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Power Method, Krylov Subspace Methods,
Spectral Graph Partitioning

NYU Tandon School of Engineering, Prof. Christopher Musco
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SINGULAR VALUE DECOMPOSITION

One of the most fundamental results in linear algebra.

Any matrix X can be written:

Where UTU = I, VTV = I, and σࠀ ≥ σࠁ ≥ . . .σd ≥ .߿

Singular values are unique. Factors are not. E.g. would still get
a valid SVD by multiplying both ith column of V and U by .ࠀ− ࠁ
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PARTIAL SVD

Key result: Can find the best low-rank approximation from the
singular value decomposition.

Uk = argmin
orthogonal Z∈Rd×k

‖X− ZZTX‖ࠁF

Vk = argmin
orthogonal W∈Rd×k

‖X− XWWT‖ࠁF ࠂ



COMPUTING THE SVD

Suffices to compute right singular vectors V:

• Compute XTX.
• Find eigendecomposition VΛVT = XTX using e.g. QR
algorithm.

• Compute L = XV. Set σi = ‖Li‖ࠁ and Ui = Li/‖Li‖ࠁ.

Total runtime ≈

ࠃ

OO
O X :Osu's

Xu:@o

- - -

@xu)(nxD): d i d

043) r Olud)
d

eisendecomp o f x p
Iconpretext

x



COMPUTING THE SVD (FASTER)

How to go faster?

• Compute approximate solution.
• Only compute top k singular vectors/values.
• Iterative algorithms achieve runtime ≈ O(ndk) vs. O(ndࠁ)
time.

• Krylov subspace methods like the Lanczos method are
most commonly used in practice.

• Power method is the simplest Krylov subspace method,
and still works very well.
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POWER METHOD

Today: What about when k = ?ࠀ

Goal: Find some z ≈ vࠀ.

Input: X ∈ Rn×d with SVD UΣVT.

Power method:

• Choose z(߿) randomly. z߿ ∼ N ,߿) .(ࠀ
• z(߿) = z(߿)/‖z(߿)‖ࠁ
• For i = ,ࠀ . . . , T

• z(i) = XT · (Xz(i−ࠀ))

• ni = ‖z(i)‖ࠁ
• z(i) = z(i)/ni

Return z(T)
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POWER METHOD INTUITION
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POWER METHOD FORMAL CONVERGENCE

Theorem (Basic Power Method Convergence)
Let γ = σࠀ−σࠁ

σࠀ
be parameter capturing the “gap” between the

first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after T = O

(
log d/ε

γ

)
steps, we have either:

‖vࠀ − z(T)‖ࠁ ≤ ε or ‖vࠀ − (−z(T))‖ࠁ ≤ ε.

Total runtime: O
(
nd · log d/ε

γ

)
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ONE STEP ANALYSIS OF POWER METHOD

Write z(i) in the right singular vector basis:

z(߿) = c(߿)ࠀ vࠀ + c(߿)ࠁ vࠁ + . . .+ c(߿)d vd
z(ࠀ) = c(ࠀ)ࠀ vࠀ + c(ࠀ)ࠁ vࠁ + . . .+ c(ࠀ)d vd

...

z(i) = c(i)ࠀ vࠀ + c(i)ࠁ vࠁ + . . .+ c(i)d vd

Note: [c(i)ࠀ , . . . , c(i)d ] = c(i) = VTz(i).

Also: Since V is orthogonal and ‖z(i)‖ࠁ = ,ࠀ ‖c(i)‖ࠁࠁ = .ࠀ
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ONE STEP ANALYSIS OF POWER METHOD

Claim: After update z(i) = ࠀ
ni
XTXz(i−ࠀ),

c(i)j =
ࠀ
ni
σࠁ
j c

(i−ࠀ)
j

z(i) = ࠀ
ni

[
c(i−ࠀ)
ࠀ σࠁ

ࠀ · vࠀ + c(i−ࠀ)
ࠁ σࠁ

ࠁ · vࠁ + . . .+ c(i−ࠀ)
d σࠁ

d · vd
]

Equivalently: c(i) = ࠀ
ni
Σࠁc(i−ࠀ).
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MULTI-STEP ANALYSIS OF POWER METHOD

Claim: After T updates:

z(T) = ࠀ
∏T

i=ࠀ ni

[
c(߿)ࠀ σࠁT

ࠀ · vࠀ + c(߿)ࠁ σࠁT
ࠁ · vࠁ + . . .+ c(߿)d σࠁT

d · vd
]

Let αj =
T∏ࠀ

i=ࠀ ni
c(߿)j σࠁT

j . Goal: Show that αj ( αࠀ for all j )= .ࠀ
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POWER METHOD FORMAL CONVERGENCE

Since z(T) is a unit vector,
∑d

i=ࠀ α
ࠁ
i = .ࠀ

If we can prove that
∣∣∣αj
αࠀ

∣∣∣ ≤
√ ε

dࠁ then we will have that
‖vࠀ − z(T)‖ࠁࠁ ≤ ε.

αࠁ
j ≤ αࠁ

ࠀ ·
ε

dࠁ

ࠀ = αࠁ
ࠀ +

d∑

j=ࠁ

αࠁ
d ≤ αࠁ

ࠀ +
ε

ࠁ

αࠁ
ࠀ ≥ −ࠀ ε

ࠁ
|αࠀ| ≥ −ࠀ ε

ࠁ

‖vࠀ − z(T)‖ࠁࠁ = −ࠁ ,ࠀv〉ࠁ z(T)〉 ≤ ε
ࠁࠀ
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POWER METHOD FORMAL CONVERGENCE

Want to prove that after T = O(log(d/ε)/γ) steps,
∣∣∣αj
αࠀ

∣∣∣ ≤
√ ε

dࠁ

where αj =
T∏ࠀ

i=ࠀ ni
c(߿)j σࠁT

j . Recall that γ = σࠀ−σࠁ
σࠁ

.

Assumption: Starting coeff. on first eigenvector is not too
small: ∣∣∣c(߿)ࠀ

∣∣∣ ≥ O
(

√ࠀ
d

)
.

We will prove shortly that this holds with probability .߿߿ࠀ/ࠈࠈ

|αj|
|αࠀ|

=
σࠁT
j

σࠁT
ࠀ

·
|c(߿)j |

|c(߿)ࠀ |
≤

Need T =
ࠂࠀ
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STARTING COEFFICIENT ANALYSIS

Need to prove: Starting coefficient on first eigenvector is not
too small. I.e., with probability ,߿߿ࠀ/ࠈࠈ

∣∣∣c(߿)ࠀ

∣∣∣ ≥ O
(

√ࠀ
d

)
.

Prove using Gaussian anti-concentration. First use rotational
invariance of Gaussian:

c(߿) = VTz(߿)

‖z(߿)‖ࠁ
=

VTz(߿)

‖VTz(߿)‖ࠁ
∼ g

‖g‖ࠁ
,

where g ∼ N ,߿) .d(ࠀ

ࠃࠀ

D i d

I - I

- A h h h
i m i f fy IT'll-

c?z 0 (Yray



STARTING COEFFICIENT ANALYSIS

Need to show that with high probability, first entry of
g

‖g‖ࠁ ≥ c · √ࠀ
d
.

Part :ࠀ With super high probability (e.g. ,(߿߿ࠀ/ࠈࠈ

‖g‖ࠁࠁ ≤
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STARTING COEFFICIENT ANALYSIS

Need to show that with high probability, the magnitude of the
first entry of g ≥ c for a constant c. Think e.g. c = .߿߿ࠀ/ࠀ

Part :ࠁ With probablility −ࠀ O(α),

|gࠀ| ≥ α.
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POWER METHOD FORMAL CONVERGENCE

Theorem ( Power Method Convergence, k = (ࠀ
Let γ = σࠀ−σࠁ

σࠀ
be parameter capturing the “gap” between the

first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after T = O

(
log d/ε

γ

)
steps, we have either:

‖vࠀ − z(T)‖ࠁ ≤ ε or ‖vࠀ − (−z(T))‖ࠁ ≤ ε.

The method truly won’t converge if γ is very small. Consider
extreme case when γ = .߿

z(T) = ࠀ
∏T

i=ࠀ ni

[
c(߿)ࠀ σࠁT

ࠀ · vࠀ + c(߿)ࠁ σࠁT
ࠁ · vࠁ + . . .+ c(߿)d σࠁT

d · vd
]
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POWER METHOD – NO GAP DEPENDENCE

Theorem (Gapless Power Method Convergence)
If Power Method is initialized with a random Gaussian vector
then, with high probability, after T = O

(
log d/ε

ε

)
steps, we

obtain a z satisfying:

‖X− XzzT‖ࠁF ≤ +ࠀ) ε)‖X− XvࠀvTࠁ‖ࠀF

Intuition: For a good low-rank approximation, we don’t
actually need to converge to vࠀ if σࠀ and σࠁ are the same or
very close. Would suffice to return either vࠀ or vࠁ, or some
linear combination of the two.
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GENERALIZATIONS TO LARGER k

• Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

Power method:

• Choose G ∈ Rd×k be a random Gaussian matrix.
• Z߿ = orth(G).
• For i = ,ࠀ . . . , T

• Z(i) = XT · (XZ(i−ࠀ))

• Z(i) = orth(Z(i))
Return Z(T)

Guarantee: After O
(
log d/ε

ε

)
iterations:

‖X− XZZT‖ࠁF ≤ +ࠀ) ε)‖X− XVkVkT‖ࠁF.

Runtime: O(nnz(X) · k · T) ≤ O(ndk · T). ࠈࠀ
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KRYLOV METHODS

Possible to “accelerate” these methods.

Convergence Guarantee: T = O
(
log d/ε√

ε

)
iterations to obtain a

nearly optimal low-rank approximation:

‖X− XZZT‖ࠁF ≤ +ࠀ) ε)‖X− XVkVkT‖ࠁF.

߿ࠁ



KRYLOV SUBSPACE METHODS

For a normalizing constant c, power method returns:

z(q) = c ·
(
XTX

)q · g

Along the way we computed:

Kq =
[
g,
(
XTX

)
· g,

(
XTX

ࠁ( · g, . . . ,
(
XTX

)q · g
]

K is called the Krylov subspace of degree q.

Idea behind Krlyov methods: Don’t throw away everything
before

(
XTX

)q · g.
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KRYLOV SUBSPACE METHODS

Want to find v, which minimizes ‖X− XvvT‖ࠁF.

Lanczos method:

• Let Q ∈ Rd×k be an orthonormal span for the vectors in K.
• Solve minv=Qw ‖X− XvvT‖ࠁF.

• Find best vector in the Krylov subspace, instead of just
using last vector.

• Can be done in O
(
ndk+ dkࠁ

)
time.

• What you’re using when you run svds or eigs in MATLAB
or Python.
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LANCZOS METHOD ANALYSIS

For a degree T polynomial p, let vp = p(XTX)g
‖p(XTX)g‖ࠁ

. We always have
that vp ∈ KT, the Krylov subspace constructed with T iterations.

Power method returns:

vxT .

Lanczos method returns vp∗ where:

p∗ = argmin
degree T p

‖X− XvpvTp‖ࠁF.
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LANCZOS METHOD ANALYSIS

Claim: There is a q = O
(√

T log ࠀ
∆

)
degree polynomial p̂

approximating xT up to error ∆ on ,߿] .[ࠀ

‖X− Xvp∗vTp∗‖ࠁF ≤ ‖X− Xvp̂vTp̂‖
ࠁ
F ≈ ‖X− XvxTvTxT‖

ࠁ
F ≈ ‖X− XvࠀvTࠁ‖ࠀF

Runtime: O
(
log(d/ε)√

ε
· nnz(X)

)
vs. O

(
log(d/ε)

ε · nnz(X)
)
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GENERALIZATIONS TO LARGER k

• Block Krylov methods

• Let G ∈ Rd×k be a random Gaussian matrix.
• Kq =

[
G,

(
XTX

)
· G,

(
XTX

ࠁ( · G, . . . ,
(
XTX

)q · G
]

Runtime: O
(
nnz(X) · k · log d/ε√

ε

)
to obtain a nearly optimal

low-rank approximation.
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SPECTRAL GRAPH THEORY

Main idea: Understand graph data by constructing natural
matrix representations, and studying that matrix’s spectrum
(eigenvalues/eigenvectors).

For now assume G = (V, E) is an undirected, unweighted graph
with n nodes.
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MATRIX REPRESENTATIONS OF GRAPHS

Two most common representations: n× n adjacency matrix A
and graph Laplacian L = D− A where D is the diagonal degree
matrix.

Also common to look at normalized versions of both of these:
Ā = D−ࠁ/ࠀAD−ࠁ/ࠀ and L̄ = I− D−ࠁ/ࠀAD−ࠁ/ࠀ.
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THE LAPLACIAN VIEW

L = BTB where B is the signed “edge-vertex incidence” matrix.

B has a row for every edge in G. The row for edge (i, j) has a ࠀ+
at position i, a ࠀ− at position j, and zeros elsewhere.
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THE LAPLACIAN VIEW

Conclusions from L = BTB

• L is positive semidefinite: xTLx ≥ ߿ for all x.

• L = VΣࠁVT where UΣVT is B’s SVD. Columns of V are
eigenvectors of L.

• For any vector x ∈ Rn,

xTLx =
∑

(i,j)∈E

(x(i)− x(j))ࠁ.
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THE LAPLACIAN VIEW

xTLx =
∑

(i,j)∈E(x(i)− x(j))ࠁ. So xTLx is small if x is a “smooth”
function with respect to the graph.
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SMALLEST LAPLACIAN EIGENVECTOR

Courant–Fischer min-max principle

Let V = [vࠀ, . . . , vn] be the eigenvectors of L.

vn = argmin
‖v‖=ࠀ

vTLv

vn−ࠀ = argmin
‖v‖=ࠀ,v⊥vn

vTLv

vn−ࠁ = argmin
‖v‖=ࠀ,v⊥vn,vn−ࠀ

vTLv

...
vࠀ = argmin

‖v‖=ࠀ,v⊥vn,...,vࠁ
vTLv
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LARGEST LAPLACIAN EIGENVECTOR

Courant–Fischer min-max principle

Let V = [vࠀ, . . . , vn] be the eigenvectors of L.

vࠀ = argmax
‖v‖=ࠀ

vTLv

vࠁ = argmax
‖v‖=ࠀ,v⊥vࠀ

vTLv

vࠂ = argmax
‖v‖=ࠀ,v⊥vࠀ,vࠁ

vTLv

...
vn = argmax

‖v‖=ࠀ,v⊥vࠀ,...,vn−ࠀ

vTLv

ࠁࠂ



THE LAPLACIAN VIEW

Another conclusion from L = BTB:

For a cut indicator vector c ∈ ,ࠀ−} n{ࠀ with c(i) = ࠀ− for i ∈ S
and c(i) = ࠀ for i ∈ T = V \ S:

cTLc =
∑

(i,j)∈E

(c(i)− c(j))ࠁ = ࠃ · cut(S, T). (ࠀ)
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SPECTRAL GRAPH PARTITIONING

• Introduce NP-hard graph partitioning prob. important in:
• Understanding social networks.
• Unsupervised machine learning (spectral clustering).
• Graph visualization.
• Mesh partitioning.

• See how this problem can be solved heuristically using
Laplacian eigenvectors.

• Give an “average case” analysis of the method for a
common random graph model.

• Use two tools: matrix concentration and eigenvector
perturbation bounds.
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BALANCED CUT

Goal: Given a graph G = (V, E), partition nodes along a cut that:

• Has few crossing edges: |{(u, v) ∈ E : u ∈ S, v ∈ T}| is small.
• Separates large partitions: |S|, |T| are not too small.

Example application: Understanding community structure in
social networks. ࠄࠂ
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SOCIAL NETWORKS IN THE S߿97ࠀ

Wayne W. Zachary .(ࠆࠆࠈࠀ) An Information Flow Model for
Conflict and Fission in Small Groups.

“At the beginning of the study there was an incipient conflict
between the club president, John A., and Mr. Hi over the price of
karate lessons. Mr. Hi, who wished to raise prices, claimed the
authority to set his own lesson fees, since he was the instructor.
John A., who wished to stabilize prices, claimed the authority to set
the lesson fees since he was the club’s chief administrator. As time
passed the entire club became divided over this issue, and the
conflict became translated into ideological terms by most club
members.”

Zachary constructed a social network by hand and used a minimum
cut algorithm to correctly predict who sided with who in the
conflict. Beautiful paper – definitely worth checking out!

ࠅࠂ



SPECTRAL CLUSTERING

Idea: Construct synthetic graph for data that is hard to cluster.

Spectral Clustering, Laplacian Eigenmaps, Locally linear
embedding, Isomap, etc.
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TONS OF OTHER APPLICATIONS!

Balanced cut algorithms are also use in distributing data in
graph databases, for partitioning finite element meshes in
scientific computing (e.g., that arise when solving differential
equations), and more.

Lots of good software packages (e.g. METIS).
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SPECTRAL GRAPH PARTITIONING

There are many way’s to formalize Zachary’s problem:

β-Balanced Cut:

min
S

cut(S, V \ S) such that min (|S|, |V \ S|) ≥ β · n for β ≤ ࠄ.

Sparsest Cut:

min
S

cut(S, V \ S)
min (|S|, |V \ S|)

All natural formalizations lead to NP-hard problems. Lots of
interest in designing polynomial time approximation
algorithms, but tend to be slow. In practice, much simpler
methods based on the graph spectrum are used.

Spectral methods run no more than O(nࠂ) time (must faster if
you use iterative methods for computing eigenvectors). ࠈࠂ
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SPECTRAL GRAPH PARTITIONING

Basic spectral clustering method:

• Compute second smallest eigenvector of graph, vn−ࠀ.
• vn−ࠀ has an entry for every node i in the graph.
• If the ith entry is positive, put node i in T.
• Otherwise if the ith entry is negative, put i in S.

This shouldn’t make much sense yet! We will see that is a
“relax and round” algorithm in disguise.
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THE LAPLACIAN VIEW

For a cut indicator vector c ∈ ,ࠀ−} n{ࠀ with c(i) = ࠀ− for i ∈ S
and c(i) = ࠀ for i ∈ T:

• cTLc = ࠃ · cut(S, T).
• cTࠀ = |T|− |S|.

Want to minimize both cTLc (cut size) and |cTࠀ| (imbalance).
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THE LAPLACIAN VIEW

Equivalent formulation if we divide everything by
√
n so that c

has norm .ࠀ Then c ∈ {− √ࠀ
n ,

√ࠀ
n}

n and:

• cTLc = ࠃ
n · cut(S, T).

• cTࠀ = √ࠀ
n(|T|− |S|).

Want to minimize both cTLc (cut size) and |cTࠀ| (imbalance).

ࠁࠃ
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RELAX AND ROUND

Perfectly balanced balanced cut problem:

min
c∈{− √ࠀ

n ,
√ࠀ
n}

n
cTLc such that cTࠀ = .߿

Relaxed perfectly balanced balanced cut problem:

min
‖c‖ࠀ=ࠁ

cTLc such that cTࠀ = .߿

Claim: The relaxed problem is exactly minimized by the second
smallest eigenvector vn−ࠀ of L.

Approach: Relax, find vn−ࠀ, then round back to a vector with
− √ࠀ

n ,
√ࠀ
n entries.
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SMALLEST LAPLACIAN EIGENVECTOR

Claim: The smallest eigenvector/singular vector of any graph
Laplacian L always equals:

vn = argmin
v∈Rn with ‖v‖=ࠀ

vTLv =
√ࠀ
n
· ࠀ

with vTnLvn = .߿
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SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, vn−ࠀ is given by:

vn−ࠀ = argmin
‖v‖=ࠀ, vTnv=߿

vTLv

which is equivalent to

vn−ࠀ = argmin
‖v‖=ࠀ, ߿=Tvࠀ

vTLv.
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CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Final relax and round algorithm: Compute

vn−ࠀ = argmin
v∈Rn with ‖v‖=ࠀ, vT߿=ࠀ

vTLv

Set S to be all nodes with vn−ࠀ(i) < ,߿ and T to be all with
vn−ࠀ(i) ≥ .߿ I.e. set c = sign(vn−ࠀ)
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SPECTRAL PARTITIONING IN PRACTICE

Lots of different variants used in practice:

• Often do some sort of normalization of edge weights by
degree. E.g. the Shi-Malik normalized cuts algorithm use
the normalized Laplacian L = D−ࠁ/ࠀLD−ࠁ/ࠀ.

• Different methods for how to choose the threshold to
partition the second smallest eigenvector.

• Lots of variants to split the graph into more than two parts.
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SPECTRAL PARTITIONING IN PRACTICE

Multiway spectral partitioning:

• Compute smallest & eigenvectors vn−ࠀ, . . . , vn−% of L.
• Represent each node by its corresponding row in V ∈ Rn×%

whose rows are vn−ࠀ, . . . vn−%.
• Cluster these rows using k-means clustering (or really any
clustering method).

• Often we choose & = k, but not necessarily.

Let x̃i ∈ R% denote this embedding for a particullar node i.
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LAPLACIAN EMBEDDING

Original Data: (not linearly separable)
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LAPLACIAN EMBEDDING

k-Nearest Neighbors Graph:
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LAPLACIAN EMBEDDING

Embedding with eigenvectors vn−ࠀ, vn−ࠁ: (linearly separable)
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WHY DOES THIS WORK?

Formally, this choice of embedding minimizes:
∑

i,j∈E

‖x̃i − x̃j‖ࠁ

I.e., we explicitly encourages nodes connected by an edge to be
placed in nearby locations in the embedding.

Also useful e.g., in graph drawing.
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GENERATIVE MODELS

So far: Showed that spectral clustering partitions a graph
along a small cut between large pieces.

• No formal guarantee on the ‘quality’ of the partitioning.
• Can fail for worst case input graphs.

Common approach: Design a natural generative model that
produces random but realistic inputs and analyze how the
algorithm performs on inputs drawn from this model.

• Very common in algorithm design and analysis. Great way
to start approaching a problem. Often our best way to
understand why some algorithms “just work” in practice.

• Similar approach to Bayesian modeling in machine
learning.
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STOCHASTIC BLOCK MODEL

Ideas for a generative model for social network graphs that
would allow us to understand partitioning?
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STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model):

Let Gn(p,q) be a distribution over graphs on n nodes, split
equally into two groups B and C, each with n/ࠁ nodes.

• Any two nodes in the same group are connected with
probability p (including self-loops).

• Any two nodes in different groups are connected with
prob. q < p.
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LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from Gn(p,q).

• Let A ∈ Rn×n denote the adjacency matrix of G.

Note that we are arbitrarily ordering the nodes in A by group.
In reality A would look “scrambled” as on the right.
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STOCHASTIC BLOCK MODEL

Goal is to find the “ground truth” balanced partition B, C using
our standard spectal method.

To do so, we need to understand the second smallest
eigenvector of L = D− A. We will start by considering the
expected value of these matrices:

E[L] = E[D]− E[A].
ࠆࠄ



EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A ∈ Rn×n be its adjacency matrix. (E[A])i,j = p for
i, j in same group, (E[A])i,j = q otherwise.
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EXPECTED LAPLACIAN

What is the expected Laplacian of Gn(p,q)?

E[A] and E[L] have the same eigenvectors and eigenvalues are
equal up to a shift/inversion. So second largest eigenvector of

E[A] is the same as the second smallest of E[L] ࠈࠄ



EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A ∈ Rn×n be its adjacency matrix, what are the
eigenvectors and eigenvalues of E[A]?
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EXPECTED ADJACENCY SPECTRUM

• v̄ࠀ ∼ ࠀ with eigenvalue λࠀ =
(p+q)n

ࠁ .
• v̄ࠁ ∼ χB,C with eigenvalue λࠁ =

(p−q)n
ࠁ .

If we compute v̄ࠁ then we exactly recover the communities B
and C!
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EXPECTED LAPLACIAN SPECTRUM

Upshot: The second smallest eigenvector of E[L], equivalently
the second largest of E[A], is exactly χB,C – the indicator vector
for the cut between the communities.

• If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this
eigenvector would exactly recover communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

• Analogous to scalar concentration inequalities like
Markovs, Chebyshevs, Bernsteins.
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MATRIX CONCENTRATION

Alon, Krivelevich, Vu, :ࠁ߿߿ࠁ

Matrix Concentration Inequality: If p ≥ O
(
logࠃ n

n

)
, then

with high probability

‖A− E[A]‖ࠁ ≤ O(
√
pn).

where ‖ · ࠁ‖ is the matrix spectral norm (operator norm).

Recall that ‖X‖ࠁ = maxz∈Rd:‖z‖ࠀ=ࠁ ‖Xz‖ࠁ = σࠀ(X).

‖A‖ࠁ is on the order of O(p
√
n) so another way of thinking

about the right hand side is ‖A‖ࠁ√p . I.e. get’s better with p.
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EIGENVECTOR PERTURBATION

For the stochastic block model application, we want to show
that the second eigenvectors of A and E[A] are close. How
does this relate to their difference in spectral norm?

Davis-Kahan Eigenvector Perturbation Theorem: Sup-
pose A,A ∈ Rd×d are symmetric with ‖A − A‖ࠁ ≤ ε

and eigenvectors vࠀ, vࠁ, . . . , vn and v̄ࠀ, v̄ࠁ, . . . , v̄n. Letting
θ(vi, v̄i) denote the angle between vi and v̄i, for all i:

sin[θ(vi, v̄i)] ≤
ε

minj (=i |λi − λj|

where λࠀ, . . . ,λn are the eigenvalues of A.

We will apply with Ā = E[A].
ࠃࠅ



EIGENVECTOR PERTURBATION
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APPLICATION TO STOCHASTIC BLOCK MODEL

Claim ࠀ (Matrix Concentration): For p ≥ O
(

logࠃ n
n

)
,

‖A− E[A]‖ࠁ ≤ O(
√
pn).

Recall: E[A], has eigenvalues λࠀ = (p+q)n
ࠁ , λࠁ = (p−q)n

ࠁ , λi = ߿
for i ≥ .ࠂ

min
j "=i

|λi − λj| = min

(
qn, (p− q)n

ࠁ

)
.

Assume (p−q)n
ࠁ will be the minimum of these two gaps.

Claim ࠁ (Davis-Kahan): For p ≥ O
(

logࠃ n
n

)
,

sin θ(vࠁ, v̄ࠁ) ≤
O(√pn)

minj "=i |λi − λj|
≤ O(√pn)

(p− q)n/ࠁ
= O

( √p
(p− q)

√
n

)

(A slightly trickier analysis can remove the qn term entirely.) ࠅࠅ



APPLICATION TO STOCHASTIC BLOCK MODEL

So far: sin θ(vࠁ, v̄ࠁ) ≤ O
( √p

(p−q)
√
n

)
. What does this give us?

• Can show that this implies ‖vࠁ − v̄ࠁࠁ‖ࠁ ≤ O
(

p
(p−q)ࠁn

)
(exercise).

• v̄ࠁ is √ࠀ
nχB,C: the community indicator vector.

• We want to show that sign(vࠁ) and v̄ࠁ are close. They only differ
at locations where vࠁ and v̄ࠁ differ in sign.
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APPLICATION TO STOCHASTIC BLOCK MODEL

Main argument:

• Every i where vࠁ(i), v̄ࠁ(i) differ in sign contributes ≥ ࠀ
n to

‖vࠁ − v̄ࠁࠁ‖ࠁ.

• We know that ‖vࠁ − v̄ࠁࠁ‖ࠁ ≤ O
(

p
(p−q)ࠁn

)
.

• So vࠁ and v̄ࠁ differ in sign in at most O
(

p
(p−q)ࠁ

)
positions.
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APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second largest eigenvector vࠁ and
assign nodes to communities according to the sign pattern of
this vector, we will correctly assign all but O

(
p

(p−q)ࠁ

)
nodes.

• Hard case: Suppose q = pࠇ. so p
(p−q)ࠁ = .p/ࠄࠁ

If p = c/n, the number of mistakes is ࠄࠁ
c · n. I.e., < %߿ࠀ error if

average node has roughly ߿ࠄࠁ connections.
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Forget about the previous problem, but still consider the
matrix M = E[A].

• Dense n× n matrix.
• Computing top eigenvectors takes ≈ O(nࠁ/

√
ε) time.

If someone asked you to speed this up and return approximate
top eigenvectors, what could you do?
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Main idea: If you want to compute singular vectors, multiply
two matrices, solve a regression problem, etc.:

.ࠀ Compress your matrices using a randomized method (e.g.
subsampling).

.ࠁ Solve the problem on the smaller or sparser matrix.
• Ã called a “sketch” or “coreset” for A.
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