CS-GY 6763: Lecture 12
Stochastic Block Model, subspace embeddings
+ e-net arguments

NYU Tandon School of Engineering, Prof. Christopher Musco



SPECTRAL GRAPH THEORY

Main idea: Understand graph data by constructing natural
matrix representations, and studying that matrix’s spectrum
(eigenvalues/eigenvectors).

2

G = (V,E) is an undirected, unweighted graph with n nodes.



BALANCED CUT

Goal: Given a graph G = (V, E), partition nodes along a cut that:

- Has few crossing edges: |{(u,v) € E:u € S,v e T} is small.
* Separates large partitions: |S,[T| are not too small.
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(a) Zachary Karate Club Graph

Applications: Understanding community structure in social
networks, partitioning finite element meshes, non-linear
clustering in machine learning, data visualization, etc. etc. 3




SPECTRAL GRAPH PARTITIONING

P
-Balanced Cut: 2 /’J )

(

mincut(S,V\ S) suchthat min(|S|,|V\S|)>pg-nforp<.5
5/ -_— _ -

Last class we focused on the(extreme case where 8 = 1/2.)



SPECTRAL GRAPH PARTITIONING

Basic spectral clustering method: j\,-a\r)“' A

-(Compute second smallest eigenvector of graph, v,_;.

-(vn_1)has an entry for every node i in the graph.
- If the it entry is positive, put node i in T.

- Otherwise if the it entry is negative, putiin S.



THE LAPLACIAN VIEW
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(a) Zachary Karate Club Graph

For a cut indicator vector c € {—1,1}" with c(i) = —=1forie S
andc(i)=1forieT:

(e 4 - cut(s.T).

=TS =0

( ¢ é’\/& / ‘/ﬁ\%

Want to minimize both c¢Lc (cut size) and |c™| (imbalance).



RELAX AND ROUND
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Perfectly balanced balanced £ut problem:
min ~—.C'Lc such that ¢’1 = 0.
=
1512l
Relaxed perfectly balanced balanced cut problem:

llcll2=1

( min c'Lc such that ¢’1 = 0. )

Main result: The relaxed problem is exactly minimized by the
second smallest eigenvector v,_q of L.




CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Final relax and round algorithm: Compute

V1 =

argmin

vilv

veR" with |lv||=1, vI1=0

\J
S

Set S to be all nodes with v,_4(i) < 0, and T to be all with
Vp_1(1) > 0. l.e. set ¢ = sign(Vp_1)
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GENERATIVE MODELS

So far: Showed that spectral clustering partitions a graph
along a small cut between large pieces. @(\4 ”’)

- No formal guarantee on the ‘quality’ of the partitioning.
- Can fail for worst case input graphs.}

Common approach: Design a natural(generative modeDthat
produces random but realistic inputs and analyze how the
algorithm performs on inputs drawn from this model.

- Very common in algorithm design and analysis. Great way
to start approaching a problem. Often our best way to
understand why some algorithms “just work” in practice.
Similar approach to Bayesian modeling in machine

( learning.



STOCHASTIC BLOCK MODEL

A o b’>
Ideas for a generative model for social network graphs that
would allow us to understand partitioning?

-
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STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model): P, % C’C"/ 1]

Let G_n(_g,_g) be a distribution over graphs on n nodes, split
equally into two grou ps@nc@each with n/2 nodes.

- Any two nodes in the same group are connected with
probability@includin self-loops).

- Any two nodes in different groups are connected with
prob. g < p.




LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from Gu(p, q).

- Let A € R™" denote the adjacency matrix of G.
B c
(n/2 nodes)  (n/2 nodes)

B —
(n/2 nodes)

Cc
(n/2 nodes) ]

Note that we are arbitrarily ordering the nodes in A by group.

In reality A would look “scrambled” as on the right. ”



STOCHASTIC BLOCK MODEL

Goal is to find the “ground truth” balanced partition_B, Cusing

our standard spectal method.

) %’AL %
\ -t bl
{,,\b"\ .))1 Yo( mm
b\gf'ﬁ o

To do so, we need to understand the second smallest
eigenvector of L = D — A. We will start by considering the

expected value of these matrices:

= E[D] - E[A].
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EXPECTED ADJACENCY SPECTRUM

() = Flo- €0

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R™" be its adjacency matrix. (E[A]);; = p for

I,j in same group, (E[A]);; = g otherwise. (P A"
B C E(D’} = /
(n/2 nodes)  (n/2 nodes)
[ [P %ee ]
B
(n/2 nodes) ] p q
r E[A]
c 2
(n/2 nodes) q p T,
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EXPECTED LAPLACIAN

What is the expected Laplacian of Gn(p, q)?

ECGS: E(OT-E(A) = I -g(p)
Stpgmse N 1> erseavedec of (L) .

lﬁLB oV = AV fee sew Ae IS
(G- 1500 )= A = Ao Av- £y

_ AV - v
A ) -/
/Hl - ¢- /\ E(AY v - (L -A\)
M E[A] and E[L] have the same eigenvectors and eigenvalues are

equal up to a shift/inversion. So(second largest elgenvecto}of
E[A] is the same as the second smallest of E[L] 15



EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R"™" be its adjacency matrix, what are the

eigenvectors and eigenvalues of E[A]?
g eig [A] My b
(n/2 nodes)  (n/2 nodes)
L A
T
— |
B |
(n/2 nodes) | {
(
E[A] r
C
(n/2 nodes) q P :Il
G = = [

- \,c,\w"”?

|
n-v A '.‘ -
.0 \




EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R"™" be its adjacency matrix, what are the
eigenvectors and eigenvalues of E[A]?

B [o]
(n/2 nodes)  (n/2 nodes)
L 1
T
B
(n/2 nodes) p q
E[A]
C
(n/2 nodes) q p
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EXPECTED ADJACENCY SPECTRUM

VT

11111111
11111111
Ll

B o]
(n/2 nodes)  (n/2 nodes)
; L - 1 3 V A
I | o
1 1 .
P q 1 1 R
=111 ’
E[A] 1 -1
1 1
g P 1 -1
1 -1
S ——

V; ~ 1 with eigenvalue \; = (p+q

n
+ ¥y ~ xg,c With eigenvalue A, = (p Q) .
S

If we compute Vv, then we exactly recover the communities B

and C!




EXPECTED LAPLACIAN SPECTRUM

Upshot: The second smallest eigenvector of E[L], equivalently
the second largest of E[A], is exactly xg ¢ — the indicator vector
for the cut between the communities.

- If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this
eigenvector would exactly recover communities B and C.

How do we show that a matrix (e.g.is close to its
expectation?’[Matrix concentration inequalities)

- Analogous to scalar concentration inequalities like
Markovs, Chebyshevs, Bernsteins.

TRINN
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MATRIX CONCENTRATION

p
Alon, Krivelevich, Vu, 2002: (,_J%
4 | ¢
Matrix Concentration Inequality: If p > O (%) then
with high probability!” ¥ p-iy¢+) <
_ LAl
IA-E[A]l: <O(vPN). = —
— p

where || - ||2 is the matrix spectral norm (operator norm).

Recall that HXHZ = ma@n:“z||2:1 ||£H2 = UL‘X).
|A|2 is on the order of O(pn) so another way of thinking about
IA]

, L 5 , :
the right hand side is i’ l.e. get's better with p and n.

[, = o)
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MATRIX CONCENTRATION

|A||2 is on the order of O(pn) so another way of thinking about

the right hand side is U?—AL;. l.e. get's better with p and n.

falapan, 2w LAY,

12 = e
" 34’*%)"
Pe - r,:—

(Pr6) " )
< o
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EIGENVECTOR PERTURBATION

=21

For the stochastic block model application, we want to show
that the second eigenvectors of A and E[A] are close. How
does this relate to their difference in spectral norm?

7

Davis-Kahan Eigenvector Perturbation Theorem: Sup-
pose A/A € RY%9 are symmetric with |A — Al < e
and eTgenvectors Vi,Va,...,Vp and Vq, ¥y, ..., V. Letting
QM,') denote the angle between v; and v;, for all i:

o @

sin[f(vi, V)] < ——M—

where A1,..., \, are the eigenvalues ofg;

We will apply with A = E[A].

22



EIGENVECTOR PERTURBATION

§ A “ A-A“'y e
T+ 0O 10 e 0
0 1 0 1+e| | 0 ¢
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APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For p > O (bng> [fCA'] =k
IA —E[A]ll2 < O(yPn).
Recall: E[A], has eigenvalues \; = (pJ’ZQ)”, £ = B2 q)” A =0

fori > 3. (
(p+2)-6-9)2
V2V min|\ — A = min ([)C])ﬂ) ) )7’
i \ 2

Assume @ will be the minimum of these two gaps.

(
Claim 2 (Davis-Kahan): For p > O ('°ga”), OC /'(:‘>

. O(y/pn) O(/pH) VP
Sl,ne—(\/@gminj;éi|/\;—/\| (p— Qf/2 O< Q)\fﬁ,))

(A slightly trickier analysis can remove the gn term entirely.) 24




APPLICATION TO STOCHASTIC BLOCK MODEL

/7
So far: sin6(v,,V,) < O ((p_\gﬁ). What does this give us?

- Can show that this implies(|lv, — %, |3 < O ( = q)z )

Sa‘ﬁ/e/up/ V—’>) = A “Z[L “\),—-0—; \\‘,

\0/ —

[2h< »-n2
rd

(20 = OCD
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APPLICATION TO STOCHASTIC BLOCK MODEL

| ;
So far: <O(7) e (uv
o far: v, — %3 (b=l &37 S )
- Vp s %XB,CZ the community indicator vector.
(n/2 nodes) (n/2 nodes) ’
|
7

ﬂ
ﬂ.a
5l
5l
si-

?L
\/_(nn
2

- We want to show that sign(v,) and v, are close. They only differ
at locations where v, and v, differ in sign.

(n/2 nodes) (n/2 nodes) (n/2 nodes) (n/2 nodes)
| A A |
r Y | I ¥ 1
1 1 1 1 1 1 1
\]V 03 @02 01 —.04 —.03 —.01 —.03 ‘ — .
L] =~ XB,C

o
7 Y o= 26
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APPLICATION TO STOCHASTIC BLOCK MODEL

Main argument:

- Every i where vo(i), V(i) differ in sign contributes > 1 to
Iv2 = Va2

- We know that |lv, — % |2 < O (L
-_—_d

{I\/

(p—q)*n

- So v, and v, differ in sign in at mostfO (ﬁ) positions.
~————
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APPLICATION TO STOCHASTIC BLOCK MODEL

- 1s6
ny, ik
AV

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second largest eigenvector v, and

assign nodes to communities according to the-Stempattern of
this vector, we will correctly assign all but m odes.

- Hard case: Suppose q=_.8pso = q) =25/p. Even if p is
really small, i.e. p =250/n, then we assign roughly 90% of

nodes to the right partition.

_ Z“ = L - E 4 G
(7_%51«' (P’~<3’P)V @ls) P 25e/w




RANDOMIZED NUMERICAL LINEAR ALGEBRA

Forget about the previous problem, but still consider the

matrix M = E[A]. 0\
( & Jp

- Computing top eigenvectors takes ~0(n?/+/€) time.

« Dense n x n matrix.

If someone asked you to speed this up and return approximate
top eigenvectors, what could you do?

nu 2(/4') v(li ?*C\AT"3>

29



RANDOMIZED NUMERICAL LINEAR ALGEBRA

Main idea: If you want to compute singular vectors, multiply
two matrices, solve a regression problem, etc.: 4—,’,9}1‘1

1/ Compress your matrices using a randomized method (e.g.

subsampling). >

2. Solve the problem on the smaller or sparser matrix.

- A called a “sketch” or “coreset” for A.
?ﬂ/

) 30
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Approximate matrix multiplication:

wA

MW K oxw

i ol A

s

x

(Approximate regression)

min

H_

o

min
-) W

>

>

-~ 1]

i

31



SKETCHED REGRESSION

6w l"') O(w 4™ mx6(d )

Today’s example: Randomized appfoximate regression usmg a

?
Johnson-Li tra trix for compression.
e aapanaaaaaial | | e |:|

p—
—_—

_—
—
A
—
[

o

Input: A € R™4 b e R".
Goal: Let x* = arg min, ||[Ax — b||3. Let X = arg min, |[[MAX — Mb]|2

Want: ||AX — b]3 < (1+) JAx — b b|2
—_—
32



TARGET RESULT

Theorem (Randomized Linear Regression)

Let M be a JL matrix (random Gaussian, sign, sparse random,
etc.) withm =0 ( ) rows'. Then with probability 9/10, for
any A e R™% and b € R”,

1A% — blz < (1+ €)[|Ax* — b3

——

)
where X = arg min, ||[MAX — Mb|[2. X‘,‘: Ge Y U -
—_— >

"This can be improved to O(d/e) with a tighter analysis

——

33



PLAN

- Prove this theorem using an[e—net argument,)vvhich IS a
popular technique for applying our standard
concentration inequality + union bound argument to an

(infinite number of events.)

- These sort of arguments appear all the time in theoretical
algorithms and ML research, so this part of lecture is as
much about the technique as the final result.

34



SKETCHED REGRESSION

i Cecgwea ([(TAX -T2
Claim: Suffices to prove that XL 4 e v
~____~ X

(1 €)[1Ax — b AMAX — b < (14-€)}Ax — bl

FAg Ly e (lee) UAXE-LU ) /v

G v U < - » , L ?,ﬁ[o‘(:
(ng-LIS ¢ o WIAR TR < Zo TR

e?hwef\'i"} ¢ )/(v

¢ (MO e L2 e () VAxe-Cl>
,;,) -
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DISTRIBUTIONAL JOHNSON-LINDENSTRAUSS REVIEW

Lemma (Distributional JL)

If M is chosen to a random Gaussian matrix, sign matrix,
sparse random matrix, etc. (scaled by 1//m) with
m=0 ('°g(1/5) rows then for any fixed y,

—_—
—

(1—9lylls < IMylz < (1 + &)lIyll3

with probability (1 — 6).

Corollary:vvith probability (1 —9),
v

(1-€e)|Ax = b3 < [[MAX = [Ib||3 < (1 + €)||Ax — b5
= (Ax-D\Y

36



FOR ANY TO FOR ALL

)A [XZ - b
ojv do we go from “for any fixed x” to “for all x € R9".

This statement requires establishing a Johnson-Lindenstrauss
type bound for an infinity of possible vectors((Ax - b))vvhich
can’t be tackled directly with a union bound argument.

———— 5 d |
L/ (J’:""Lh)“ws&\

Note that all vectors of the form (Ax — b) lie in a low
dimensional subspace: spanned by d + 1 vectors, where d is
the width of A. So even though the set is infinite, it is “simple”
in some way. Parameterized by just d + 1 numbers.

37



SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL) (‘f)w\bs , 1060 6
LetUd C R" be a d=-dimensional linear subspace in R". If

N e R™*4 js chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1 — 6,

(1= alvliz < INvliz < (1 + €)l|v]i3

=

forcLllveZ/{,aslongasm:O(Mjk’gw‘s)),2 N O( ‘/i~>

€ @Y

2It's possible to obtain a slightly tighter bound of O (M) It's a nice

challenge to try proving this. 38



SUBSPACE EMBEDDING TO APPROXIMATE REGRESSION

Corollary: If we choose M and properly scale, then with
O (d/e?) rows,
( (1= e)|Ax = b|3 < [[MAX — Mb||3 < (1+ €)||Ax — b!%)
Fx-%

for all x and thus ALI

(Imi—bﬁﬁ(ﬁ+WdMQMMX—bﬁ)
l.e., our main theorem is proven.

Proof: Apply Subspace Embedding Thm. to the (d + 1)
dimensional subspace spanned by A’s d columns and b. Every
vector Ax — b lies in this subspace.

39



SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL) \

Letd C R" be a d-dimensional linear subspace in R". If
N e R™*4 js chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1 — 6,

(1= a)lvliz < INvliz < (1 + €)lIvli3 (1)

€

forallvel, as longasm:O(Mjk’gW‘”)

R

40



SUBSPACE EMBEDDING PROOF

—
\A) = C/le-—\ 4 CT/Z-"V *"*C.L(L Ilw:clﬁc—f C'A_Tre-c"
= ~—

(1= @)V < INv]3 < (1+)|vI3 (2)

First Observation: The theorem holds as long as (1) holds for
all w on the unit sphere in U. Denote the sphere Sy

K
L X+

Sy ={w|w e U and [|w|; =1}.

Follows from linearity: Any pointv € U/ can be written as cw
for some scalar ¢ and some pointw € Sy. N W

P (= lwll> < 0wl < (1+ €)l|wllz. ) < e fiehr -

 then c(1 — &)|wll» < c|AW[> < c(1+ €)[[w]», TG,

- and thus (1 — e)HiWHz < ||Mew|; < (1+ €)|lcw||,.

L 7
N N v X



SUBSPACE EMBEDDING PROOF

Intuition: There are not too many “different” points on a
d-dimensional sphere:

Goal: Find a set N, such that, for every v € Su, there is some

pointw € N, such that |[w — v|| < e N is called an “e"-net.
If we can prove

(1= llwll2 < [[Mwlla < (1+ €)f|wll2

for all points w € N, we can hopefully extend to all of S.

42



€-NET FOR THE SPHERE

Lemma (e-net for the sphere)
For any e < 1, there exists a set N. C Sy with |N6|uch
that Vv € Sy,

min [[v—w|; <e.
weN.

Take this claim to be true for now: we will prove later.

\o)&%ﬂ . © Logt?M2)
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SUBSPACE EMBEDDING PROOF

I-§& (o% ((/SJ}
1. Preserving norms of all points in net N.. \¥
e AL
Setd = 70 = (£)?- 5. As long as M has O (%)
/

=0 (W) rows, then by a union bound,

(1= lwlz < [Mwll> < (1 + e) w2 }

for all w € N, ,with probability 1— 4.

B 6 (SYs

(N 4,)
8‘ 4



SUBSPACE EMBEDDING PROOF

V-Wo
2. Extending to all points in the sphere.

For some wq, W1, W, ... € N, any v € S, can be written:

v =lwo + cwy + oWy + ..

‘ o\
for constants ¢, ¢y, ... where |¢j| < €. 7"“"[\
N (Qee 0= woroovi)- v
L (adee” i
o el 2 e
(Cif ¢ ¢’

(OR
() [’)
\ ANee = wp e - e eln)
(W, - = N

C X VA 414/5
\Ea



SUBSPACE EMBEDDING PROOF

2. Extending to all points in the sphere.

For some wq, W1, W5 ... € N, any v € S;; can be written:
V=Wq+ CiW7 + COWp ...
for constants ¢, ¢, ... where |¢j| < e

Greedy construction:

Wg = min ||[V—W f=V-—Ww
v= mlp I oll2 0 0
Wi = min ||—— — Wg Ch = ||follp M =V—Wy— W,
R e ~ "0l =l
I
= min ||-—— — Wp Cr = |||z INH =V—Wy— W3 — (W)
a2 e ~ )], =l

46



SUBSPACE EMBEDDING PROOF

(L) ¢ S VWl e (1) 7
2. Extending to all pointsNn thesphere——

Applying triangle inequality, we have that:  V* 95 #(, v, r v

[Mvll> = Ao + cilw; + G Aw, + . |
< |wol| + callwi]| + co[ vl + ...
ClInwol| + ellmws|| + &)iAw|| + &7 Mol
(1+e)+e(lte)+ 62(1i§) +...

o
<1+ 4e. £z
lr ¢ + 2¢ + L™
(2
é({—l—()-r (HQ)(Q,)fC."’ Fo- > < \ e
— _

S < 47



SUBSPACE EMBEDDING PROOF

3. Preserving norm of v.

Similarly,

H&Hz = HHWO + ciMwy + oMwy + ... H
2 Ao — el Awyf| — €| 0wy — ...
>(1 - —el+a —(1+e)—...
> 1 — e R‘,'
O(a)

48



SUBSPACE EMBEDDING PROOF

So we have proven
(1=0(e) [Ivll2 < [[Mvl]l2 < (14 O(e)) V]2
— = =

for all v e Sy, which in turn implies,

(1= 0(e)) IVIIz < IAv]3 < (14 0(e)) [IvIl3

Adjusting e proves the Subspace Embedding theorem.

49



SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

Letd C R" be a d-dimensional linear subspace in R". If
N e R™*4 js chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1 — 6,

(1= a)lvliz < INvliz < (1 + €)lIvli3 (3)

@

( )

For example, if m = O(l?/_e_),[l‘lA)can be used to compute an
approximate partial SVD, which leads to a (1+ €) approximate
low-rank approximation for A.

- 400z S (e 10— AT DL .

forallvel, as longasm:O(M)



€-NET FOR THE SPHERE

Lemma (e-net for the sphere)
For any e < 1, there exists a set N, C Sy with [N¢| = (%)d such
that W € Sy, o=

min |[v —w| <e.
WeN

Imaginary algorithm for constructing N.:

-SetNezi}_

- While such a point exists, choose an arbitrary point v € Sy
where fw € N, with ||v — w|| < e. Set No = No U {w}.

After running this procedure, we have Ne = {wjs,...,wy_} and

minwep, ||V — w| < eforallv e Sy as desired.
51



€-NET FOR THE SPHERE

How many steps does this procedure take?

% %5

@/
1 .
. 1 he
? L4 .
i 1+€/2 ¢

Can place a ball of radius €/2 around each w; without
intersecting any other balls. All of these balls live in a ball of
radius 1+ ¢/2.
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VOLUME ARGUMENT

Volume of d dimensional ball of radius r is /@ > L
w
vol(d, r) =(0) L‘L/ ~

where c is a constant that depends on d, but not r. From
previous slide we have:

vol(d, e/2) - [Ne| < wvol(d 1+€/2) 5 (H%)‘L

vol(d, 1+ ¢€/2) d
|_N_E‘ = vol(d €/2) J (&/2)

() <)

i
. 4,
(=) @) s




TIGHTER BOUND

You can actually show that m =0 M suffices to be a d

dimensional subspace embedding, instead of the bound we
proved of m = 0 (M).

€

The trick is to show that a constant factor net is actually all
that you need instead of an e factor.
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RUNTIME CONSIDERATION

For e, 8 = O(1), we need M to have m = O(d) rows.

7
- Cost to solve ||Ax — b||2: O(u |l )
- O(nd?) time for direct method. Need to compute
(ATA)~"'ATh.

-(O(nd) - (# of iter‘ations))time for iterative method (GD, AGD,
conjugate gradient method).

+ Cost to solve [|MIAx — Mb]}5:

+ O(d”) time for direct method.
- O(d?) - (# of iterations) time for iterative method.

A (4r) (s x3) = o(9d?)
- @(V\C(/)

< — 55




RUNTIME CONSIDERATION

But time to compute MAis an (m x n) x (n x d) matrix
multiply: O(mnd) = O(nd?) time!

Goal: Develop faster Johnson-Lindenstrauss projections.

E ES ¥ t ¥
+ + + ~
+ a4 +1 ‘ A
M &l
+

Ol
0(\«)

Typically using sparse and structured matrices.

Next class: We will describe a construction where MA can be

computed in O(nd logn) time. o



RETURN TO SINGLE VECTOR PROBLEM

Goal: Develop methods that reduce a vector x € R"” down to
m = "’giﬁ dimensions in o(mn) time and guarantee:

(1+ €)lIx]3

\OJU (§)
2
% @

There is a truly brilliant method that runs in O(nlog n) time.

(1= e)lIxllz < M2 <

1) 1 2l +1 £1 +1
d +1 +1
+1 +] k4l 1
+1 +1 +1
+ + +1

X

= [
S,

0 0

Preview: Will involve Fast Fourier Transform in disguise.

57



