CS-GY 6763: Lecture 11

Linear Programming, Singular Value
Decomposition

NYU Tandon School of Engineering, Prof. Christopher Musco



DIMENSION DEPENDENT CONVEX OPTIMIZIATION

Consider a convex function f(x) be bounded between [—B, B]
on a constraint set S.

Theorem (Dimension Dependent Convex Optimization)

The Center-of-Gravity Method finds X satisfying

f(X) < minges f(X) + € using O(d log(B/¢)) calls to a function
and gradient oracle for convex f.

The center-of-gravity method is not computationally efficient,
but inspired the polynomial time ellipsoid method.




KILLER APPLICATION: LINEAR PROGRAMMING

min f(x) = c’x
subject to Ax > b.



LINEAR PROGRAMMING

Linear programs (LPs) are one of the most basic convex
constrained, convex optimization problems:

Let c e RY b € R", A € R"*Y be fixed vectors that define the
problem, and let x be our variable parameter.

min f(x) = ¢'x
subject to Ax > b.
Think about Ax > b as a union of half-space constraints:
{x:alx> b}
{x:alx > by}

{x:alx> by}



LINEAR PROGRAMMING APPLICATIONS

- Classic optimization applications: industrial resource
optimization problems were important original
appications in the 70s.

- Robust regression: ming ||AX — bl|1.

- L1 constrained regression: miny ||x||; subject to Ax = b. Lots
of applications in sparse recovery/compressed sensing.

- Solve miny ||AX — b||co-

- Polynomial time algorithms for Markov Decision Processes
(reinforcement learning).

- Many combinatorial optimization problems can be solved
via LP relaxation.



LINEAR PROGRAMMING

Theorem (Khachiyan, 1979)
Assume n = d. The ellipsoid method solves any linear

program with L-bit integer valued constraints exactly in

O(n“L) time.

A Soviet Discovery Rocks World of Mathematics

By MALCOLM W. BROWNE

A surprise discovery by an obscure
Soviet mathematician has rocked the
world of mathematics and computer
analysis, and experts have begun explor-
ing its practical applications.

Mathematicians describe the discov-
ery by L.G. Khachian as a methed by
which computers can find guaranteed
solutions to a class of very difficult prob-
lems that have hitherto been tackled on a
kind of hit-or-miss basis.

Apart from its profound theoretical in-
terest, the discovery may be applicable

in weather prediction, complicated indus-
trial processes, petroleum refining, the
scheduling of workers at large factories,
secret codes and many other things.

“‘I have been deluged with calls from
virtually every department of govern-
ment for an interpretation of the signifi-
cance of this,” a leading expert an com-
puter methods, Dr. George B. Dantzig of
Stanford University, said in an interview.

The solution of math ical probl

could take billions of years to compute.

The Russian discovery offers a way by
which the number of steps in a solution
can be dramatically reduced. It also of-
fers the mathematician a way of learning
quickly whether a problem has a solution
or not, without having to complete the en-
tire immense computation that may be
required.

According to the American journal Sci-

by computer must be broken down into a
serfes of steps. One class of problem
sometimes involves so many steps that it

C on Page A20, Column 3

ONLY $10.00 A MONTH! Hr. Phone Answe
Service. Totally New Coneept Ihn-lhb' 2193 T0—ADV

Front page of New York Times, November 9, 1979.




INTERIOR POINT METHODS

Theorem (Karmarkar, 1984)

Assume n = d. The interior point method solves any linear
program with L-bit integer valued constraints in O(n3>L) time.

Breakthrough in Problem Solving

By JAMES GLEICK
- A 28year-old mathematician at | ments of great progress, and this may

A.T.&T. Bell Laboratories has made a
startling theoretical breakthrough in
the solving of systems of equations that
often grow Loo vast and complex for the
most powerful computers.

The discovery, which is to be for-
‘mally published next month, is already
circulating rapidly through the mathe-
matical world. It has also set off a del-
uge of inquiries from brokerage
houses, oil companies and airlines, in-
dustries with millions of dollars at
stake in problems known as linear pro-
gramming. _

well be one of them.”

Because problems in linear pro-
gramming can have billions or more
possible answers, even high-speed
computers cannot check every one. So
computers must use a special proce-
dure, an algorithm, to examine as few
answers as possible before finding the
best one — typically the one that mini-
mizes cost or maximizes efficiency.

A procedure devised in 1847, the sim-
plex method, is now used for such prob-

Continued on Page A19, Column 1

Front page of New York Times, November 19, 1984.




INTERIOR POINT METHODS

Lecture notes are posted on the website (optional reading).

*

X

Projected Gradient Descent Optimization Path



INTERIOR POINT METHODS

Lecture notes are posted on the website (optional reading).

*

X

Ideal Interior Point Optimization Path



POLYNOMIAL TIME LINEAR PROGRAMMING

Both results had a huge impact on the theory of optimization,
although at the time neither the ellipsoid method or interior
point method were faster than a heuristic known at the
Simplex Method.

These days, improved interior point methods compete with
and often outperform simplex.

Polynomial time linear programming algorithms have also had
a huge impact of combinatorial optimization. They are often
the work-horse behind approximation algorithms for NP-hard
problems.

10



EXAMPLE: VERTEX COVER

Given a graph G with n nodes and edge set E. Each node is

assigned a weight wy, ..., wp.
[
5, 5
|
3
([
4
o

Goal: Select subset of nodes with minimum total weight that

covers all edges.
n



EXAMPLE: VERTEX COVER

NP-hard to solve exactly.

.—\
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®9

®8
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EXAMPLE: VERTEX COVER

Given a graph G with n nodes and edge set E. Each node is
assigned a weight wy, ..., wp.

Formally: Denote if node i is selected by assigning variable x;

to0or1 Letx=[xy,...,Xn]
n
min D xw;  subjectto x; € {0,1} for all i
=1

Xi+x; >1forall (i,j) € E
We will use convex optimization give a 2-approximation in
polynomial time.

Function to minimize is linear (so convex) but constraint set is
not convex. Why?

13



RELAX-AND-ROUND

High level approach:

- Relax to a problem with convex constraints.
- Round optimal solution of convex problem back to
original constraint set.
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RELAX-AND-ROUND

High level approach:

- Relax to a problem with convex constraints.

- Round optimal solution of convex problem back to
original constraint set.

Let S O S be the relaxed constraint set. Let X* = arg min,c g f(X)
and let X* = arg min, 5 f(x). We always have that:

fIXT) < f(x).

So typically the goal is to round x* to S in such a way that we
don’t increase the function value too much.



RELAXING VERTEX COVER

Vertex Cover:
n
min ;x,vv, subject to x; € {0,1} for all i
i
Xi +x; > 1forall (i,j) € E
Relaxed Vertex Cover:
n
min > xw;  subjectto 0<x <1foralli
i=1

Xi+x; > 1forall (i,j) € E

The second problem is a linear program! It can be solved in
poly(n) time!



ROUNDING VERTEX COVER

Any ideas on how to round this to a solution to the original
problem? l.e,, with constraints x; € {0,1} for all I.

4 2 o5
5e
39.7
4o
v/
o1



ROUNDING VERTEX COVER

Simply set all variable x; = 1 of X > 1/2 and x; = 0 otherwise.

3
A ®5
5@ 0 0 o5
5@

397

. ) 391

.7 4o
®1 1
.6 o1

Observation 1: All edges remain covered. l.e, the constraint
Xi +x; > 1forall (i,j) € E is not violated.

19



ROUNDING VERTEX COVER

Observation 2: Let x be the rounded version of x*. We have
f(x) < 2-f(%), and thus f(x) < 2-f(x").

Proof:

20



VERTEX COVER

So, a polynomial time algorithm for solving LPs immediately
yields a 2-approximation algorithm for the NP-hard problem of
vertex cover.

- Proven that it is NP-hard to do better than a 1.36
approximation in [Dinur, Safra, 2002].

- Recently improved to v/2 ~ 1.41 in [Khot, Minzer, Safra
2018], which proved the 2-to-2 games conjecture.

- Widely believed that doing better than 2 — € is NP-hard for
any e > 0, and this is implied by Subhash Khot's Unique
Games Conjecture.

There is a simpler greedy 2-approximation algorithm that
doesn’t use optimization at all!

21



BREAK



SPECTRAL METHODS

Next section of course: Spectral methods and numerical linear
algebra.

Spectral methods generally refer to methods based on the
“spectrum” of a matrix. l.e. on it's eigenvectors/eigenvalues
and singular vectors/singular values. We will look at

- Applications to low-rank approximation and
dimensionality reduction.

- Applications to graph problems.

- Fast algorithms for computing spectral information.

22



SPECTRAL METHODS

Reminder: A vector v e R? is an eigenvector of a matrix
X € R9%4 if there exists a scalar A such that

Xv = \v

The scalar X is called the eigenvalue associated with v.

Matrices can often be written completely in terms of their
eigenvectors and eigenvalues. This is called
eigendecomposition.

We will actually focus on a related tool called singular value
decomposition.

23



LINEAR ALGEBRA REMINDER

If a square matrix has orthonormal rows, it also has
orthonormal columns:

Viv=1=w'

—-0.62 0.78 —0.1 —-0.62 —-0.28 —-0.73 1T 0 0
-0.28 —-035 -0.89|-] 078 —-035 —-0.52| =10 1 O
—0.73 —-0.52 0.44 —-0.11 —-0.89 0.44 0 0 1

2%



LINEAR ALGEBRA REMINDER

Implies that for any vector x, ||Vx||3 = ||x||3 and ||V'x|]3.

Same thing goes for Frobenius norm: for any matrix X,
IVX[[z = [IX[IF and [IVTX|17 = |||z

25



LINEAR ALGEBRA REMINDER

The same is not true for rectangular matrices.

]
- ™ T _ |5 a1 =2

VT V | = 111 \' \Y = |16 -4442 -15
78 42 -5- 67

2 20 11 80
5 55 32 5
67 28 24 16
90 87 -77 18

VIV =1 but W’ £ |

For any x, [Vx[3 = [Ix| but V7|3 # [Ix]} in general

26



LINEAR ALGEBRA REMINDER

Multiplying a vector by V with orthonormal columns rotates
and/or reflects the vector.

gl |

2 e
Pt -

27



LINEAR ALGEBRA REMINDER

Multiplying a vector by a rectangular matrix VI with
orthonormal rows projects the vector (representing it as
coordinates in the lower dimensional space).

|

VT VT

%

So we always have that |[V'x|[2 < ||x]|2. 28



SINGULAR VALUE DECOMPOSITION

Any matrix X can be written:

d left singular vectors  singular values right singular vectors
0,
)

X = U 2 A

WhereUTU =1, VIV=1l,and oy >0, > ...04 > 0.

Singular values are unique. Factors are not. E.g. would still get
a valid SVD by multiplying both it" column of V and U by —1. 29



SINGULAR VALUE DECOMPOSITION

Important take away from singular value decomposition.

Multiplying any vector a by a matrix X to form Xa can be viewed
as a composition of 3 operations:

1. Rotate/reflect the vector (multiplication by to V7).
2. Scale the coordinates (multiplication by X.

3. Rotate/reflect the vector again (multiplication by U).

30



SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT

VTa Vb

ZVT/a/ 3V'b UZVTK =

2 U,

5
X
B

UzV'b

31



COMPARISON TO EIGENDECOMPOSITION

A square matrix has at most d linearly independent
eigenvectors. If a matrix has a full set of d eigenvectors
Vi,...,Vg with eigenvalues \q,..., Ay it is called
“diagonalizable” and can be written as:

VAV,

V's columns are vy, ..., Vg.

32



COMPARISON TO EIGENDECOMPOSITION

Eigendecomposition

Singluar value decomposition
- Exists for some square

- Exists for all matrices, matrices.
square or rectangular. - Eigenvalues can be

- Singular values are always positive, negative, or
positive. imaginary. Real if X is

- Factors U and V are symmetric.
orthogonal. - Factor V is orthogonal if

and only if X is symmetric.

33



CONNECTION TO EIGENDECOMPOSITION

- U contains the orthogonal eigenvectors of XX
- V contains the orthogonal eigenvectors of XX.
<02 = \(XXT) = N(XTX)

34



SVD APPLICATIONS

Lots of applications.

- Compute pseudoinverse VE~'U.

* Read off condition number of X, o7 /o3.

- Compute matrix norms. Eg. |X||2 = o, || X]|F = \/EL o?.

- Compute matrix square root — i.e. find a matrix B such that

BB’ = X. Used e.g. in sampling from Gaussian with
covariance X.

- Principal component analysis.

Killer app: Read off optimal low-rank approximation for X.

35



RANK

The column span of a matrix X € R"*9 is the set of all vectors
that can be written as Xa for some a.

The dimension of the column span, D, is the maximum
number of linear independent vectors in that set.

The row span of a matrix X € R"*9 is the set of all vectors that
can be written as b’X for some b.

The dimension of the row span, Dy, is the maximum number of
linear independent vectors in that set.

36



RANK

For a matrix X € R"<? we have:

D.<d
D, <n
De = Dy.
We call the value of D, = D, the rank of X.

We always have that:

rank (A-B-C-...) < min(rank(A), rank(B), rank(C),...).

37



LOW-RANK APPROXIMATION

Approximate X as a rank k matrix:

d k d
[—% i . 1 ! \
X [ &

by
Xy G 5
matrix B
X, c,
matrix X matrix C

Choose C and B to minimize:

min ||X — CB||
B,C

for some matrix norm. Common choice is ||X — CB||2. 38



APPLICATIONS OF LOW-RANK APPROXIMATION

d k d
r L 1 I : 1 [ ';
X‘I C1 g
X3 G .bk
matrix B
Xq C,
matrix X matrix C

- CB takes O(k(n + d)) space to store instead of O(nd).
- Important in many applications, including e.g. LoRA:
Low-Rank Adaptation of Large Language Models
- Can be used to compress vector databases.
- Many more applications.
- Many linear algebraic problems involving CB can be solved

in O(nk?) instead of O(nd?) time. 39


https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

LOW-RANK APPROXIMATION

Without loss of generality can assume that the right matrix is
orthogonal. l.e. W with W'W = |

d k d
r . 1 r : 1 [ z
W.
X G :
X3 G —
matrix WT
X, Cy
matrix X matrix C

Then we should choose left matrix C to minimize:
min X — CW|j2

This is just n least squares regression problems! 40



LOW-RANK APPROXIMATION

¢; = arg min ||[Wc — X,~||§
C

C = WTX/

C =XW

So our optimal low-rank approximation always has the form:

X ~ XWW'

41



PROJECTION MATRICES

WWT is a symmetric projection matrix.

X1 W WT = X’I
Lt} w,

)



DATA COMPRESSION

C = XW can be used as a meaningful compressed version of
data matrix X. We have that:

1% = Xj[l2 & [[WWx; — WWxj||2 = [|c; — cil|2
So we expect that:

- Ixill2 & llcill2
: <Xi7Xj> ~ <C/‘,C}'>

- etc.

How does this compare to Johnson-Lindenstrauss projection?

43



APPLICATIONS OF LOW-RANK APPROXIMATION

Also useful in:

- Data visualization when k =2 or 3.

- Data denoising (e.g. distance triangulation).

- Feature selection.

44



PARTIAL SVD

Key result: Can find the best projection from the singular value
decomposition. Note: X, = UX,V], = ULULX = XV, V.

d left singular vectors  singular values right singular vectors
o, T
Oy vk
X = Uy 2,
n
U= argmin  ||X—ZZ'X||?

orthogonal ZeRdxk

V= argmin  ||X — XWWT|? 45
orthogonal WeRdxk



OPTIMAL LOW-RANK APPROXIMATION

Goal: Minimize ||X — B]|r.

Claim 1: Without loss of generality, can assume B = UZV' for
some other rank k matrix Z.

46



OPTIMAL LOW-RANK APPROXIMATION

Goal: Minimize ||X — B]|r.

Claim 2: Should choose Z to be the best rank k approximation
to X. (We will then show this equals X}.)

47



OPTIMAL LOW-RANK APPROXIMATION

d left singular vectors  singular values  right singular vectors

0,
Ok

X = | Uy b

Claim 3:

arg min || X — XWWT||Z = arg max | XWW/||2
WeRdIXxk WeRAIXR

Follows from fact that for all orthogonal W:

IX = XWW[E = [IX][7 — [XWW|?

48



OPTIMAL LOW-RANK APPROXIMATION

Claim 3:
X — XWWT||2 = [|X]|F — [XWWT||2

49



OPTIMAL LOW-RANK APPROXIMATION

Final Step: Let W* € RY<* contain the first k standard basis
vectors. Then we claim that W* = arg maxy, || ZWWT||2.

50



USEFUL OBSERVATIONS

d left singular vectors  singular values right singular vectors

[ va

O

Xy =1 U I

Observation: The optimal low-rank approximation error
Er = X — Xgll? = [IX|IZ — [[Xe]? can be written:

d
E/?: Z 0‘,-2‘

I=R+1

51



SPECTRAL PLOTS

Observation: The optimal low-rank approximation error
Er = X — Xill2 = ]2 — X2 can be written:

d
Ek: Z 0,2.

i=k+1
Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

784 dimensional vectars

E singular

value g,
)
--



SPECTRAL PLOTS

Observation: The optimal low-rank approximation error
Er = ||X — Xgl|2 = [|X]|2 — |Xk[|2 can be written:

Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

784 dimensional vectors

singular
value o,




COMPUTING THE SVD

Suffices to compute right singular vectors V:

- Compute X'X.

- Find eigendecomposition VAVT = X'X using e.g. QR
algorithm.

- Compute L = XV. Set o; = ||Lj|| and U; = L;/||L;||2.

Total runtime ~

54



COMPUTING THE SVD (FASTER)

How to go faster?

- Compute approximate solution.
- Only compute top k singular vectors/values.
- Iterative algorithms achieve runtime ~ O(ndR) vs. O(nd?)
time.
- Krylov subspace methods like the Lanczos method are
most commonly used in practice.
- Power method is the simplest Krylov subspace method,
and still works very well.

55



POWER METHOD

Today: Consider simlest case when k= 1.

Goal: Find some z ~ v.

Input: X € R"*? with SVD UXV'.

Power method:

- Choose z() randomly. zo ~ N(0,1).
20 =20/,

- Fori=1,...,T
z() = XT. (Xz(i—1))
- ni = |20
- 200 = 200 /n;

Return z(N

56



0 iterations 1 iterations 2 iterations
CN A
Z

dh
b

57



POWER METHOD FORMAL CONVERGENCE

Theorem (Basic Power Method Convergence)

Let v = ‘”U;fz be parameter capturing the “gap” between the
first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after T= O (%) steps, we have either:

vi = 20||, < e or vi = (=2D)|lz < .

58



ONE STEP ANALYSIS OF POWER METHOD

Write z{) in the right singular vector basis:

29 = Oy + POv, + ..+ cfjo)vd

20 = vy + vy + .+ vy

200 = vy + vy + .+ Dy

Note: [c!,..., (] = c() = vT2(),

Also: Since V is orthogonal and ||z, =1, |3 = 1.

59



ONE STEP ANALYSIS OF POWER METHOD

Claim: After update z()) = nlixTxZ(f—U,

) ’] 8 . 8 . g 5
z0) = - o7 v+ Vo vy 4+ 063 vd]
i

Equivalently: ¢() = %ch(’—1).

60



MULTI-STEP ANALYSIS OF POWER METHOD

Claim: After T updates:

1 9) ) )
2N = —— [cﬁo)rf%T i+t vy Do vd}

[Tizini [

Let oj = HT1 - C/(O)U%T. Goal: Show that oy < a forallj # 1.
i=1" g

61



POWER METHOD FORMAL CONVERGENCE

Since z(M is a unit vector, Y% ;a2 = 1. So |ay| < 1.

< /5 then we will have that

If we can prove that < Vg

o
(0]

vi — 2|3 < e

i — 2|3 = 2 — 2wy, 2Ny < €
62



POWER METHOD FORMAL CONVERGENCE

Let's see how many steps T it takes to ensure that |=*| < /55 where

o) = =r— cl(o)aj”. Answer will depend on y = 2222, Assumption:
i=1""

Starting coefficient on first eigenvector is not too small:

1
0120(Z)
We will prove shortly that it holds with probability 99/100.

2T

(0)
logl _ o 14

.
ool afT |0

Need to set T =
63



STARTING COEFFICIENT ANALYSIS

Need to prove: Starting coefficient on first eigenvector is not
too small. l.e.,, with probability 99/100,

20(3)

Prove using Gaussian anti-concentration. First use rotational
invariance of Gaussian:
V7z(0) V7z(0) g
200 IViZOf  llglle’

where g ~ N(0,1)4.

64



STARTING COEFFICIENT ANALYSIS

Need to show that with high probability, first entry of
_8 >C-. A
el = = Vd’

Part 1: With super high probability (e.g. 99/100),

gl <

65



STARTING COEFFICIENT ANALYSIS

Need to show that with high probability, the magnitude of the
first entry of g > ¢ for a constant c¢. Think e.g. ¢ =1/100.

Part 2: With probablility 1 — O(«),

191 > a.

Standard normal distribution

66



POWER METHOD FORMAL CONVERGENCE

Theorem (Basic Power Method Convergence)

Let v = ‘”U;f? be parameter capturing the “gap” between the
first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after T= O <%> steps, we have either:

Ivi — 20|, < e or Ivi = (=2M)|2 < e.

The method truly won't converge if  is very small. Consider
extreme case when v = 0.

n-_1 [ (0)
[Tiz ni

2( V4G vyt ... 4P -vd}

67



POWER METHOD — NO GAP DEPENDENCE

Theorem (Gapless Power Method Convergence)

If Power Method is initialized with a random Gaussian vector
. . - . logd/

then, with high probability, after T = O (%) steps, we

obtain a z satisfying:

IX = Xzz"[[f < (1+ €)[[X — Xvyvil|?

Intuition: For a good low-rank approximation, we don't
actually need to converge to v4 if o4 and o, are the same or
very close. Would suffice to return either v; or v,, or some

linear combination of the two.
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GENERALIZATIONS TO LARGER R

Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

Power method:

- Choose G € R%** be a random Gaussian matrix.
- Zy = orth(G).
- Fori=1,...,T
. z(0) —xT. (xz(M))
- 20 — orth(z0)
Return z(N

A

Guarantee: After O (%) iterations:

IX = XZZ'|[F < (1+ €)X = XViVi ||

Runtime: O(nnz(X) - k- T) < O(ndk - T). 69



KRYLOV METHODS

Possible to “accelerate” these methods.

Convergence Guarantee: T=0 ('°gd/6) iterations to obtain a

nearly optimal low-rank approximation:

X = X227} < (1 + €)X — XVieVilT |2

70



KRYLOV SUBSPACE METHODS

For a normalizing constant ¢, power method returns:
2@ — . ()(Tx)q g
Along the way we computed:
T Ty 2 Ty\d
Kq = [g, (X'X) -g, (XX)* - g,..., (XX) -g]

K is called the Krylov subspace of degree g.

Idea behind Krlyov methods: Don't throw away everything
before (X'X)? - g.

Ul



KRYLOV SUBSPACE METHODS

Want to find v, which minimizes ||X — Xw/'||Z.

Lanczos method:

- Let Q € RY** be an orthonormal span for the vectors in K.
* Solve miny—_qu [|[X — Xw/||Z.
- Find best vector in the Krylov subspace, instead of just
using last vector.
- Can be done in O (ndk + dk?) time.
- What you're using when you run svds or eigs in MATLAB
or Python.

72



LANCZOS METHOD ANALYSIS

For a degree t polynomial p, let v, = %. We always have

that v, € K4, the Krylov subspace contructed with t iterations.

Power method returns:

vp where p = x9 for g = 2T.

Lanczos method returns vy« where:

p* = argmin ||X—vavg||%.
degree t p

73



LANCZOS METHOD ANALYSIS

Claim: Thereisat=0 <\/q log A)degree polynomial p
approximating x9 up to error A on [0, o2].

P T TR TR
t

[IX = Xvpev).

F <X = XvpVEIIE = X — Xvia Vg [I7 & [IX — Xvavi 2

Runtime: O (% . nnz(X)) vs. O (% : nnz(X))

T4



GENERALIZATIONS TO LARGER R

- Block Krylov methods
- Let G € RY%* be a random Gaussian matrix.

+ Kq = [6,(XX) - 6, (%) 6,...., (X'X)" - 6]

Runtime: O (nnz(X) k- %) to obtain a nearly optimal

low-rank approximation.
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