
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 6763: Homework 5.
Due Monday, May 5th, 2025, 11:59pm.

Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list
collaborators for each problem separately, or write “No Collaborators” if you worked alone.

Problem 1: Approximating Eigenvalues Moments

Optional Extra Credit: Worth extra 20% of total problem set points.

Let A ∈ Rn×n be a square symmetric matrix, which means it it guaranteed to have a symmetric eigen-
decomposition with real eigenvalues, λ1 ≥ . . . ≥ λn, and orthogonal eigenvectors. While computing these
eigenvalues naively takes O(n3) time, we can compute their sum much more quickly: with n operations. This
is because

∑n
i=1 λi is exactly equal to the trace of A, i.e. the sum of its diagonal entries tr(A) =

∑n
i=1 Aii.

We can also compute the sum of squared eigenvalues in O(n2) time by taking advantage of the fact that∑n
i=1 λ

2
i = ‖A‖2F where ‖A‖2F is the Frobenius norm. What about

∑n
i=1 λ

3
i ? Or

∑n
i=1 λ

4
i ? It turns out that

no exact algorithms faster than a full eigendecomposition are known.
In this problem, however, we show how to approximate

∑n
i=1 λ

k
i for any positive integer k in O(n2k)

time. Doing so turns out to have a lot of applications in machine learning and data science.

(a) Show that
∑n
i=1 λ

k
i = tr(Ak) where Ak denotes the chain of matrix products A ·A · . . . ·A, repeated

k times. For the remainder of the problem we use the notation B = Ak.

(b) Let x(1), . . . ,x(m) ∈ Rn be m independent random vectors, all with i.i.d. {+1,−1} uniform random
entries. Let Z = 1

m

∑m
i=1(x(i))TBx(i). We will show that Z is a good estimator for tr(B) and thus for∑n

i=1 λ
k
i . Give a short argument that Z can be computed in O(n2km) time (recall that B = Ak).

(c) Prove that:

E[Z] = tr(B) and Var[Z] ≤ 2

m
‖B‖2F

Hint: Use linearity of variance but be careful about what things are independent!

(d) Show that if m = O(1
ε2) then, with probability 9/10,

| tr(B)− Z| ≤ ε‖B‖F .

(e) Argue that, when A is positive semidefinite (equivalently, λ1, . . . , λn are all positive), ε‖B‖F ≤ ε tr(B),
so the above guarantee actually gives the relative error bound,

(1− ε) tr(B) ≤ Z ≤ (1 + ε) tr(B),

all with just O(n2k/ε2) computation time.

Problem 2: Gradient Descent as Power Method

(10 pts) Considering minimzing the function f(x) = ‖Ax − b‖22 for A ∈ Rn×d and b ∈ Rn with gradient
descent. f(x) has gradient ∇f(x) = 2ATAx− 2ATb. As mentioned in class, we can obtain a convergence
bound for this function that scales with the condition number of ATA, which is the ratio of the largest and
smallest eigenvalues of ATA, λ1/λd. It turns out that this can be proven using an analysis very similar to
power method!

1. Prove that, when gradient descent is run on f(x), the difference between the ith iterate and x∗ can be
written as:

x(i) − x∗ = (I− 2ηATA)(x(i−1) − x∗)

By induction, it follows that the error x(i) − x∗ equals (I− 2ηATA)i(x(0) − x∗).

2. Prove that if we set η = 1/2λ1, then after i = O(λ1

λd
log(1/ε)) iterations, ‖(I− 1

λ1
ATA)i‖2 < ε. Recall

that ‖ · ‖2 denotes the spectral norm of a matrix, which is equivalent to it’s largest singular value, or
the largest absolute value of the matrix’s eigenvalues .

3. Conclude that, after O(λ1

λd
log(1/ε)) iterations, gradient descent finds a vector x(i) with ‖x(i)−x∗‖2 ≤

ε‖x(0) − x∗‖2. This can be a one line proof.

4. We can also use this approach to obtain an “accelerated” version of gradient descent. To do so, prove
that, for any degree q polynomial p = c0 + c1x + . . . + cqx

q with p(1) = c0 + c1 + . . . + cq = 1 and
any starting vector x(0), we can compute using q gradient computations and up to O(dq) additional
runtime a vector x(q) such that:

x(q) − x∗ = p

(
I− 1

λ1
ATA

)
(x(0) − x∗).

Note that this result strictly generalizes what we know from gradient descent, which computes x(q)

satisfying the equation for the polynomial p(x) = xq, which satisfies our restriction that p(1) = 1.

5. Prove that for q = O(
√

λ1

λd
log(1/ε)), there exists a polynomial p with coefficients c0 + c1 + . . .+ cq = 1

such that ‖p
(
I− 1

λ1
ATA

)
‖2 ≤ ε. Hint: You might want to use Claim 4 in the supplemental notes

on the Lanczos method posted on the course website.

Just as for regular gradient descent, it follows that ‖x(q)−x∗‖2 = ‖p
(
I− 1

λ1
ATA

)
(x(0)−x∗)‖2 ≤ ε‖x(0)−

x∗‖22 as long as we use degree q = O(
√

λ1

λd
log(1/ε)) – i.e. use O(

√
λ1

λd
log(1/ε)) gradient computations.

Problem 3: Spectral Methods for Cliques

(15 pts) A common tasks in data mining is to identify large cliques in a graph. For example, in social
networks, large cliques can be indicators of fraudulent accounts or networks of accounts designed to promote
certain content. In this problem, we consider a spectral heuristic for finding a large clique based on the top
eigenvector of the graph adjacency matrix A:

• Compute the leading eigenvector v1 of A.

• Let i1, . . . , ik ∈ {1, . . . , n} be the indices of the k entries in v1 with largest absolute value.

• Check if nodes i1, . . . , ik form a k-clique.

We will analyze this heuristic on a natural random graph model. Specifically, let G be an Erdos-Renyi
random graph: we start with n nodes, and for every pair of nodes (i, j), we add an edge between the pair
with probability p < 1. To simplify the math, also assume that we add a self-loop at every vertex i with
probability p. Then, choose a fixed subset S of k nodes to form a clique. Connect all nodes in S with edges
and add self-loops. We will argue that, for sufficiently large k, we can expect the heuristic above to identify
the nodes in the clique.

1. Let A be the adjacency matrix of a random graph generated as above. What is E[A]? Prove that the
rank of E[A] is 2. In other words, the matrix only has two non-zero eigenvalues.

2. Derive expressions for the two non-zero eigenvalues of E[A], and their corresponding eigenvectors.
Hint: First argue that, up to multiplying by a constant, any eigenvector v must have v[i] = 1 for all
i /∈ S and v[i] = α for all i ∈ S, where α is a constant. Then use some high school algebra.

3. Using your results from (2) above, argue that, up to a positive scaling, the top eigenvector v1 has
v[i] = 1 for all i /∈ S and v[i] = α for all i ∈ S, where α > 1. In other words, the largest entries of v1
exactly correspond to the nodes in the clique!

4. To prove the algorithm works, it is possible to use a matrix concentration inequality to argue that the
top eigenvector of A is close to that of E[A]. Instead of doing that, let’s verify things experimentally.
Generate a graph G according to the prescribed model with n = 900, k = |S| = 30, and p = .1.
Compute the top eigenvector of A and look at its 30 largest entries in magnitude. What fraction of
nodes in the clique S are among these 30 entries? Repeat the experiment and report the average
fraction recovered.

	Problem 1: Approximating Eigenvalues Moments
	Problem 2: Gradient Descent as Power Method
	Problem 3: Spectral Methods for Cliques

