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FIRST ORDER CONVEX OPTIMIZATION

First Order Optimization: Given a convex function f and a
convex set S ,

Goal: Find x̂ ∈ S such that f(x̂) ≤ minx∈S f(x) + ε.

Assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.
• Projection oracle: Evaluate PS(x) for any x.

Gradient descent requires O
(
RࠁGࠁ

εࠁ

)
calls to each oracle to

solve the problem.

We were only able to improve the ε dependence by making
stronger assumptions on f (strong convexity, smoothness).
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DIMENSION DEPENDENT BOUND

Alternatively, we can get much better bounds if we are willing
to depend on the problem dimension. I.e. on d if f(x) is a
function mapping d-dimensional vectors to scalars.

We already know how to do this for a few special functions:

f(x) = ‖Ax− b‖ࠁࠁ where A ∈ Rn×d.
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DIMENSION DEPENDENT BOUND

Let f(x) be bounded between [−B,B] on S .

Theorem (Dimension Dependent Convex Optimization)
There is an algorithm (the Center-of-Gravity Method) which
finds x̂ satisfying f(x̂) ≤ minx∈S f(x) + ε using O(d log(B/ε))
calls to a function and gradient oracle for convex f.

Caveat: Assumes we have some representation of S , not just a
projection oracle. We will discuss this more later.

Note: For an unconstrained problem with known starting
radius R, can take S to be the ball of radius R around x(߿). If
‖∇f(x)‖ࠁ ≤ G, we always have B = O(RG).
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CENTER OF GRAVITY METHOD

Natural “cutting plane” method. Developed simultaneous on
opposite sides of iron curtain.

Not used in practice (we will discuss why) but the basic idea
underlies many popular algorithms, including the famous
Ellipsoid method.
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CENTER OF GRAVITY METHOD

A few basic ingredients:

.ࠀ The center-of-gravity of a convex set S is defined as:

c =
∫
x∈S x dx
vol(S) =

∫
x∈S x dx∫
x∈S dxࠀ

.ࠁ For two convex sets A and B, A ∩ B is convex. Proof by
picture:
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CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

• Sࠀ = S
• For t = ,ࠀ . . . , T :

• ct = center of gravity of St.
• Compute ∇f(ct).
• H = {x

∣∣〈∇f(ct), x− ct〉 ≤ .{߿
• St+ࠀ = St ∩ H

• Return x̂ = argmint f(ct)
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CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

• Sࠀ = S
• For t = ,ࠀ . . . , T :

• ct = center of gravity of St.
• Compute ∇f(ct).
• H = {x

∣∣〈∇f(ct), x− ct〉 ≤ .{߿
• St+ࠀ = St ∩ H

• Return x̂ = argmint f(ct)
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CENTER OF GRAVITY METHOD

Intuitively, why does it make sense to search in St ∩H where:

H = {x
∣∣〈∇f(ct), x− ct〉 ≤ ?{߿
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CENTER OF GRAVITY METHOD

Intuitively, why does it make sense to search in St ∩H where:

H = {x
∣∣〈∇f(ct), x− ct〉 ≤ ?{߿

By convexity,

f(y) ≥ f(ct) + 〈∇f(ct), y− ct〉.

If y /∈ {St ∩H} then
〈∇f(ct), y− ct〉 is positive, so
f(y) > f(ct).
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CONVERGENCE THEOREM

Theorem (Center-of-Gravity Convergence)
Let f be a convex function with values in [−B,B]. Let x̂ be the
output of the center-of-gravity method run for T iterations.
Then:

f(x̂)− f(x∗) ≤ Bࠁ
(
−ࠀ ࠀ

e

)T/d
≤ .dࠂ/Be−Tࠁ

If we set T = dࠂ log(ࠁB/ε), then f(x̂)− f(x∗) ≤ ε.
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KEY GEOMETRIC TOOL

Want to argue that, at every step of the algorithm, we “cut off”
a large portion of the convex set we are searching over:
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KEY GEOMETRIC TOOL

Theorem (Grünbaum’s Theorem)
For any convex set S with center-of-gravity c, and any
halfspace Z = {x

∣∣〈a, x− c〉 ≤ {߿ then:

vol(S ∩ Z)

vol(S) ≥ ࠀ
e
≈ ࠇࠅࠂ.
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KEY GEOMETRIC TOOL

Want to argue that, at every step of the algorithm, we “cut off”
a large portion of the convex set we are searching over.

Theorem (Grünbaum’s Theorem)
For any convex set S with center-of-gravity c, and any
halfspace Z = {x

∣∣〈a, x− c〉 ≤ {߿ then:

vol(S ∩ Z)

vol(S) ≥ ࠀ
e
≈ ࠇࠅࠂ.

Let Z be the compliment of H from the algorithm. Then we cut
off at least a e/ࠀ fraction of the convex body on every iteration.

Corollary: After t steps, vol(St) ≤
(
−ࠀ ࠀ

e
)t
vol(S).
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CONVERGENCE PROOF

Let δ be any small error parameter.

Let Sδ = −ࠀ)} δ)x∗ + δx
∣∣ for x ∈ S}.

Claim: Every point y in Sδ has good function value.
ࠅࠀ
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CONVERGENCE PROOF

For any y ∈ Sδ :

f(y) = f −ࠀ)) δ)x∗ + δx)
≤ −ࠀ) δ)f(x∗) + δf(x)
≤ f(x∗)− δf(x∗) + δf(x)
≤ f(x∗) + .Bδࠁ

ࠆࠀ

-

µ
S'-a-s)x%×

- -

- - - -

- - -

- ÷? 'is.
f-B,13]



CONVERGENCE PROOF

For any y ∈ Sδ :

f(y) = f −ࠀ)) δ)x∗ + δx)
≤ −ࠀ) δ)f(x∗) + δf(x)
≤ f(x∗)− δf(x∗) + δf(x)
≤ f(x∗) + .Bδࠁ
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CONVERGENCE PROOF

Claim :ࠀ Let δ = −ࠀ) ࠀ
e)

T/d. After T
steps, we either have that ST equals
Sδ exactly, or we “chopped off” at
least one point y in Sδ . Why?
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CONVERGENCE PROOF

Claim :ࠁ If ST equals Sδ or we
“chopped off” at least one point y in
Sδ , then:

f(x̂) = min
t=ࠀ,...,T

f(ct) ≤ .Bδࠁ

Why?
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CONVERGENCE THEOREM

Theorem (Center-of-Gravity Convergence)
Let f be a convex function with values in [−B,B]. Let x̂ be the
output of the center-of-gravity method run for T iterations.
Then:

f(x̂)− f(x∗) ≤ Bࠁ
(
−ࠀ ࠀ

e

)T/d
≤ .dࠂ/Be−Tࠁ

If we set T = O (d log(B/ε)), then f(x̂)− f(x∗) ≤ ε.

In terms of gradient-oracle complexity, this is essentially
optimal. So why isn’t the algorithm used?
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RUNTIME ISSUE

In general computing the centroid is hard. #P-hard even when
when S is an intersection of half-spaces (a polytope).

Even if the problem isn’t hard for your starting convex body S ,
it likely will become hard for S ∩Hࠀ ∩Hࠁ ∩Hࠂ . . ..

So while the oracle complexity of dimension-dependent
optimization was settled in the ,߿ࠅ basic questions remained
regarding computational complexity.

We will see how to resolve this issue with an elegant cutting
plane methods called the Ellipsoid Method that was
introduced by Naum Shor in .ࠆࠆࠈࠀ
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FORMALIZATION

To talk about runtime efficiency we need to be more concrete about
how our (convex) constraint set is even specified.

Seperation Oracle: For a convex set K ⊂ Rd, a seperation oracle SK
is a function that takes in points in Rd and returns:

SK(y) =
{
∅ if y ∈ K.

separating hyperplane (a, c) if y /∈ K.

H = {x : aTx = c}.
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SEPARATION ORACLE

Example: How would you implement a separation oracle for a
polytope {x : Ax ≥ b}.
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PROBLEM SIMPLIFICATION

Instead of directly solving a constrained optimization problem,
solve the membership problem. Given a separation oracle SK for a
convex set K, determine if K is empty, or otherwise return any point
x ∈ K.
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FROM MEMBERSHIP TO OPTIMIZATION

Original problem: minx∈S f(x).

How to reduce to determining if a convex set K is empty or not?
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FROM MEMBERSHIP TO OPTIMIZATION

Original problem: minx∈S f(x). How to reduce to determining if a
convex set K is empty or not?

Claim: Given any fixed value c, can check if f(x∗) ≤ c and, if it is, find
some x with f(x) ≤ c.

Approach: Solve membership problem on K = S ∩ C where
C = {x : f(x) ≤ c}. C and S are convex, so K is as well. ࠆࠁ
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FROM MEMBERSHIP TO OPTIMIZATION

Prove on homework: Given efficent separation oracles for C
and S , I can construct an efficient separation oracle for K.

How do I get a seperation oracle for C? ࠇࠁ
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FROM MEMBERSHIP TO OPTIMIZATION

Original problem: minx∈S f(x). How to reduce to determining if a
convex set K is empty or not?

Claim: Given any fixed value c, can check if f(x∗) ≤ c and, if it is, find
some x with f(x) ≤ c.

Final algorithm: Assuming f is positive, just run exponential/binary
search to find c̃ ≤ f(x∗) + ε! ࠈࠁ



ELLIPSOID METHOD SKETCH

Goal of ellipsoid algorithm: Solve “Is K empty or not?” given a
separation oracle for K under the assumptions that:

.ࠀ K ⊂ B(cR,R).
.ࠁ If non-empty, K contains B(cr, r) for some r < R.
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ELLIPSOID METHOD SKETCH

Application to original problem: Lots of details to consider. Assume
for simplicty we known f(x∗) and that have no constraint set. Goal is
to solve membership problem on C̃ = {x : f(x) ≤ f(x∗) + ε}. For a
convex function f such that ‖∇f(x)‖ࠁ ≤ G, it can be checked that C̃
contains a ball of radius ε/G.
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ELLIPSOID METHOD SKETCH

Iterative method similar to center-of-gravity:

.ࠀ Check if center cR of B(cR,R) is in K.
.ࠁ If it is, we are done.
.ࠂ If not, cut search space in half, using separating

hyperplane.
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ELLIPSOID METHOD SKETCH

Key insight: Before moving on, approximate new search region
by something that we can easily compute the centroid of.
Specifically an ellipse!

Produce a sequence of ellipses that always contain K and
decrease in volume: B(cR,R) = Eࠀ, Eࠁ, . . .. Once we get to an
ellipse with volume ≤ B(cr, r), we know that K must be empty. ࠂࠂ
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ELLIPSE

An ellipse is a convex set of the form: {x : ‖A(x− c)‖ࠁࠁ ≤ α} for
some constant c and matrix A. The center-of-mass is c.

Often re-parameterized to say that the ellipse is all x with
{x : (x− c)TQ−ࠀ(x− c) ≤ {ࠀ ࠃࠂ
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ELLIPSOID UPDATE

There is a closed form solution for the equation of the
smallest ellipse containing a given half-ellipse. I.e. let Ei have
parameters Qi, ci and consider the half-ellipse:

Ei ∩ {x : aTi x ≤ aTi ci}.

Then Ei+ࠀ is the ellipse with parameters:

Qi+ࠀ =
dࠁ

dࠁ − ࠀ

(
Qi −

ࠁ
d+ ࠀ

hhT
)

ci+ࠀ = ci −
ࠀ

n+ ࠀ
h,

where h =
√
aTi Qiai · ai.

Computing the update takes O(dࠁ) time.
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GEOMETRIC OBSERVATION

Claim: vol(Ei+ࠀ) ≤ −ࠀ) ࠀ
(dࠁ vol(Ei).

Proof: Via reduction to the “isotropic case”. I will post a proof
on the course website if you are interested.

Not as good as the −ࠀ) ࠀ
e) constant-factor volume reduction

we got from center-of-gravity, but still very good! ࠅࠂ

- @ f - E )" e y e

:µ µ ? E-GuoKei)



GEOMETRIC OBSERVATION

Claim: vol(Ei+ࠀ) ≤ −ࠀ) ࠀ
dࠁ ) vol(Ei)

After O(d) iterations, we reduce the volume by a constant. In total
require O(dࠁ log(R/r)) iterations to solve the problem.

Complexity for solving minx∈S f(x) is roughly Õ(dࠃ log(R/ε)), hiding
logarithmic factors. ࠆࠂ
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LINEAR PROGRAMMING

Linear programs (LPs) are one of the most basic convex
constrained, convex optimization problems:

Let c ∈ Rd,b ∈ Rn,A ∈ Rn×d be fixed vectors that define the
problem, and let x be our variable parameter.

min f(x) = cTx
subject to Ax ≥ b.

Think about Ax ≥ b as a union of half-space constraints:

{x : aTࠀx ≥ bࠀ}
{x : aTࠁx ≥ bࠁ}

...
{x : aTnx ≥ bn}

ࠇࠂ



KILLER APPLICATION: LINEAR PROGRAMMING

min f(x) = cTx
subject to Ax ≥ b.
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LINEAR PROGRAMMING APPLICATIONS

• Classic optimization applications: industrial resource
optimization problems were killer app in the .s߿ࠆ

• Robust regression: minx ‖Ax− b‖ࠀ.
• Lࠀ constrained regression: minx ‖x‖ࠀ subject to Ax = b. Lots
of applications in sparse recovery/compressed sensing.

• Solve minx ‖Ax− b‖∞.
• Polynomial time algorithms for Markov Decision Processes.
• Many combinatorial optimization problems can be solved
via LP relaxations.
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LINEAR PROGRAMMING

Theorem (Khachiyan, (979ࠀ
Assume n = d. The ellipsoid method solves any linear
program with L-bit integer valued constraints exactly in
O(nࠃL) time.

Front page of New York Times, November ,ࠈ .ࠈࠆࠈࠀ
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INTERIOR POINT METHODS

Theorem (Karmarkar, (ࠃ98ࠀ
Assume n = d. The interior point method solves any linear
program with L-bit integer valued constraints in O(nࠄ.ࠂL) time.

Front page of New York Times, November ,ࠈࠀ .ࠃࠇࠈࠀ
ࠁࠃ
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INTERIOR POINT METHODS

Lecture notes are posted on the website (optional reading).

Projected Gradient Descent Optimization Path
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INTERIOR POINT METHODS

Lecture notes are posted on the website (optional reading).

Ideal Interior Point Optimization Path
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POLYNOMIAL TIME LINEAR PROGRAMMING

Both results had a huge impact on the theory of optimization,
although at the time neither the ellipsoid method or interior
point method were faster than a heuristic known at the
Simplex Method.

These days, improved interior point methods often outperform
simplex.

Polynomial time linear programming algorithms have also had
a huge impact of combinatorial optimization. They are often
the work-horse behind approximation algorithms for NP-hard
problems.
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EXAMPLE: VERTEX COVER

Given a graph G with n nodes and edge set E. Each node is
assigned a weight wࠀ, . . . ,wn.

Goal: Select subset of nodes with minimum total weight that
covers all edges.
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EXAMPLE: VERTEX COVER

Given a graph G with n nodes and edge set E. Each node is
assigned a weight wࠀ, . . . ,wn.

Formally: Denote if node i is selected by assigning variable xi
to ߿ or .ࠀ Let x = [xࠀ, . . . , xn].

min
x

n∑

i=ࠀ

xiwi subject to xi ∈ ,߿} {ࠀ for all i

xi + xj ≥ ࠀ for all (i, j) ∈ E

NP-hard to solve exactly. We will use convex optimization give
a approximation-ࠁ in polynomial time.

Function to minimize is linear (so convex) but constraint set is
not convex. Why?
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RELAX-AND-ROUND

High level approach:

• Relax to a problem with convex constraints.
• Round optimal solution of convex problem back to
original constraint set.

ࠇࠃ
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High level approach:

• Relax to a problem with convex constraints.
• Round optimal solution of convex problem back to
original constraint set.
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RELAX-AND-ROUND

High level approach:

• Relax to a problem with convex constraints.
• Round optimal solution of convex problem back to
original constraint set.

Let S̄ ⊇ S be the relaxed constraint set. Let x∗ = argminx∈S f(x)
and let x̄∗ = argminx∈S̄ f(x). We always have that:

f(x̄∗) ≤ f(x∗).

So typically the goal is to round x̄∗ to S in such a way that we
don’t increase the function value too much.
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RELAXING VERTEX COVER

Vertex Cover:

min
x

n∑

i=ࠀ

xiwi subject to xi ∈ ,߿} {ࠀ for all i

xi + xj ≥ ࠀ for all (i, j) ∈ E

Relaxed Vertex Cover:

min
x

n∑

i=ࠀ

xiwi subject to ߿ ≤ xi ≤ ࠀ for all i

xi + xj ≥ ࠀ for all (i, j) ∈ E

The second problem is a linear program! It can be solved in
poly(n) time!
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ROUNDING VERTEX COVER

Simple rounding procedure: If x̄∗i ≥ ,ࠁ/ࠀ set xi = ,ࠀ and set
xi = ߿ otherwise.

Observation :ࠀ All edges remain covered. I.e., the constraint
xi + xj ≥ ࠀ for all (i, j) ∈ E is not violated.
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ROUNDING VERTEX COVER

Observation :ࠁ Let x be the rounded version of x̄∗. We have
f(x) ≤ ࠁ · f(x̄), and thus f(x) ≤ ࠁ · f(x∗).

Proof:

ࠂࠄ



VERTEX COVER

So, a polynomial time algorithm for solving LPs immediately
yields a approximation-ࠁ algorithm for the NP-hard problem of
vertex cover.

• Proven that it is NP-hard to do better than a ࠅࠂ.ࠀ
approximation in [Dinur, Safra, .[ࠁ߿߿ࠁ

• Recently improved to
√
ࠁ ≈ ࠀࠃ.ࠀ in [Khot, Minzer, Safra

,[ࠇࠀ߿ࠁ which proved the ࠁ-to-ࠁ games conjecture.
• Widely believed that doing better than −ࠁ ε is NP-hard for
any ε > ,߿ and this is implied by Subhash Khot’s Unique
Games Conjecture.

There is a simpler greedy approximation-ࠁ algorithm that
doesn’t use optimization at all. Try coming up with it on your
own!
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SPECTRAL METHODS

Next section of course: Spectral methods and numerical linear
algebra.

Spectral methods generally refer to methods based on the
“spectrum” of a matrix. I.e. on it’s eigenvectors/eigenvalues
and singular vectors/singular values. We will look at
applications in:

• Low-rank approximation and dimensionality reduction.
• Data clustering and related problems.
• Constructing data embeddings (e.g. WordࠁVec).
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