
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 6763: Homework 4.
Due Monday, April 14th, 2025, 11:59pm.

Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list
collaborators for each problem separately, or write “No Collaborators” if you worked alone.

Problem 1: Concentration of Random Vectors

(12 pts) In Stochastic Gradient Descent, we replace the true gradient vector with a stochastic gradient that
is equal to the true gradient in expectation. Our analysis in class only used equality in expectation, although
more refined analysis of SGD often requires understanding how well the stochastic gradient concentrates
around its expectation. Previously, all concentration results we studied apply to random numbers. For this
problem, you will prove a basic concentration inequality for random vectors.

In particular, let x1, . . . ,xk ∈ Rd be i.i.d. random vectors in d dimensions (independent, drawn from the
same distribution) with mean µ. I.e., E[xi] = µ. Further suppose that E

[
‖xi − µ‖22

]
= σ2. σ2 is a natural

generalization of “variance” to a random vector. Let s = 1
k

∑k
i=1 xi. Prove that if k ≥ O

(
1/δ
ε2

)
then

Pr [‖s− µ‖2 ≥ εσ] ≤ δ.

Problem 2: Regularization

(10 pts) Regularization is a popular technique in machine learning. It is often used to improve final test
error, but can also help speed-up optimization methods like gradient descent by improving the condition
number of the function being regularized. In particular, let f(x) be a differentiable function mapping a
length d vector x to a scalar value. Let g be the function with added Euclidean regularization:

g(x) = f(x) + λ‖x‖22

Above λ > 0 is a non-negative constant that controls the amount of regularization. Suppose f is α1-strongly
convex and β1-smooth, so has condition number β1/α1. Prove that g is also convex and its condition number
less than or equal to that of f .

Problem 3: Gradient Descent with Decaying Step-size

(12 pts) In class we showed that gradient descent with step size η = R/G
√
T converges to an ε approximate

minimizer of a convex G-Lipschitz function in T = R2G2/ε2 steps if our starting point x(0) satisfies ‖x(0) −
x∗‖2 ≤ R. Choosing this step size requires knowing G, R and moreover T in advance, which might not be
reasonable in a lot of settings. For example, when training machine learning models, we might not be able
to estimate how long it will take to reach a point where test accuracy levels off. Instead, we want to be able
to keep running the algorithm, achieving better and better accuracy as we do.

Here, we analyze a variant of gradient descent with a variable step size that avoids this limitation. In
particular, consider running gradient descent with the update x(i+1) = x(i) − η∇f(x(i)), where

η =
f(x(i))− f(x∗)

‖∇f(x(i))‖22
.

This step size requires knowledge of f(x∗), but not x∗, which may be reasonable in some settings. Moreover,
since it’s just one parameter, grid search can be more easily used to “guess” f(x∗) than the three parameters
G,R, T . More complex approaches can remove the need to know this value entirely.

Prove that, if we run gradient descent for T = O(R2G2/ε2) steps using the step size above then x̂ =
mini∈0,...,T f(x(i)) satisfies f(x̂) ≤ f(x∗) + ε. Hint: Prove that our distance from the optimum ‖x(i) − x∗‖2
always decreases with this choice of step size, and the decrease is larger if our gap from the objective value
f(x(i))− f(x∗) is larger.



Problem 4: Separation Oracles

(12 pts) Describe efficient separation oracles for each of the following families of convex sets. Here, “efficient”
means linear time plus O(1) calls to any additional oracles provided to you.

(a) The set A ∩B, given separation oracles for A and B.

(b) The `1 ball: ‖x‖1 ≤ 1.

(c) Any convex set A, given a projection oracle for A. Recall that a projection oracle, given a point x,
returns

ProjA(x) = arg min
y∈A

‖x− y‖2.

Above you may wish to use the following fact that was stated but not formally proven in class: for any point
x, convex set A, and z ∈ A, ‖z− ProjA(x)‖2 ≤ ‖z− x‖2.

Problem 5: LSH in the Wild (Extra Credit)

This exercise does not involve formal proofs or analysis like more typical problem set problems. It will likely
involve some coding or spreadsheet work.

(5 pts extra credit) To support its largely visual platform, Pinterest runs a massive image de-duplication
operation built on Locality Sensitive Hashing for Cosine Similarity. You can read about the actual system
here. All information and numbers below are otherwise purely hypothetical.

Pinterest has a database of N = 1 billion images. Each image in the database is pre-processed and
represented as a vector q ∈ Rd. When a new image is pinned, it is also processed to form a vector y ∈ Rd.
The goal is to check for any existing duplicates or near-duplicates to y in the database. Specifically, Pinterest
would like to flag an image q as a near-duplicate to y if cos(θ(q,y)) ≥ .98. We want to find any near-duplicate
with probability ≥ 99%.

Given this requirement, your job is to design a multi-table LSH scheme using SimHash to find candidate
near-duplicates, which can then be checked directly against y. To support this task, Pinterest has collected
data on the empirical distribution of cos(θ(q,y)) for a typical new image y. It roughly follows a bell-curve:

Pinterest wants to consider two possible computational targets for your LSH scheme, which will determine
the speed of the de-duplication algorithm:

1. Ensure that no more than 1 million candidate near-duplicates are checked on average when a new
image is pinned. “Checked” means that the image’s cosine similarity with the new image is computed
explicitly, which is a computationally expensive operation.

https://medium.com/pinterest-engineering/detecting-image-similarity-using-spark-lsh-and-tensorflow-618636afc939


2. Ensure that no more than 200, 000 candidates are checked on average when a new image is pinned.

Based on the data above, describe how to set parameters for your LSH scheme to minimize the space (i.e.,
number of tables) used, while achieving each of the above goals. Justify your answers, and any assumptions
you make. If you code anything up to help calculate your answer, please attach the code. As in lecture, you
can assume that each hash table has m = O(N) slots and this is large enough to ignore lower order terms
depending on 1/m.


	Problem 1: Concentration of Random Vectors
	Problem 2: Regularization
	Problem 3: Gradient Descent with Decaying Step-size
	Problem 4: Separation Oracles
	Problem 5: LSH in the Wild (Extra Credit)

