TANDON SCHOOL
OF ENGINEERING

NYU

New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 6763: Homework 5.
Due Monday, May 5th, 2025, 11:59pm.

Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list
collaborators for each problem separately, or write “No Collaborators” if you worked alone.

Problem 1. Approximating Eigenvalues Moments

Optional Extra Credit: Worth extra 20% of total problem set points.

Let A € R™™™ be a square symmetric matrix, which means it it guaranteed to have a symmetric eigen-
decomposition with real eigenvalues, Ay > ... > \,, and orthogonal eigenvectors. While computing these
eigenvalues naively takes O(n?) time, we can compute their sum much more quickly: with n operations. This
is because > i, \; is exactly equal to the trace of A, i.e. the sum of its diagonal entries tr(A) = Y"1 | Aj;.
We can also compute the sum of squared eigenvalues in O(n?) time by taking advantage of the fact that
S A? = ||A]|% where [|A||% is the Frobenius norm. What about ;" A?? Or > | A*? It turns out that
no exact algorithms faster than a full eigendecomposition are known.

In this problem, however, we show how to approzimate Y ., A¥ for any positive integer k in O(n?k)
time. Doing so turns out to have a lot of applications in machine learning and data science.

(a) Show that Y ;" ; A\F = tr(A*) where A* denotes the chain of matrix products A - A -...- A, repeated
k times. For the remainder of the problem we use the notation B = A*.

(b) Let xM ..., x(™ € R™ be m independent random vectors, all with i.i.d. {+1, -1} uniform random
entries. Let Z = L 37 (x()7Bx(). We will show that Z is a good estimator for tr(B) and thus for

S Ak Give a short argument that Z can be computed in O(n?km) time (recall that B = AF).

(c¢) Prove that:
E[Z] = tr(B) and Var[Z] < 3|\B||§
m

Hint: Use linearity of variance but be careful about what things are independent!
(d) Show that if m = O(Z) then, with probability 9/10,
[tr(B) — Z| < €[B]|r.
(e) Argue that, when A is positive semidefinite (equivalently, A1, ..., A, are all positive), €||B||r < etr(B),
so the above guarantee actually gives the relative error bound,
(1-e)tr(B) <Z < (1+¢)tr(B),

all with just O(n2k/€%) computation time.

Problem 2: Gradient Descent as Power Method

(10 pts) Considering minimzing the function f(x) = |Ax — b||% for A € R"*? and b € R" with gradient
descent. f(x) has gradient Vf(x) = 2ATAx — 2ATb. As mentioned in class, we can obtain a convergence
bound for this function that scales with the condition number of AT A, which is the ratio of the largest and
smallest eigenvalues of AT A, A\;/\g. It turns out that this can be proven using an analysis very similar to
power method!

1. Prove that, when gradient descent is run on f(x), the difference between the i*! iterate and x* can be
written as:

x() —x* = (I-2pATA)(x(~Y — x*)

By induction, it follows that the error x(* — x* equals (I — 2nATA)*(x(©) — x*).

TANDON SCHOOL
OF ENGINEERING

NYU

2. Prove that if we set n = 1/2X;, then after i = O(i—; log(1/e)) iterations, ||(I— /\%ATA)"HQ < €. Recall
that || - || denotes the spectral norm of a matrix, which is equivalent to it’s largest singular value, or
the largest absolute value of the matrix’s eigenvalues .

3. Conclude that, after O(i—; log(1/e€)) iterations, gradient descent finds a vector x(*) with ||x® —x*||y <
e||x(® — x*||o. This can be a one line proof.

4. We can also use this approach to obtain an “accelerated” version of gradient descent. To do so, prove
that, for any degree ¢ polynomial p = ¢y + 1z + ... + cqz? with p(1) = co+c1 + ...+ ¢4, = 1 and
any starting vector x(*), we can compute using ¢ gradient computations and up to O(dq) additional
runtime a vector x(9 such that:

x@ —x*=p (I - ;ATA> (%@ — x*).
1

Note that this result strictly generalizes what we know from gradient descent, which computes x(?
satisfying the equation for the polynomial p(x) = 29, which satisfies our restriction that p(1) = 1.

5. Prove that for ¢ = O(i—; log(1/e€)), there exists a polynomial p with coefficients co+c¢1+...+¢; =1

such that ||p (I —)\%ATA> |2 < e. Hint: You might want to use Claim 4 in the supplemental notes
on the Lanczos method posted on the course website.

Just as for regular gradient descent, it follows that ||x(? —x*||s = ||p (I -)\%ATA) (x© —x*) ||z < ¢|x©@ —

x*||3 as long as we use degree ¢ = O(i—; log(1/€)) —i.e. use O(i—; log(1/€)) gradient computations.

Problem 3: Spectral Methods for Cliques

(15 pts) A common tasks in data mining is to identify large cliques in a graph. For example, in social
networks, large cliques can be indicators of fraudulent accounts or networks of accounts designed to promote
certain content. In this problem, we consider a spectral heuristic for finding a large clique based on the top
eigenvector of the graph adjacency matrix A:

e Compute the leading eigenvector vy of A.
e Let iy,...,ix € {1,...,n} be the indices of the k entries in v; with largest absolute value.
e Check if nodes i1, ...,1; form a k-clique.

We will analyze this heuristic on a natural random graph model. Specifically, let G be an Erdos-Renyi
random graph: we start with n nodes, and for every pair of nodes (4,5), we add an edge between the pair
with probability p < 1. To simplify the math, also assume that we add a self-loop at every vertex i with
probability p. Then, choose a fixed subset S of k£ nodes to form a clique. Connect all nodes in S with edges
and add self-loops. We will argue that, for sufficiently large k, we can expect the heuristic above to identify
the nodes in the clique.

1. Let A be the adjacency matrix of a random graph generated as above. What is E[A]? Prove that the
rank of E[A] is 2. In other words, the matrix only has two non-zero eigenvalues.

2. Derive expressions for the two non-zero eigenvalues of E[A], and their corresponding eigenvectors.
Hint: First argue that, up to multiplying by a constant, any eigenvector v must have v[i] = 1 for all
i ¢ S and v[i] = a for all i € S, where « is a constant. Then use some high school algebra.

3. Using your results from (2) above, argue that, up to a positive scaling, the top eigenvector v; has
v[i] =1 for all i ¢ S and v[i] = « for all ¢ € S, where @ > 1. In other words, the largest entries of v;
exactly correspond to the nodes in the clique!

TANDON SCHOOL
OF ENGINEERING

NYU

4. To prove the algorithm works, it is possible to use a matrix concentration inequality to argue that the
top eigenvector of A is close to that of E[A]. Instead of doing that, let’s verify things experimentally.
Generate a graph G according to the prescribed model with n = 900, k£ = |S| = 30, and p = .1.
Compute the top eigenvector of A and look at its 30 largest entries in magnitude. What fraction of
nodes in the clique S are among these 30 entries? Repeat the experiment and report the average
fraction recovered.

	Problem 1: Approximating Eigenvalues Moments
	Problem 2: Gradient Descent as Power Method
	Problem 3: Spectral Methods for Cliques

