
CS-GY 6763: Lecture 11
Linear Programming, Singular Value
Decomposition

NYU Tandon School of Engineering, Prof. Christopher Musco

1

DIMENSION DEPENDENT CONVEX OPTIMIZIATION

Consider a convex function f(x) be bounded between [−B,B]
on a constraint set S .
Theorem (Dimension Dependent Convex Optimization)
The Center-of-Gravity Method finds x̂ satisfying
f(x̂) ≤ minx∈S f(x) + ϵ using O(d log(B/ϵ)) calls to a function
and gradient oracle for convex f.

The center-of-gravity method is not computationally efficient,
but inspired the polynomial time ellipsoid method.

2

KILLER APPLICATION: LINEAR PROGRAMMING

min f(x) = cTx
subject to Ax ≥ b.

3

LINEAR PROGRAMMING

Linear programs (LPs) are one of the most basic convex
constrained, convex optimization problems:

Let c ∈ Rd,b ∈ Rn,A ∈ Rn×d be fixed vectors that define the
problem, and let x be our variable parameter.

min f(x) = cTx
subject to Ax ≥ b.

Think about Ax ≥ b as a union of half-space constraints:

{x : aT1x ≥ b1}
{x : aT2x ≥ b2}

...
{x : aTnx ≥ bn}

4

LINEAR PROGRAMMING APPLICATIONS

• Classic optimization applications: industrial resource
optimization problems were important original
appications in the 70s.

• Robust regression: minx ∥Ax− b∥1.
• L1 constrained regression: minx ∥x∥1 subject to Ax = b. Lots
of applications in sparse recovery/compressed sensing.

• Solve minx ∥Ax− b∥∞.
• Polynomial time algorithms for Markov Decision Processes
(reinforcement learning).

• Many combinatorial optimization problems can be solved
via LP relaxation.

5

LINEAR PROGRAMMING

Theorem (Khachiyan, 1979)
Assume n = d. The ellipsoid method solves any linear
program with L-bit integer valued constraints exactly in
O(n4L) time.

Front page of New York Times, November 9, 1979.
6

INTERIOR POINT METHODS

Theorem (Karmarkar, 1984)
Assume n = d. The interior point method solves any linear
program with L-bit integer valued constraints in O(n3.5L) time.

Front page of New York Times, November 19, 1984.
7

INTERIOR POINT METHODS

Lecture notes are posted on the website (optional reading).

Projected Gradient Descent Optimization Path

8

INTERIOR POINT METHODS

Lecture notes are posted on the website (optional reading).

Ideal Interior Point Optimization Path

9

POLYNOMIAL TIME LINEAR PROGRAMMING

Both results had a huge impact on the theory of optimization,
although at the time neither the ellipsoid method or interior
point method were faster than a heuristic known at the
Simplex Method.

These days, improved interior point methods compete with
and often outperform simplex.

Polynomial time linear programming algorithms have also had
a huge impact of combinatorial optimization. They are often
the work-horse behind approximation algorithms for NP-hard
problems.

10

EXAMPLE: VERTEX COVER

Given a graph G with n nodes and edge set E. Each node is
assigned a weight w1, . . . ,wn.

Goal: Select subset of nodes with minimum total weight that
covers all edges.

11

EXAMPLE: VERTEX COVER

NP-hard to solve exactly.

12

EXAMPLE: VERTEX COVER

Given a graph G with n nodes and edge set E. Each node is
assigned a weight w1, . . . ,wn.

Formally: Denote if node i is selected by assigning variable xi
to 0 or 1. Let x = [x1, . . . , xn].

min
x

n∑
i=1

xiwi subject to xi ∈ {0, 1} for all i

xi + xj ≥ 1 for all (i, j) ∈ E

We will use convex optimization give a 2-approximation in
polynomial time.

Function to minimize is linear (so convex) but constraint set is
not convex. Why?

13

RELAX-AND-ROUND

High level approach:

• Relax to a problem with convex constraints.
• Round optimal solution of convex problem back to
original constraint set.

14

RELAX-AND-ROUND

High level approach:

• Relax to a problem with convex constraints.
• Round optimal solution of convex problem back to
original constraint set.

15

RELAX-AND-ROUND

High level approach:

• Relax to a problem with convex constraints.
• Round optimal solution of convex problem back to
original constraint set.

Let S̄ ⊇ S be the relaxed constraint set. Let x∗ = argminx∈S f(x)
and let x̄∗ = argminx∈S̄ f(x). We always have that:

f(x̄∗) ≤ f(x∗).

So typically the goal is to round x̄∗ to S in such a way that we
don’t increase the function value too much.

16

RELAXING VERTEX COVER

Vertex Cover:

min
x

n∑
i=1

xiwi subject to xi ∈ {0, 1} for all i

xi + xj ≥ 1 for all (i, j) ∈ E

Relaxed Vertex Cover:

min
x

n∑
i=1

xiwi subject to 0 ≤ xi ≤ 1 for all i

xi + xj ≥ 1 for all (i, j) ∈ E

The second problem is a linear program! It can be solved in
poly(n) time!

17

ROUNDING VERTEX COVER

Any ideas on how to round this to a solution to the original
problem? I.e., with constraints xi ∈ {0, 1} for all i.

18

ROUNDING VERTEX COVER

Simply set all variable xi = 1 of x̄∗i ≥ 1/2 and xi = 0 otherwise.

Observation 1: All edges remain covered. I.e., the constraint
xi + xj ≥ 1 for all (i, j) ∈ E is not violated.

19

ROUNDING VERTEX COVER

Observation 2: Let x be the rounded version of x̄∗. We have
f(x) ≤ 2 · f(x̄), and thus f(x) ≤ 2 · f(x∗).

Proof:

20

VERTEX COVER

So, a polynomial time algorithm for solving LPs immediately
yields a 2-approximation algorithm for the NP-hard problem of
vertex cover.

• Proven that it is NP-hard to do better than a 1.36
approximation in [Dinur, Safra, 2002].

• Recently improved to
√
2 ≈ 1.41 in [Khot, Minzer, Safra

2018], which proved the 2-to-2 games conjecture.
• Widely believed that doing better than 2− ϵ is NP-hard for
any ϵ > 0, and this is implied by Subhash Khot’s Unique
Games Conjecture.

There is a simpler greedy 2-approximation algorithm that
doesn’t use optimization at all!

21

BREAK

21

SPECTRAL METHODS

Next section of course: Spectral methods and numerical linear
algebra.

Spectral methods generally refer to methods based on the
“spectrum” of a matrix. I.e. on it’s eigenvectors/eigenvalues
and singular vectors/singular values. We will look at

• Applications to low-rank approximation and
dimensionality reduction.

• Applications to graph problems.
• Fast algorithms for computing spectral information.

22

SPECTRAL METHODS

Reminder: A vector v ∈ Rd is an eigenvector of a matrix
X ∈ Rd×d, if there exists a scalar λ such that

Xv = λv

The scalar λ is called the eigenvalue associated with v.

Matrices can often be written completely in terms of their
eigenvectors and eigenvalues. This is called
eigendecomposition.

We will actually focus on a related tool called singular value
decomposition.

23

LINEAR ALGEBRA REMINDER

If a square matrix has orthonormal rows, it also has
orthonormal columns:

VTV = I = VVT

−0.62 0.78 −0.11
−0.28 −0.35 −0.89
−0.73 −0.52 0.44

 ·

−0.62 −0.28 −0.73
0.78 −0.35 −0.52
−0.11 −0.89 0.44

 =

1 0 0
0 1 0
0 0 1


24

LINEAR ALGEBRA REMINDER

Implies that for any vector x, ∥Vx∥22 = ∥x∥22 and ∥VTx∥22.

Same thing goes for Frobenius norm: for any matrix X,
∥VX∥2F = ∥X∥2F and ∥VTX∥2F = ∥X∥2F.

25

LINEAR ALGEBRA REMINDER

The same is not true for rectangular matrices.

VTV = I but VVT ̸= I

For any x, ∥Vx∥22 = ∥x∥22 but ∥VTx∥22 ̸= ∥x∥22 in general.

26

LINEAR ALGEBRA REMINDER

Multiplying a vector by V with orthonormal columns rotates
and/or reflects the vector.

27

LINEAR ALGEBRA REMINDER

Multiplying a vector by a rectangular matrix VT with
orthonormal rows projects the vector (representing it as
coordinates in the lower dimensional space).

So we always have that ∥VTx∥2 ≤ ∥x∥2. 28

SINGULAR VALUE DECOMPOSITION

One of the most fundamental results in linear algebra.

Any matrix X can be written:

Where UTU = I, VTV = I, and σ1 ≥ σ2 ≥ . . . σd ≥ 0.

Singular values are unique. Factors are not. E.g. would still get
a valid SVD by multiplying both ith column of V and U by −1. 29

SINGULAR VALUE DECOMPOSITION

Important take away from singular value decomposition.

Multiplying any vector a by a matrix X to form Xa can be viewed
as a composition of 3 operations:

1. Rotate/reflect the vector (multiplication by to VT).
2. Scale the coordinates (multiplication by Σ.
3. Rotate/reflect the vector again (multiplication by U).

30

SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT

31

COMPARISON TO EIGENDECOMPOSITION

A square matrix has at most d linearly independent
eigenvectors. If a matrix has a full set of d eigenvectors
v1, . . . , vd with eigenvalues λ1, . . . , λd it is called
“diagonalizable” and can be written as:

VΛV−1.

V’s columns are v1, . . . , vd.

32

COMPARISON TO EIGENDECOMPOSITION

Singluar value decomposition

• Exists for all matrices,
square or rectangular.

• Singular values are always
positive.

• Factors U and V are
orthogonal.

Eigendecomposition

• Exists for some square
matrices.

• Eigenvalues can be
positive, negative, or
imaginary. Real if X is
symmetric.

• Factor V is orthogonal if
and only if X is symmetric.

33

CONNECTION TO EIGENDECOMPOSITION

• U contains the orthogonal eigenvectors of XXT.
• V contains the orthogonal eigenvectors of XTX.
• σ2

i = λi(XXT) = λi(XTX)

34

SVD APPLICATIONS

Lots of applications.

• Compute pseudoinverse VΣ−1UT.
• Read off condition number of X, σ2

1/σ
2
d.

• Compute matrix norms. E.g. ∥X∥2 = σ1, ∥X∥F =
√∑d

i=1 σ
2
i .

• Compute matrix square root – i.e. find a matrix B such that
BBT = X. Used e.g. in sampling from Gaussian with
covariance X.

• Principal component analysis.

Killer app: Read off optimal low-rank approximation for X.

35

RANK

The column span of a matrix X ∈ Rn×d is the set of all vectors
that can be written as Xa for some a.

The dimension of the column span, Dc, is the maximum
number of linear independent vectors in that set.

The row span of a matrix X ∈ Rn×d is the set of all vectors that
can be written as bTX for some b.

The dimension of the row span, Dr, is the maximum number of
linear independent vectors in that set.

36

RANK

For a matrix X ∈ Rn×d we have:

Dc ≤ d
Dr ≤ n
Dc = Dr.

We call the value of Dc = Dr the rank of X.

We always have that:

rank (A · B · C · . . .) ≤ min (rank(A), rank(B), rank(C), . . .) .

37

LOW-RANK APPROXIMATION

Approximate X as a rank k matrix:

Choose C and B to minimize:

min
B,C

∥X− CB∥

for some matrix norm. Common choice is ∥X− CB∥2F. 38

APPLICATIONS OF LOW-RANK APPROXIMATION

• CB takes O(k(n+ d)) space to store instead of O(nd).
• Important in many applications, including e.g. LoRA:
Low-Rank Adaptation of Large Language Models

• Can be used to compress vector databases.
• Many more applications.

• Many linear algebraic problems involving CB can be solved
in O(nk2) instead of O(nd2) time. 39

https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

LOW-RANK APPROXIMATION

Without loss of generality can assume that the right matrix is
orthogonal. I.e. WT with WTW = I

Then we should choose left matrix C to minimize:

min
C

∥X− CWT∥2F

This is just n least squares regression problems! 40

LOW-RANK APPROXIMATION

ci = argmin
c

∥Wc− xi∥22

ci = WTxi
C = XW

So our optimal low-rank approximation always has the form:

X ≈ XWWT

41

PROJECTION MATRICES

WWT is a symmetric projection matrix.

42

DATA COMPRESSION

C = XW can be used as a meaningful compressed version of
data matrix X. We have that:

∥xi − xj∥2 ≈ ∥WWTxi −WWTxj∥2 = ∥ci − ci∥2

So we expect that:

• ∥xi∥2 ≈ ∥ci∥2
• ⟨xi, xj⟩ ≈ ⟨ci, cj⟩
• etc.

How does this compare to Johnson-Lindenstrauss projection?

43

APPLICATIONS OF LOW-RANK APPROXIMATION

Also useful in:

• Data visualization when k = 2 or 3.

• Data denoising (e.g. distance triangulation).
• Feature selection.

44

PARTIAL SVD

Key result: Can find the best projection from the singular value
decomposition. Note: Xk = UkΣkVTk = UkUT

kX = XVkVTk.

Uk = argmin
orthogonal Z∈Rd×k

∥X− ZZTX∥2F

Vk = argmin
orthogonal W∈Rd×k

∥X− XWWT∥2F 45

OPTIMAL LOW-RANK APPROXIMATION

Goal: Minimize ∥X− B∥F.

Claim 1: Without loss of generality, can assume B = UZVT for
some other rank k matrix Z.

46

OPTIMAL LOW-RANK APPROXIMATION

Goal: Minimize ∥X− B∥F.

Claim 2: Should choose Z to be the best rank k approximation
to Σ. (We will then show this equals Σk.)

47

OPTIMAL LOW-RANK APPROXIMATION

Claim 3:

argmin
W∈Rd×k

∥X− XWWT∥2F = argmax
W∈Rd×k

∥XWWT∥2F

Follows from fact that for all orthogonal W:

∥X− XWWT∥2F = ∥X∥2F − ∥XWWT∥2F

48

OPTIMAL LOW-RANK APPROXIMATION

Claim 3:

∥X− XWWT∥2F = ∥X∥2F − ∥XWWT∥2F

49

OPTIMAL LOW-RANK APPROXIMATION

Final Step: Let W∗ ∈ Rd×k contain the first k standard basis
vectors. Then we claim that W∗ = argmaxW ∥ΣWWT∥2F.

50

USEFUL OBSERVATIONS

Observation: The optimal low-rank approximation error
Ek = ∥X− Xk∥2F = ∥X∥2F − ∥Xk∥2F can be written:

Ek =
d∑

i=k+1
σ2
i .

51

SPECTRAL PLOTS

Observation: The optimal low-rank approximation error
Ek = ∥X− Xk∥2F = ∥X∥2F − ∥Xk∥2F can be written:

Ek =
d∑

i=k+1
σ2
i .

Can immediately get a sense of “how low-rank” a matrix is
from it’s spectrum:

52

SPECTRAL PLOTS

Observation: The optimal low-rank approximation error
Ek = ∥X− Xk∥2F = ∥X∥2F − ∥Xk∥2F can be written:

Ek =
d∑

i=k+1
σ2
i .

Can immediately get a sense of “how low-rank” a matrix is
from it’s spectrum:

53

COMPUTING THE SVD

Suffices to compute right singular vectors V:

• Compute XTX.
• Find eigendecomposition VΛVT = XTX using e.g. QR
algorithm.

• Compute L = XV. Set σi = ∥Li∥2 and Ui = Li/∥Li∥2.

Total runtime ≈

54

COMPUTING THE SVD (FASTER)

How to go faster?

• Compute approximate solution.
• Only compute top k singular vectors/values.
• Iterative algorithms achieve runtime ≈ O(ndk) vs. O(nd2)
time.

• Krylov subspace methods like the Lanczos method are
most commonly used in practice.

• Power method is the simplest Krylov subspace method,
and still works very well.

55

POWER METHOD

Today: Consider simlest case when k = 1.

Goal: Find some z ≈ v1.

Input: X ∈ Rn×d with SVD UΣVT.

Power method:

• Choose z(0) randomly. z0 ∼ N (0, 1).
• z(0) = z(0)/∥z(0)∥2
• For i = 1, . . . , T

• z(i) = XT · (Xz(i−1))

• ni = ∥z(i)∥2
• z(i) = z(i)/ni

Return z(T)
56

POWER METHOD INTUITION

57

POWER METHOD FORMAL CONVERGENCE

Theorem (Basic Power Method Convergence)
Let γ = σ1−σ2

σ1
be parameter capturing the “gap” between the

first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after T = O

(
log d/ϵ

γ

)
steps, we have either:

∥v1 − z(T)∥2 ≤ ϵ or ∥v1 − (−z(T))∥2 ≤ ϵ.

Total runtime: O
(
nd · log d/ϵ

γ

)

58

ONE STEP ANALYSIS OF POWER METHOD

Write z(i) in the right singular vector basis:

z(0) = c(0)1 v1 + c(0)2 v2 + . . .+ c(0)d vd
z(1) = c(1)1 v1 + c(1)2 v2 + . . .+ c(1)d vd

...

z(i) = c(i)1 v1 + c(i)2 v2 + . . .+ c(i)d vd

Note: [c(i)1 , . . . , c(i)d] = c(i) = VTz(i).

Also: Since V is orthogonal and ∥z(i)∥2 = 1, ∥c(i)∥22 = 1.

59

ONE STEP ANALYSIS OF POWER METHOD

Claim: After update z(i) = 1
niX

TXz(i−1),

c(i)j =
1
ni
σ2
j c

(i−1)
j

z(i) = 1
ni

[
c(i−1)
1 σ2

1 · v1 + c(i−1)
2 σ2

2 · v2 + . . .+ c(i−1)
d σ2

d · vd
]

Equivalently: c(i) = 1
niΣ

2c(i−1).

60

MULTI-STEP ANALYSIS OF POWER METHOD

Claim: After T updates:

z(T) = 1∏T
i=1 ni

[
c(0)1 σ2T

1 · v1 + c(0)2 σ2T
2 · v2 + . . .+ c(0)d σ2T

d · vd
]

Let αj =
1∏T

i=1 ni
c(0)j σ2T

j . Goal: Show that αj ≪ α1 for all j ̸= 1.

61

POWER METHOD FORMAL CONVERGENCE

Since z(T) is a unit vector,
∑d

i=1 α
2
i = 1. So |α1| ≤ 1.

If we can prove that
∣∣∣αj
α1

∣∣∣ ≤ √
ϵ
2d then we will have that

∥v1 − z(T)∥22 ≤ ϵ.

α2
j ≤ α2

1 ·
ϵ

2d

1 = α2
1 +

d∑
j=2

α2
d ≤ α2

1 +
ϵ

2

α2
1 ≥ 1− ϵ

2
|α1| ≥ 1− ϵ

2

∥v1 − z(T)∥22 = 2− 2⟨v1, z(T)⟩ ≤ ϵ
62

POWER METHOD FORMAL CONVERGENCE

Let’s see how many steps T it takes to ensure that
∣∣∣ αj
α1

∣∣∣ ≤ √
ϵ
2d where

αj =
1∏T
i=1 ni

c(0)j σ2T
j . Answer will depend on γ = σ1−σ2

σ1
. Assumption:

Starting coefficient on first eigenvector is not too small:∣∣∣c(0)1

∣∣∣ ≥ O
(

1√
d

)
.

We will prove shortly that it holds with probability 99/100.

|αj|
|α1|

=
σ2T
j

σ2T
1

·
|c(0)j |

|c(0)1 |
≤

Need to set T =

63

STARTING COEFFICIENT ANALYSIS

Need to prove: Starting coefficient on first eigenvector is not
too small. I.e., with probability 99/100,∣∣∣c(0)1

∣∣∣ ≥ O
(

1√
d

)
.

Prove using Gaussian anti-concentration. First use rotational
invariance of Gaussian:

c(0) = VTz(0)
∥z(0)∥2

=
VTz(0)

∥VTz(0)∥2
∼ g

∥g∥2
,

where g ∼ N (0, 1)d.

64

STARTING COEFFICIENT ANALYSIS

Need to show that with high probability, first entry of
g

∥g∥2 ≥ c · 1√
d
.

Part 1: With super high probability (e.g. 99/100),

∥g∥22 ≤

65

STARTING COEFFICIENT ANALYSIS

Need to show that with high probability, the magnitude of the
first entry of g ≥ c for a constant c. Think e.g. c = 1/100.

Part 2: With probablility 1− O(α),

|g1| ≥ α.

66

POWER METHOD FORMAL CONVERGENCE

Theorem (Basic Power Method Convergence)
Let γ = σ1−σ2

σ1
be parameter capturing the “gap” between the

first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after T = O

(
log d/ϵ

γ

)
steps, we have either:

∥v1 − z(T)∥2 ≤ ϵ or ∥v1 − (−z(T))∥2 ≤ ϵ.

The method truly won’t converge if γ is very small. Consider
extreme case when γ = 0.

z(T) = 1∏T
i=1 ni

[
c(0)1 σ2T

1 · v1 + c(0)2 σ2T
2 · v2 + . . .+ c(0)d σ2T

d · vd
]

67

POWER METHOD – NO GAP DEPENDENCE

Theorem (Gapless Power Method Convergence)
If Power Method is initialized with a random Gaussian vector
then, with high probability, after T = O

(
log d/ϵ

ϵ

)
steps, we

obtain a z satisfying:

∥X− XzzT∥2F ≤ (1+ ϵ)∥X− Xv1vT1∥2F

Intuition: For a good low-rank approximation, we don’t
actually need to converge to v1 if σ1 and σ2 are the same or
very close. Would suffice to return either v1 or v2, or some
linear combination of the two.

68

GENERALIZATIONS TO LARGER k

• Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

Power method:

• Choose G ∈ Rd×k be a random Gaussian matrix.
• Z0 = orth(G).
• For i = 1, . . . , T

• Z(i) = XT · (XZ(i−1))

• Z(i) = orth(Z(i))
Return Z(T)

Guarantee: After O
(
log d/ϵ

ϵ

)
iterations:

∥X− XZZT∥2F ≤ (1+ ϵ)∥X− XVkVkT∥2F.

Runtime: O(nnz(X) · k · T) ≤ O(ndk · T). 69

KRYLOV METHODS

Possible to “accelerate” these methods.

Convergence Guarantee: T = O
(
log d/ϵ√

ϵ

)
iterations to obtain a

nearly optimal low-rank approximation:

∥X− XZZT∥2F ≤ (1+ ϵ)∥X− XVkVkT∥2F.

70

KRYLOV SUBSPACE METHODS

For a normalizing constant c, power method returns:

z(q) = c ·
(
XTX

)q · g
Along the way we computed:

Kq =
[
g,
(
XTX

)
· g,

(
XTX

)2 · g, . . . , (XTX)q · g]
K is called the Krylov subspace of degree q.

Idea behind Krlyov methods: Don’t throw away everything
before

(
XTX

)q · g.
71

KRYLOV SUBSPACE METHODS

Want to find v, which minimizes ∥X− XvvT∥2F.

Lanczos method:

• Let Q ∈ Rd×k be an orthonormal span for the vectors in K.
• Solve minv=Qw ∥X− XvvT∥2F.

• Find best vector in the Krylov subspace, instead of just
using last vector.

• Can be done in O
(
ndk+ dk2

)
time.

• What you’re using when you run svds or eigs in MATLAB
or Python.

72

LANCZOS METHOD ANALYSIS

For a degree t polynomial p, let vp = p(XTX)g
∥p(XTX)g∥2 . We always have

that vp ∈ Kt, the Krylov subspace contructed with t iterations.

Power method returns:

vp where p = xq for q = 2T.

Lanczos method returns vp∗ where:

p∗ = argmin
degree t p

∥X− XvpvTp∥2F.

73

LANCZOS METHOD ANALYSIS

Claim: There is a t = O
(√

q log 1
∆

)
degree polynomial p̂

approximating xq up to error ∆ on [0, σ2
1].

∥X− Xvp∗vTp∗∥2F ≤ ∥X− Xvp̂vTp̂∥
2
F ≈ ∥X− XvxqvTxq∥2F ≈ ∥X− Xv1vT1∥2F

Runtime: O
(
log(d/ϵ)√

ϵ
· nnz(X)

)
vs. O

(
log(d/ϵ)

ϵ · nnz(X)
)

74

GENERALIZATIONS TO LARGER k

• Block Krylov methods

• Let G ∈ Rd×k be a random Gaussian matrix.
• Kq =

[
G,

(
XTX

)
· G,

(
XTX

)2 · G, . . . , (XTX)q · G]
Runtime: O

(
nnz(X) · k · log d/ϵ√

ϵ

)
to obtain a nearly optimal

low-rank approximation.

75

