).
- Any two nodes in different groups are connected with prob. q < p.



LINEAR ALGEBRAIC VIEW

Let <u>G</u> be a stochastic block model graph drawn from $G_n(p,q)$.

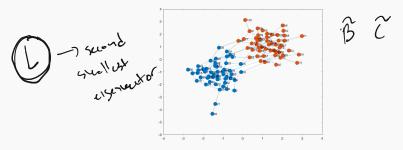
• Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ denote the adjacency matrix of *G*.



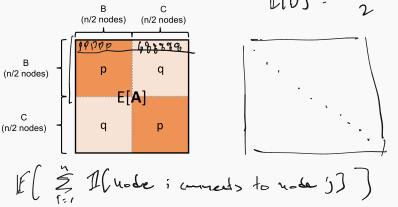
Note that we are <u>arbitrarily</u> ordering the nodes in A by group. In reality A would look "scrambled" as on the right.

STOCHASTIC BLOCK MODEL

Goal is to find the "ground truth" balanced partition <u>B</u>, <u>C</u>using our standard spectal method.



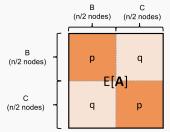
To do so, we need to understand the second smallest eigenvector of L = D - A. We will start by considering the <u>expected value</u> of these matrices: $E(L)_{ij} = E(L)_{ij}$



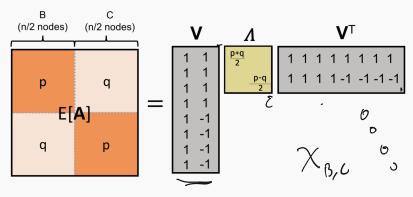
What is the expected Laplacian of $G_n(p,q)$? $E(L): E(D7 - E(A) = \Box - E(A)$ Suppose V is enjenvector of IE(L). F(L) ov = AV for some AE IB. $\lambda_1 \rightarrow c - \lambda_1$ $\lambda_2 \rightarrow c - \lambda_2$ $\lambda_m \mathbb{E}[A] \text{ and } \mathbb{E}[L] \text{ have the same eigenvectors and eigenvalues are}$ equal up to a shift/inversion. So (second largest eigenvector) of $\mathbb{E}[A]$ is the same as the second smallest of $\mathbb{E}[L]$

Letting G be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix, what are the eigenvectors and eigenvalues of $\mathbb{E}[A]$? Mu=hv. (n/2 nodes) (n/2 nodes) в (n/2 nodes) E[A] С (n/2 nodes) q N-2 ergenvelves

Letting *G* be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{A}]$?



EXPECTED ADJACENCY SPECTRUM



- $\mathbf{\bar{v}}_1 \sim \mathbf{1}$ with eigenvalue $\lambda_1 = \frac{(p+q)n}{2}$.
- $\bar{\mathbf{v}}_2 \sim \underline{\boldsymbol{\chi}}_{B,C}$ with eigenvalue $\lambda_2 = \frac{(p-q)n}{2}$.

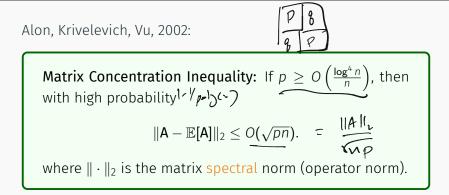
If we compute $\bar{\mathbf{v}}_2$ then we <u>exactly recover</u> the communities B and C!

Upshot: The second smallest eigenvector of $\mathbb{E}[L]$, equivalently the second largest of $\mathbb{E}[A]$, is exactly $\chi_{B,C}$ – the indicator vector for the cut between the communities.

• If the random graph *G* (equivilantly **A** and **L**) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover communities *B* and *C*.

How do we show that a matrix (e.g. (A)) is close to its expectation? (Matrix concentration inequalities.)

• Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins.



Recall that $\|\mathbf{X}\|_2 = \max_{\mathbf{Z} \in \mathbb{R}^n : \|\mathbf{Z}\|_2 = 1} \|\underline{\mathbf{X}}_2\|_2 = \sigma_1(\mathbf{X}).$

 $\|\mathbf{A}\|_2$ is on the order of O(pn) so another way of thinking about the right hand side is $\frac{\|\mathbf{A}\|_2}{\sqrt{np}}$. I.e. get's better with p and n.

 $\|\mathbf{A}\|_2$ is on the order of O(pn) so another way of thinking about the right hand side is $\frac{\|\mathbf{A}\|_2}{\sqrt{np}}$. I.e. get's better with p and n.

$$\frac{|A_{1}||_{2}}{||2||_{2}} \leq ||A||_{2} = \max ||A_{2}||_{2}$$

$$\frac{||A_{1}||_{2}}{||2||_{2}}$$

$$\frac{||A||_{2}}{||2||_{2}}$$

$$\frac{||A||_{2}}{||2||2||_{2}}$$

$$\frac{||A||_{2}}{||2||2||_{2}}$$

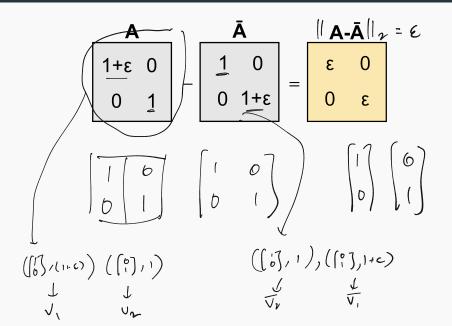
$$\frac{||A|||_{2}}{||2||2||_{2$$

For the stochastic block model application, we want to show that the second <u>eigenvectors</u> of A and $\mathbb{E}[A]$ are close. How does this relate to their difference in spectral norm?

 $\begin{array}{l} \underbrace{ \begin{array}{l} \underline{\text{Davis-Kahan Eigenvector Perturbation Theorem: Suppose } \underline{A}, \overline{\underline{A}} \in \mathbb{R}^{d \times d} \text{ are symmetric with } \|\underline{A} - \overline{A}\|_{2} \leq \underline{\epsilon} \\ \text{and eigenvectors } \underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{n} \text{ and } \overline{\underline{v}}_{1}, \overline{\underline{v}}_{2}, \ldots, \overline{\underline{v}}_{n}. \text{ Letting} \\ \theta(\underline{v}_{i}, \overline{\underline{v}}_{i}) \text{ denote the angle between } \underline{v}_{i} \text{ and } \overline{\overline{v}}_{i}, \text{ for all } i: \\ \\ \underbrace{sin[\theta(\underline{v}_{i}, \overline{\underline{v}}_{i})] \leq \underbrace{c}_{min_{j \neq i} |\lambda_{i} - \lambda_{j}|} \\ \text{where } \underline{\lambda}_{1}, \ldots, \underline{\lambda}_{n} \text{ are the eigenvalues of } \overline{\underline{A}}. \end{array}}$

We will apply with $\overline{A} = \mathbb{E}[A]$.

EIGENVECTOR PERTURBATION

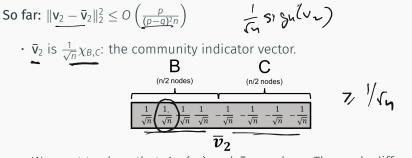


Claim 1 (Matrix Concentration): For $p \ge O\left(\frac{\log^4 n}{n}\right)$, $\not E(A) = \widehat{A}$ $\|A - \mathbb{E}[A]\|_2 \le O(\sqrt{pn}).$

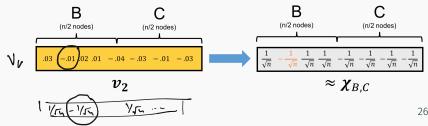
Recall: $\mathbb{E}[\mathbf{A}]$, has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\underline{\lambda_2} = \frac{(p-q)n}{2}$, $\underline{\lambda_j} = 0$ $\min_{j\neq i} |\lambda_i - \lambda_j| = \min\left(qn, \frac{(p-q)n}{2}\right). \qquad ((p+g) - (p-g)) \frac{1}{2}$ for i > 3. Assume $\frac{(p-q)n}{2}$ will be the minimum of these two gaps. D(1-52) Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$, $\underbrace{\sin \theta(\mathbf{v}_2, \overline{\mathbf{v}}_2)}_{\min_{j \neq i} |\lambda_i - \lambda_j|} \leq \frac{O(\sqrt{pn})}{(p - q)n/2} = O\left(\frac{\sqrt{p}}{(p - a)\sqrt{n}}\right)$

(A slightly trickier analysis can remove the *qn* term entirely.)

So far:
$$\sin \theta(\mathbf{v}_2, \bar{\mathbf{v}}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$$
. What does this give us?
• Can show that this implies $\left\| \mathbf{v}_2 - \bar{\mathbf{v}}_2 \right\|_2^2 \leq O\left(\frac{p}{(p-q)^{2n}}\right)$.
Sim $\left(\theta(\mathbf{v}_1, \bar{\mathbf{v}}_2) \right) = \Delta$ $\| \mathbf{z} \|_2$ $\| \mathbf{v}_2 - \bar{\mathbf{v}}_2 \|_2$
 $\| \mathbf{v}_1 \|_{r^{-1}}$ $\| \mathbf{v}_1 \|_{r^{-1}}$ $\| \mathbf{z} \|_2$ $\| \mathbf{v}_2 - \bar{\mathbf{v}}_2 \|_{r^{-1}}$ $\| \mathbf{z} \|_2$
 $\| \mathbf{z} \|_{r^{-1}} = \Delta + \Delta \mathbf{z}$
 $\| \mathbf{z} \|_{r^{-1}} = O(\Delta^3)$
 $\| \mathbf{z} \|_{r^{-1}} = O(\Delta^3)$



• We want to show that $sign(v_2)$ and $\bar{v_2}$ are close. They only differ at locations where v_2 and \bar{v}_2 differ in sign.



Main argument:

- Every *i* where $v_2(i)$, $\overline{v}_2(i)$ differ in sign contributes $\geq \frac{1}{n}$ to $\|\mathbf{v}_2 \overline{\mathbf{v}}_2\|_2^2$.
- We know that $\|\mathbf{v}_2 \bar{\mathbf{v}}_2\|_2^2 \leq O\left(\frac{p}{(p-q)^2n}\right)$
- So \mathbf{v}_2 and $\overline{\mathbf{v}}_2$ differ in sign in at most $O\left(\frac{p}{(p-q)^2}\right)$ ositions.

Upshot: If *G* is a stochastic block model graph with adjacency matrix **A**, if we compute its second largest eigenvector \mathbf{v}_2 and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^2}\right)$ hodes.

• Hard case: Suppose q = .8p so $\frac{p}{(p-q)^2} = 25/p$. Even if p is really small, i.e. p = 250/n, then we assign roughly 90% of nodes to the right partition.

$$\frac{P}{(P-8)^{\mu}} = \frac{P}{(P-.8p)^{\mu}} = \frac{P}{(P/5)^{\mu}} = \frac{25}{p} = \frac{25}{250/n} = \frac{1 \cdot n}{1 \cdot n}.$$

Forget about the previous problem, but still consider the matrix $M = \mathbb{E}[A]$.

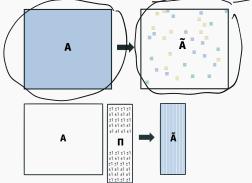
• Dense $n \times n$ matrix.

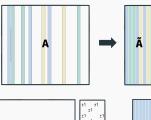
• Computing top eigenvectors takes $\approx O(n^2/\sqrt{\epsilon})$ time.

If someone asked you to speed this up and return <u>approximate</u> top eigenvectors, what could you do?

Main idea: If you want to compute singular vectors, multiply two matrices, solve a regression problem, etc.:

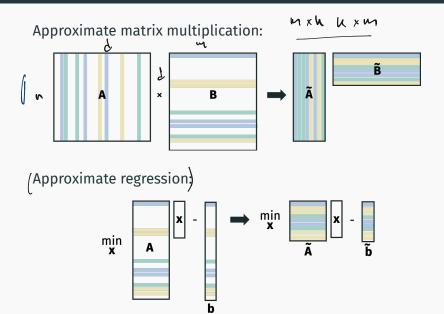
- 1. Compress your matrices using a randomized method (e.g. subsampling).)
- 2. Solve the problem on the smaller or sparser matrix.



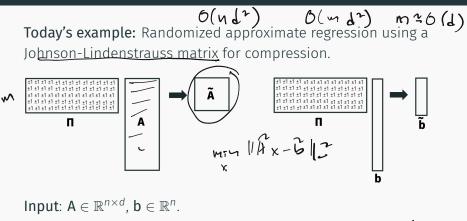


BREAK

RANDOMIZED NUMERICAL LINEAR ALGEBRA



SKETCHED REGRESSION



Goal: Let
$$\mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$
. Let $\tilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{\Pi}\mathbf{A}\mathbf{x} - \mathbf{\Pi}\mathbf{b}\|_2^2$
Want: $\|\mathbf{A}\tilde{\mathbf{x}} - \mathbf{b}\|_2^2 \le (1 + \epsilon) \|\mathbf{A}\mathbf{x}^* - \mathbf{b}\|_2^2$

TARGET RESULT

Theorem (Randomized Linear Regression)

Let Π be a JL matrix (random Gaussian, sign, sparse random, etc.) with $m = O\left(\frac{d}{\epsilon^2}\right)$ rows¹. Then with probability 9/10, for any $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{b} \in \mathbb{R}^n$,

$$\|\underline{A}\tilde{\mathbf{x}} - \mathbf{b}\|_{2}^{2} \leq (1 + \epsilon) \|\mathbf{A}\mathbf{x}^{*} - \mathbf{b}\|_{2}^{2}$$
where $\underline{\tilde{\mathbf{x}}} = \arg\min_{\mathbf{x}} \frac{\|\mathbf{\Pi}\mathbf{A}\mathbf{x} - \mathbf{\Pi}\mathbf{b}\|_{2}^{2}}{\|\mathbf{\Pi}\mathbf{A}\mathbf{x} - \mathbf{\Pi}\mathbf{b}\|_{2}^{2}}$

$$\chi^{*} = \arg\min_{\mathbf{x}} \frac{\|\mathbf{\Pi}\mathbf{A}\mathbf{x} - \mathbf{\Pi}\mathbf{b}\|_{2}^{2}}{|\mathbf{X}|^{2}}$$

¹This can be improved to $O(d/\epsilon)$ with a tighter analysis

- Prove this theorem using an <u>ε-net argument</u>, which is a popular technique for applying our standard concentration inequality + union bound argument to an (infinite number of events.)
- These sort of arguments appear all the time in theoretical algorithms and ML research, so this part of lecture is as much about the technique as the final result.

SKETCHED REGRESSION

Claim: Suffices to prove that for all
$$x \in \mathbb{R}^d$$

$$\begin{aligned} & \|TAx - Tb\|_2^2 \leq \|TAx - Tb\|_2^2 \leq (1 + \epsilon) \|Ax - b\|_2^2 \\ & \|Ax - b\|_2^2 \leq (1 + \epsilon) \|Ax + -b\|_2^2 \leq (1 + \epsilon) \|Ax - b\|_2^2 \\ & \|Ax - b\|_2^2 \leq (1 + \epsilon) \|Ax + -b\|_2^2 \leq \frac{1}{1 - \epsilon} \|TAx - Tb\|_2^2 \\ & \frac{\|Ax - b\|_2^2}{1 - \epsilon} \leq \frac{1}{1 - \epsilon} \|TAx - Tb\|_2^2 \leq \frac{1}{1 - \epsilon} \|TAx - Tb\|_2^2 \\ & \frac{1}{1 - \epsilon} \|TAx - Tb\|_2^2 \leq \frac{1}{1 - \epsilon} \|TAx - Tb\|_2^2 \\ & \int_{0}^{\infty} \frac{1}{1 - \epsilon} \|TAx - Tb\|_2^2 \leq \frac{1}{1 - \epsilon} \|TAx - Tb\|_2^2 \\ & \int_{0}^{\infty} \frac{1}{1 - \epsilon} \|TAx - Tb\|_2^2 \leq \frac{1}{1 - \epsilon} \|TAx - Tb\|_2^2 \\ & \int_{0}^{\infty} \frac{1}{1 - \epsilon} \|TAx - Tb\|_2^2 \leq \frac{1}{1 - \epsilon} \|TAx - Tb\|_2^2 \\ & \int_{0}^{\infty} \frac{1}{1 - \epsilon} \|TAx - Tb\|_2^2 \leq \frac{1}{1 - \epsilon} \|TAx - Tb\|_2^2 \\ & \int_{0}^{\infty} \frac{1}{1$$

Lemma (Distributional JL)

If **Π** is chosen to a random Gaussian matrix, sign matrix, sparse random matrix, etc. (scaled by $1/\sqrt{m}$) with $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ rows then for any fixed **y**, $(1-\epsilon)\|\mathbf{y}\|_2^2 \le \|\mathbf{\Pi}\mathbf{y}\|_2^2 \le (1+\epsilon)\|\mathbf{y}\|_2^2$

with probability $(1 - \delta)$.

Corollary: For any fixed **x**, with probability
$$(1 - \delta)$$
,
 $(1 - \epsilon) \|\underline{\mathbf{Ax}} - \mathbf{b}\|_2^2 \le \|\mathbf{\Pi}\mathbf{Ax} - \mathbf{\Pi}\mathbf{b}\|_2^2 \le (1 + \epsilon) \|\mathbf{Ax} - \mathbf{b}\|_2^2$.
 $\epsilon \|\pi (\mathbf{Ax} - \mathbf{b})\|_{\mathbf{x}}^{\mathbf{x}}$

FOR ANY TO FOR ALL

 $\int [x] - \int [y] + \int [y$

This statement requires establishing a Johnson-Lindenstrauss type bound for an <u>infinity</u> of possible vectors ((Ax - b)) which can't be tackled directly with a union bound argument.

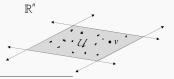
Note that all vectors of the form (Ax - b) lie in a low dimensional subspace: spanned by d + 1 vectors, where d is the width of A. So even though the set is infinite, it is "simple" in some way. Parameterized by just d + 1 numbers.

SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL) $(\Im_{\mathcal{U}} \land \Im_{\mathcal{O}}, 2606)$ Let $\mathcal{U} \subset \mathbb{R}^n$ be a *d*-dimensional linear subspace in \mathbb{R}^n . If $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1-\epsilon) \|\mathbf{v}\|_{2}^{2} \leq \|\mathbf{\Pi}\mathbf{v}\|_{2}^{2} \leq (1+\epsilon) \|\mathbf{v}\|_{2}^{2}$$

for all $\mathbf{v} \in \mathcal{U}$, as long as $\underline{m} = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^{2}}\right)^{2} \leq O\left(\frac{d}{\epsilon^{2}}\right)$



²It's possible to obtain a slightly tighter bound of $O\left(\frac{d+\log(1/\delta)}{\epsilon^2}\right)$. It's a nice challenge to try proving this.

SUBSPACE EMBEDDING TO APPROXIMATE REGRESSION

Corollary: If we choose Π and properly scale, then with $O(d/\epsilon^2)$ rows, $((1-\epsilon) \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \le \|\mathbf{\Pi}\mathbf{A}\mathbf{x} - \mathbf{\Pi}\mathbf{b}\|_2^2 \le (1+\epsilon) \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2)$ for all \mathbf{x} and thus $A = \mathbf{x} - \mathbf{y} = \mathbf{d}\mathbf{y}$

$$\left(\|\mathbf{A}\tilde{\mathbf{x}} - \mathbf{b}\|_2^2 \le (1 + O(\epsilon)) \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \right)$$

I.e., our main theorem is proven.

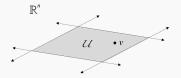
Proof: Apply Subspace Embedding Thm. to the (d + 1) dimensional subspace spanned by A's *d* columns and **b**. Every vector Ax - b lies in this subspace.

Theorem (Subspace Embedding from JL) \

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{v}\|_2^2 \le \|\mathbf{\Pi}\mathbf{v}\|_2^2 \le (1 + \epsilon) \|\mathbf{v}\|_2^2$$
 (1)

for all
$$\mathbf{v} \in \mathcal{U}$$
, as long as $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$



Subspace embeddings have tons of other applications!

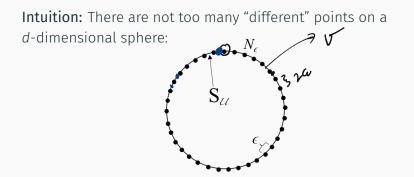
First Observation: The theorem holds as long as (1) holds for all **w** on the unit sphere in \mathcal{U} . Denote the sphere $S_{\mathcal{U}}$:

$$S_{\mathcal{U}} = \{ \mathbf{w} \mid \mathbf{w} \in \mathcal{U} \text{ and } \|\mathbf{w}\|_2 = 1 \}.$$

Follows from linearity: Any point $\mathbf{v} \in \mathcal{U}$ can be written as $c\mathbf{w}$ for some scalar *c* and some point $\mathbf{w} \in S_{\mathcal{U}}$. $\mathbf{v} \in c \cdot \mathbf{w}$

- $\|f(1-\epsilon)\|\|w\|_{2} \le \|\|w\|_{2} \le (1+\epsilon)\|\|w\|_{2}$. $\|f(\omega)\| \le \|c\|e_{\epsilon}\|+\cdots$
- then $c(1-\epsilon) \|\mathbf{w}\|_2 \le c \|\mathbf{\Pi}\mathbf{w}\|_2 \le c(1+\epsilon) \|\mathbf{w}\|_2$,
- and thus $(1-\epsilon) \|c\mathbf{w}\|_2 \le \|\mathbf{\Pi} c\mathbf{w}\|_2 \le (1+\epsilon) \|c\mathbf{w}\|_2$.

SUBSPACE EMBEDDING PROOF



Goal: Find a set $\underline{N_{\epsilon}}$ such that, for every $\underline{\mathbf{v}} \in \underline{S_{\mathcal{U}}}$, there is some point $\mathbf{w} \in N_{\epsilon}$ such that $\|\mathbf{w} - \mathbf{v}\|_2 \le \epsilon$. N_{ϵ} is called an " ϵ "-net. If we can prove

 $(1-\epsilon) \|\mathbf{w}\|_2 \le \|\Pi \mathbf{w}\|_2 \le (1+\epsilon) \|\mathbf{w}\|_2$

for all points $\mathbf{w} \in N_{\epsilon}$, we can hopefully extend to all of $S_{\mathcal{U}}$.

$\epsilon\text{-}\mathsf{NET}$ for the sphere

Lemma (ϵ -net for the sphere) For any $\epsilon \leq 1$, there exists a set $N_{\epsilon} \subset S_{\mathcal{U}}$ with $|N_{\epsilon}| = \left(\frac{3}{\epsilon}\right)^{d}$ such that $\forall \mathbf{v} \in S_{\mathcal{U}}$, $\min_{\mathbf{w} \in N_{\epsilon}} \|\mathbf{v} - \mathbf{w}\|_{2} \leq \epsilon.$

Take this claim to be true for now: we will prove later.

1

$$\mathcal{Y}(\mathcal{S}(3/r))$$

SUBSPACE EMBEDDING PROOF

1. Preserving norms of all points in net N_{ϵ} .

1-8'

Set
$$\delta' = \frac{1}{|\mathcal{N}_{\epsilon}|} \cdot \delta = \left(\frac{\epsilon}{3}\right)^{d} \cdot \delta$$
. As long as Π has $O\left(\frac{\log(1/\delta')}{\epsilon^{2}}\right) = O\left(\frac{d\log(1/\epsilon) + \log(1/\delta)}{\epsilon^{2}}\right)$ rows, then by a union bound,

$$(1-\epsilon) \|\mathbf{w}\|_2 \le \|\mathbf{\Pi}\mathbf{w}\|_2 \le (1+\epsilon) \|\mathbf{w}\|_2.$$

for <u>all</u> $\mathbf{w} \in N_{\epsilon}$,with probability $1 - \delta$.

$$S' = \frac{1}{(N_{\alpha})}, S = \left(\frac{\varepsilon}{3}\right)^2 \cdot S$$

0(109(1/5))

V-W0

2. Extending to all points in the sphere.

For some $\mathbf{w}_0, \mathbf{w}_1, \mathbf{w}_2 \dots \in N_{\epsilon}$, any $\mathbf{v} \in S_{\mathcal{U}}$ can be written: $\mathbf{v} = \mathbf{w}_0 + c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2 + \dots$ for constants c_1, c_2, \dots where $|c_i| \le \epsilon^i$. 1 5 1 2 2 (C_i) $w_1 : \|w_1 - \frac{r_1}{r_1}\| \in \mathcal{E} = \|w_1\|r_1\| - r_1\|_{\mathcal{L}} \in \mathcal{E}\|r_1\|$

2. Extending to all points in the sphere.

For some $\mathbf{w}_0, \mathbf{w}_1, \mathbf{w}_2 \ldots \in N_{\epsilon}$, any $\mathbf{v} \in S_{\mathcal{U}}$ can be written:

 $\mathbf{V} = \mathbf{W}_0 + c_1 \mathbf{W}_1 + c_2 \mathbf{W}_2 + \dots$

for constants c_1, c_2, \ldots where $|c_i| \leq \epsilon^i$. Greedy construction:

$$\begin{split} \mathbf{w}_{0} &= \min_{\mathbf{w} \in \mathcal{N}_{\epsilon}} \|\mathbf{v} - \mathbf{w}_{0}\|_{2} & \mathbf{r}_{0} = \mathbf{v} - \mathbf{w}_{0} \\ \mathbf{w}_{1} &= \min_{\mathbf{w} \in \mathcal{N}_{\epsilon}} \left\| \frac{\mathbf{r}_{0}}{\|\mathbf{r}_{0}\|} - \mathbf{w}_{0} \right\|_{2} & c_{1} = \|\mathbf{r}_{0}\|_{2} & \mathbf{r}_{1} = \mathbf{v} - \mathbf{w}_{0} - c_{1}\mathbf{w}_{1} \\ \mathbf{w}_{2} &= \min_{\mathbf{w} \in \mathcal{N}_{\epsilon}} \left\| \frac{\mathbf{r}_{1}}{\|\mathbf{r}_{1}\|} - \mathbf{w}_{0} \right\|_{2} & c_{2} = \|\mathbf{r}_{1}\|_{2} & \mathbf{r}_{2} = \mathbf{v} - \mathbf{w}_{0} - c_{1}\mathbf{w}_{1} - c_{2}\mathbf{w}_{2} \end{split}$$

SUBSPACE EMBEDDING PROOF

$$(1-4)$$
 1 5 $\|1Tv\|_{L} \in (1+4)$ 2

2. Extending to all points in the sphere.

Applying triangle inequality, we have that: $V^{2} \omega_{2} + (1 \omega_{1} + \zeta_{2} \omega_{2})^{*}$

$$\| \underbrace{\Pi \mathbf{v}} \|_{2} = \| \underbrace{\Pi \mathbf{w}}_{0} + \underline{c_{1}} \underbrace{\Pi \mathbf{w}}_{1} + \underline{c_{2}} \underbrace{\Pi \mathbf{w}}_{2} + \dots \|$$

$$\leq \| \underbrace{\Pi \mathbf{w}}_{0} \| + \underline{c_{1}} \| \underbrace{\Pi \mathbf{w}}_{1} \| + \underline{c_{2}} \| \underbrace{\Pi \mathbf{w}}_{2} \| + \dots$$

$$\leq \| \mathbf{\Pi \mathbf{w}}_{0} \| + \underline{\epsilon} \| \underbrace{\Pi \mathbf{w}}_{1} \| + \underline{\epsilon}^{2} \| \mathbf{\Pi \mathbf{w}}_{2} \| + \dots$$

$$\leq (1 + \epsilon) + \epsilon(1 + \epsilon) + \epsilon^{2}(1 + \epsilon) + \dots$$

$$\leq (1 + \epsilon) + \epsilon(1 + \epsilon) + \epsilon^{2}(1 + \epsilon) + \dots$$

$$\leq 1 + 4\epsilon. \qquad \leq 1 + \epsilon + 2\epsilon + 2\epsilon^{2}$$

$$= (1 + \epsilon) + (1 + \epsilon)(\epsilon + \epsilon^{2} + \dots) \qquad \leq 1 + 4\epsilon.$$

3. Preserving norm of v.

Similarly,

$$\|\underline{\Pi \mathbf{v}}\|_{2} = \|\underline{\Pi} \mathbf{w}_{0} + c_{1} \mathbf{\Pi} \mathbf{w}_{1} + c_{2} \mathbf{\Pi} \mathbf{w}_{2} + \dots \|$$

$$\geq \|\underline{\Pi} \mathbf{w}_{0}\| - \epsilon \|\underline{\Pi} \mathbf{w}_{1}\| - \epsilon^{2} \|\underline{\Pi} \mathbf{w}_{2}\| - \dots$$

$$\geq (1 - \epsilon) - \epsilon (1 + \epsilon) - \epsilon^{2} (1 + \epsilon) - \dots$$

$$\geq 1 - 4\epsilon.$$

So we have proven

$$(1 - O(\epsilon)) \|\mathbf{v}\|_2 \le \|\mathbf{\Pi}\mathbf{v}\|_2 \le (1 + O(\epsilon)) \|\mathbf{v}\|_2$$

for all $\mathbf{v} \in S_{\mathcal{U}}$, which in turn implies, $(1 - O(\epsilon)) \|\mathbf{v}\|_2^2 \le \|\mathbf{\Pi}\mathbf{v}\|_2^2 \le (1 + O(\epsilon)) \|\mathbf{v}\|_2^2$

Adjusting ϵ proves the Subspace Embedding theorem.

Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{v}\|_2^2 \le \|\mathbf{\Pi}\mathbf{v}\|_2^2 \le (1 + \epsilon) \|\mathbf{v}\|_2^2$$
(3)

for all
$$\mathbf{v} \in \mathcal{U}$$
, as long as $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$

(Subspace embeddings have many other applications!)

For example, if $m = O(k/\underline{\epsilon}), (\Pi A)$ can be used to compute an approximate partial SVD, which leads to a $(1 + \epsilon)$ approximate low-rank approximation for A.

$$\|A - A \tilde{V}_{u} \tilde{V}_{u} \|_{F} \leq (1+\epsilon) \|A - A V_{u} V_{u}^{\dagger}\|_{F}$$

$\epsilon\text{-}\mathsf{NET}$ for the sphere

Lemma (ϵ -net for the sphere)

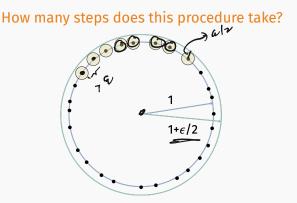
For any $\epsilon \leq 1$, there exists a set $N_{\epsilon} \subset S_{\mathcal{U}}$ with $|N_{\epsilon}| = \left(\frac{3}{\epsilon}\right)^{d}$ such that $\forall \mathbf{v} \in S_{\mathcal{U}}$,

$$\min_{\mathbf{v}\in N_{\epsilon}}\|\mathbf{v}-\mathbf{w}\|\leq\epsilon.$$

Imaginary algorithm for constructing N_{ϵ} :

- Set $N_{\epsilon} = \{\}$
- While such a point exists, choose an arbitrary point $\mathbf{v} \in S_{\mathcal{U}}$ where $\nexists \mathbf{w} \in N_{\epsilon}$ with $\|\mathbf{v} - \mathbf{w}\| \leq \epsilon$. Set $N_{\epsilon} = N_{\epsilon} \cup \{\mathbf{w}\}$.

After running this procedure, we have $N_{\epsilon} = {\mathbf{w}_1, \dots, \mathbf{w}_{|N_{\epsilon}|}}$ and $\min_{\mathbf{w} \in N_{\epsilon}} \|\mathbf{v} - \mathbf{w}\| \le \epsilon$ for all $\mathbf{v} \in S_{\mathcal{U}}$ as desired.



Can place a ball of radius $\epsilon/2$ around each \mathbf{w}_i without intersecting any other balls. All of these balls live in a ball of radius $1 + \epsilon/2$.

Volume of <u>d dimen</u>sional ball of r<u>adius r_i</u>s

$$\operatorname{vol}(d,r) = C r^{d}$$

$$\begin{pmatrix} n \\ a \end{pmatrix}$$

where c is a constant that depends on d, but not r. From

previous slide we have:

You can actually show that $m = O\left(\frac{d + \log(1/\delta)}{\epsilon}\right)$ suffices to be a d dimensional subspace embedding, instead of the bound we proved of $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}\right)$.

The trick is to show that a <u>constant</u> factor net is actually all that you need instead of an ϵ factor.

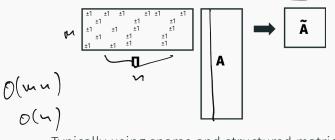
For $\epsilon, \delta = O(1)$, we need Π to have m = O(d) rows.

- Cost to solve $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$: $\mathcal{O}(\mathbf{u} \mathbf{j}^2)$
 - $O(nd^2)$ time for direct method. Need to compute $(A^TA)^{-1}A^Tb$.
 - (O(nd) (# of iterations)) time for iterative method (GD, AGD, conjugate gradient method).
- Cost to solve $\|\Pi Ax \Pi b\|_2^2$:
 - $O(d^3)$ time for direct method.
 - $O(d^2) \cdot (\# \text{ of iterations})$ time for iterative method.

$$\prod A \left(\frac{d}{dx} \right) \left(u \times J \right) = O(u d^2)$$

But time to compute **ΠA** is an $(m \times n) \times (n \times d)$ matrix multiply: $O(mnd) = O(nd^2)$ time!

Goal: Develop faster Johnson-Lindenstrauss projections.



Typically using <u>sparse</u> and <u>structured</u> matrices.

Next class: We will describe a construction where ΠA can be computed in $O(nd \log n)$ time.

Goal: Develop methods that reduce a vector $\mathbf{x} \in \mathbb{R}^n$ down to $m \approx \frac{\log(1/\delta)}{c^2}$ dimensions in o(mn) time and guarantee: $(1-\epsilon) \|\mathbf{x}\|_{2}^{2} \leq \|\mathbf{\Pi}\mathbf{x}\|_{2}^{2} \leq (1+\epsilon) \|\mathbf{x}\|_{2}^{2}$ log ±1 ±1 ±1 ±1 ±1 ±1 ±1 ±1 +1 +1 çar П

There is a truly brilliant method that runs in $O(n \log n)$ time. **Preview:** Will involve Fast Fourier Transform in disguise.