CS-GY 6763: Lecture 5 Dimensionality reduction, near neighbor search in high dimensions

NYU Tandon School of Engineering, Prof. Christopher Musco

PROJECT

 If you are doing a project, find a partner and sign-up to present for reading group slot by Monday, 10/9. We need presenters for next Friday!

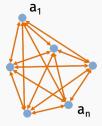
EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984) For any set of n data points $\mathbf{q}_1, \dots, \mathbf{q}_n \in \mathbb{R}^d$ there exists a linear map $\Pi: \mathbb{R}^d \to \mathbb{R}^k$ where $k = O\left(\frac{\log n}{c^2}\right)$ such that for all i, j, $(1-\epsilon)\|\underline{q_i}-\overline{q_j}\|_2 \leq \|\underline{\Pi}\underline{q_i}-\overline{\Pi}\underline{q_j}\|_2 \leq (1+\epsilon)\|\underline{q_i}-\overline{q_j}\|_2.$ 16 K: 0(100(4/4)/22). then w.p. 1-8, a random Craussian V satisfies...

SAMPLE APPLICATION

k-means clustering: For data set $\mathbf{a}_1, \dots, \mathbf{a}_n$, find clusters $C_1, \dots, C_k \subseteq \{1, \dots, n\}$ to minimize:

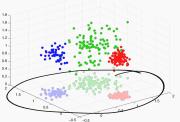
Cost(
$$C_1, ..., C_k$$
) = $\sum_{j=1}^k \frac{1}{2|C_j|} \sum_{u,v \in C_j} \|\mathbf{a}_u - \mathbf{a}_v\|_2^2$.



SAMPLE APPLICATION

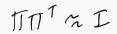
k-means clustering: For data set $\mathbf{a}_1, \dots, \mathbf{a}_n$, find clusters $C_1, \dots, C_k \subseteq \{1, \dots, n\}$ to minimize:

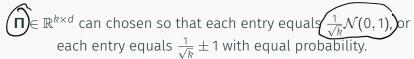
Cost
$$(C_1, ..., C_k) = \sum_{j=1}^k \frac{1}{2|C_j|} \sum_{u,v \in C_j} \|\mathbf{a}_u - \mathbf{a}_v\|_2^2.$$

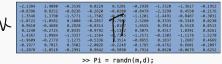


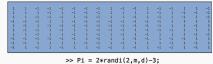
Claim: If I find the optimal clustering for $\Pi a_1, \ldots, \Pi a_n$ then its cost is less than $(1 + \epsilon)$ times the cost of the best clustering obtained with the original data.

RANDOMIZED JL CONSTRUCTIONS





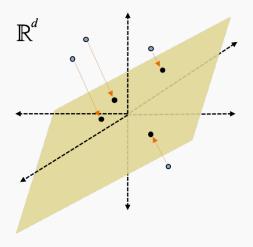




>> s = (1/sqrt(m))*Pi*q;

Lots of other constructions work.

RANDOM PROJECTION



Intuition: Multiplying by a random matrix mimics the process of projecting onto a random *k* dimensional subspace in *d* dimensions.

EUCLIDEAN DIMENSIONALITY REDUCTION

Intermediate result:

Lemma (Distributional JL Lemma)

Let $\Pi \in \mathbb{R}^{k \times d}$ be chosen so that each entry equals $\frac{1}{\sqrt{k}}\mathcal{N}(0,1)$, where $\mathcal{N}(0,1)$ denotes a standard Gaussian random variable. If we choose $k = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any vector \mathbf{x} , with probability $(1-\delta)$:

$$(1 - \epsilon) \|\mathbf{x}\|_2^2 \le \|\mathbf{\Pi}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2$$

Given this lemma, how do we prove the traditional Johnson-Lindenstrauss lemma?

JL FROM DISTRIBUTIONAL JL

We have a set of vectors $\mathbf{q}_1, \dots, \underline{\mathbf{q}}_n$. Fix $i, j \in 1, \dots, n$.

Let
$$\mathbf{x} = \mathbf{q}_i - \mathbf{q}_j$$
. By linearity, $\mathbf{\Pi} \mathbf{x} = \mathbf{\Pi} (\mathbf{q}_i - \mathbf{q}_j) = \mathbf{\Pi} \mathbf{q}_i - \mathbf{\Pi} \mathbf{q}_j$.

By the Distributional JL Lemma, with probability 1 $-\delta$,

$$\underbrace{(1-\epsilon)\|\mathbf{q}_{i}-\mathbf{q}_{j}\|_{2}\leq\|\mathbf{\Pi}\mathbf{q}_{i}-\mathbf{\Pi}\mathbf{q}_{j}\|_{2}\leq(1+\epsilon)\|\mathbf{q}_{i}-\mathbf{q}_{j}\|_{2}}.$$

Finally, set $\delta = \frac{1}{n^2}$. Since there are $< n^2$ total i, j pairs, by a union bound we have that with probability 9/10, the above will hold <u>for all</u> i, j, as long as we compress to: $\omega_{R} = \frac{1}{1000}$

$$k = O\left(\frac{\log(1/(1/n^2))}{\epsilon^2}\right) = O\left(\frac{\log n}{\epsilon^2}\right) \text{ dimensions.} \quad \Box$$

$$\begin{cases} = O\left(\frac{1}{n^2}\right) = O\left(\frac{\log n}{\epsilon^2}\right) = O\left(\frac{\log n}{\epsilon^2}$$

Want to argue that, with probability $(1 - \delta)$,

$$(1 - \epsilon) \|\mathbf{x}\|_2^2 \le \|\mathbf{\Pi}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2$$

Claim:
$$\mathbb{E} \| \mathbf{\Pi} \mathbf{x} \|_2^2 = \| \mathbf{x} \|_2^2$$
.

Some notation:

$$S = \frac{\frac{(1/\sqrt{k}) \pi_1}{(1/\sqrt{k}) \pi_2}}{\prod_{i=1}^{n} \left(\frac{(1/\sqrt{k}) \pi_1}{\sqrt{k}}\right)}$$

$$\Pi$$

$$X$$

So each π_i contains $\mathcal{N}(0,1)$ entries.

Intermediate Claim: Let $\underline{\pi}$ be a length d vector with $\mathcal{N}(0,1)$ entries.

$$\mathbb{E}\left[\|\mathbf{\Pi}\mathbf{x}\|_{2}^{2}\right] = \mathbb{E}\left((\langle \boldsymbol{\pi}, \mathbf{x} \rangle)^{2}\right)$$

$$\mathbb{E}\left[\mathbb{E}\left[\mathbb{E}\left(\mathbb{E}\left(\mathcal{T}_{1}, \mathbf{x}\right)\right)^{2}\right] = \mathbb{E}\left(\mathbb{E}\left(\mathbb{E}\left(\mathcal{T}_{1}, \mathbf{x}\right)\right)^{2}\right)$$

$$\mathbb{E}\left[\mathbb{E}\left(\mathbb{E}\left(\mathbb{E}\left(\mathcal{T}_{1}, \mathbf{x}\right)\right)^{2}\right]$$

$$\mathbb{E}\left[\mathbb{E}\left(\mathbb{E}\left(\mathcal{T}_{1}, \mathbf{x}\right)\right)^{2}\right]$$

$$\mathbb{E}\left[\mathbb{E}\left(\mathbb{E}\left(\mathcal{T}_{1}, \mathbf{x}\right)\right)^{2}\right]$$

$$\mathbb{E}\left[\mathbb{E}\left(\mathbb{E}\left(\mathcal{T}_{1}, \mathbf{x}\right)\right)^{2}\right]$$

$$\mathbb{E}\left[\mathbb{E}\left(\mathbb{E}\left(\mathcal{T}_{1}, \mathbf{x}\right)\right)^{2}\right]$$

Goal: Prove
$$\mathbb{E}\|\mathbf{\Pi}\mathbf{x}\|_2^2 = \|\mathbf{x}\|_2^2$$
.

$$\begin{cases}
\frac{1}{2} & \text{if } | \mathbf{x} | \mathbf{x} \\
\mathbf{y} | \mathbf{x} | \mathbf{x} | \mathbf{x} \\
\mathbf{y} | \mathbf{x} | \mathbf{x} | \mathbf{x} \\$$

We have that $Z_i \cdot \mathbf{x}[i]$ is a normal $\mathcal{N}(0, \mathbf{x}[i]^2)$ random variable.

Goal: Prove
$$\mathbb{E}\|\mathbf{\Pi}\mathbf{x}\|_2^2 = \|\mathbf{x}\|_2^2$$
. Established: $\mathbb{E}\|\mathbf{\Pi}\mathbf{x}\|_2^2 = \mathbb{E}\left[\left(\langle \boldsymbol{\pi}, \mathbf{x} \rangle\right)^2\right]$

STABLE RANDOM VARIABLES

What type of random variable is $\langle \pi, x \rangle$?

$$N(\mu_{1}, \sigma_{1}^{2}) + N(\mu_{2}, \sigma_{2}^{2}) = N(\mu_{1} + \mu_{2}, \sigma_{1}^{2} + \sigma_{2}^{2})$$

$$\beta^{2} = \sum_{i=1}^{2} \chi(i)^{2} = \|\chi(i)^{2}$$

$$\frac{\langle \boldsymbol{\pi}, \mathbf{x} \rangle = \mathcal{N}(0, \mathbf{x}[1]^2) + \mathcal{N}(0, \mathbf{x}[2]^2) + \ldots + \mathcal{N}(0, \mathbf{x}[d]^2)}{= \mathcal{N}(\underline{0}, \|\mathbf{x}\|_2^2).}$$

$$= \mathcal{N}(0, \|\mathbf{x}\|_{2}^{2}).$$
So $\mathbb{E}\|\mathbf{\Pi}\mathbf{x}\|_{2}^{2} = \mathbb{E}\left[\left(\langle \boldsymbol{\pi}, \mathbf{x} \rangle\right)^{2}\right] = \mathbb{E}\left[\mathcal{N}(0, \|\mathbf{x}\|_{2}^{2})\right] = \|\mathbf{x}\|_{2}^{2}$, as desired.

$$\|\mathbf{x}\|_{2}^{2} = \mathbb{E}\left[\left(\langle \boldsymbol{\pi}, \mathbf{x} \rangle\right)^{2}\right] = \mathbb{E}\left[\mathcal{N}(0, \|\mathbf{x}\|_{2}^{2})\right] = \|\mathbf{x}\|_{2}^{2}, \text{ as desired.}$$

Want to argue that, with probability
$$(1 - \delta)$$
,
$$\left((1 - \epsilon) \|\mathbf{x}\|_2^2 \le \|\mathbf{\Pi}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2 \right)$$

- 1. $\mathbb{E} \| \mathbf{\Pi} \mathbf{x} \|_{2}^{2} = \| \mathbf{x} \|_{2}^{2}$.
- 2. Need to use a concentration bound.

$$\|\mathbf{\Pi}\mathbf{x}\|_{2}^{2} = \frac{1}{k} \sum_{i=1}^{k} (\langle \boldsymbol{\pi}_{i}, \mathbf{x} \rangle)^{2} = \frac{1}{k} \sum_{i=1}^{k} (\mathcal{N}(0, \|\mathbf{x}\|_{2}^{2}))^{2}$$

"Chi-squared random variable with k degrees of freedom."

CONCENTRATION OF CHI-SQUARED RANDOM VARIABLES

Lemma

Goal: Prove $\|\mathbf{\Pi}\mathbf{x}\|_2^2$ concentrates within $1 \pm \epsilon$ of its expectation, which equals $\|\mathbf{x}\|_2^2$.

CONNECTION LAST LECTURE

If high dimensional geometry is so different from low-dimensional geometry, why is <u>dimensionality reduction</u> <u>possible?</u> Doesn't Johnson-Lindenstrauss tell us that high-dimensional geometry can be approximated in low dimensions?

CONNECTION TO DIMENSIONALITY REDUCTION

Hard case:
$$x_1, \ldots, x_n \in \mathbb{R}^d$$
 are all mutually orthogonal unit vectors:

$$\|x_i\|_{2}^{1+\|x_j\|_{2}^2} = 1$$

$$\|x_i - x_j\|_{2}^2 = 2$$

$$\|x_i - x_j\|_{2}^2 = 2$$
for all i, j .

When we reduce to <u>k dimensions</u> with JL, we still expect these vectors to be nearly orthogonal. Why?

$$|| \underbrace{\Pi x_{i} - \Pi x_{j}}||_{i}^{2} \sim 2$$

$$|| \underbrace{\Pi x_{i}}||_{i}^{2} + || \underbrace{\Pi x_{j}}||_{i}^{2} - 2 \langle \Pi x_{i}, \pi x_{j} \rangle$$

$$= || x_{j} ||_{i}^{2} + || x_{j} ||_{i}^{2} - 2 \langle \Pi x_{i}, \pi x_{j} \rangle$$

$$= 2 \langle \Pi x_{i}, \pi \rangle$$

CONNECTION TO DIMENSIONALITY REDUCTION

Hard case: $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ are all mutually orthogonal unit vectors:

$$2 \frac{20(e^2 \text{ K})}{\text{maxing orthogonal distributions}}$$

$$\|\mathbf{x}_i - \mathbf{x}_j\|_2^2 = 2 \qquad \text{for all } i, j. \quad \text{we the young}$$

$$\text{videa: } i \in \mathbf{K} \text{ distributions}$$

From our result earlier, in $O(\log n/\epsilon^2)$ dimensions, there exists $cos \epsilon$ $2^{O(\epsilon^2 \cdot \log n/\epsilon^2)} \ge n$ unit vectors that are close to mutually orthogonal. $O(\log n/\epsilon^2)$ = just enough dimensions.

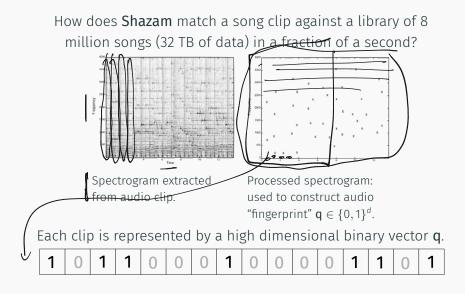
Alternative view: Without additional structure, we expect that learning/inference in d dimenions requires $2^{O(d)}$ data points. If we really had a data set that large, then the JL bound would be vacous, since log(n) = O(d).

DIMENSIONALITY REDUCTION

The Johnson-Lindenstrauss Lemma let us sketch vectors and preserve their ℓ_2 Euclidean distance.

We also have dimensionality reduction techniques that preserve alternative measures of similarity.

How does **Shazam** match a song clip against a library of 8 million songs (32 TB of data) in a fraction of a second?



Given q, find any nearby "fingerprint" y in a database – i.e. any y with dist(y,q) small.

Challenges:

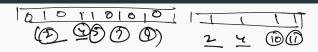
(Database is possibly huge: O(nd) bits.)

• Expensive to compute dist(y, q): O(d) time.

Goal: Design a more compact sketch for comparing $\mathbf{q}, \mathbf{y} \in \{0, 1\}^d$ Ideally $\ll d$ space/time complexity.

As in Johnson-Lindenstrauss compressions, we want that $C(\mathbf{q})$ is similar to $C(\mathbf{y})$ if \mathbf{q} is similar to \mathbf{y} .

JACCARD SIMILARITY



Definition (Jaccard Similarity)

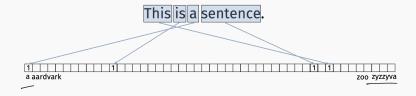
$$J(\underline{q,y}) = \frac{|q \cap y|}{|q \cup y|} = \frac{(\# \text{ of non-zero entries in common })}{\text{total } \# \text{ of non-zero entries}}$$

Natural similarity measure for binary vectors. $0 \le J(q, y) \le 1$.

Can be applied to any data which has a natural binary representation (more than you might think).

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

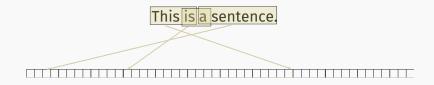
"Bag-of-words" model:



How many words do a pair of documents have in common?

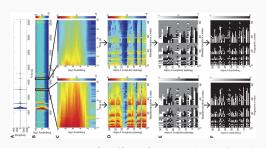
JACCARD SIMILARITY FOR DOCUMENT COMPARISON

"Bag-of-words" model:



How many bigrams do a pair of documents have in common?

JACCARD SIMILARITY FOR SEISMIC DATA



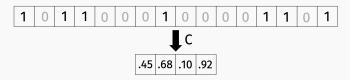
Feature extract pipeline for earthquake data.

(see paper by Rong et al. posted on course website)

APPLICATIONS: DOCUMENT SIMILARITY

- Finding duplicate or new duplicate documents or webpages.
- · Change detection for high-speed web caches.
- Finding near-duplicate emails or customer reviews which could indicate spam.

Goal: Design a compact sketch $C: \{0,1\} \to \mathbb{R}^k$:



Want to use C(q), C(y) to approximately compute the Jaccard similarity $J(q,y)=\frac{|q\cap y|}{|q\cup y|}$.

MINHASH

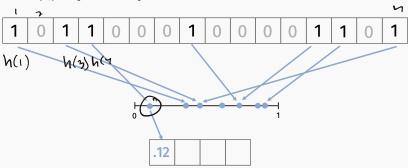
MinHash (Broder, '97):

· Choose <u>k</u> random hash functions

$$h_1, \ldots, h_k : \{\underline{1, \ldots, n}\} \rightarrow [\underline{0, 1}].$$

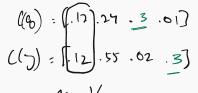
• For $i \in 1, \ldots, k$,

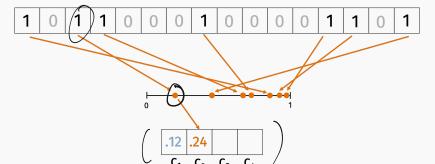
- - Let $\underline{c_i} = \min_{j, q_j = 1} h_i(j)$.
- $C(\mathbf{q}) = [c_1, \ldots, c_k].$



MINHASH

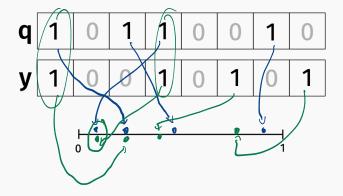
- Choose k random hash functions $h_1, \ldots, h_k : \{1, \ldots, n\} \rightarrow [0, 1].$
- For $i \in 1, ..., k$, • Let $c_i = \min_{i, \mathbf{q}_i = 1} h_i(j)$.
- $C(\mathbf{q}) = [c_1, \ldots, c_k].$





MINHASH ANALYSIS

Claim: For all i,
$$\Pr[\underline{c_i(\mathbf{q})} = c_{\underline{i}}(\underline{\mathbf{y}})] = J(\mathbf{q}, \mathbf{y}) = \frac{|\mathbf{q} \cap \mathbf{y}|}{|\mathbf{q} \cup \mathbf{y}|}$$
.

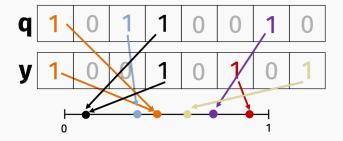


Proof:

1. For $c_i(q) = c_i(y)$, we need that $\arg\min_{i \in q} h(i) = \arg\min_{i \in y} h(i)$.

MINHASH ANALYSIS

Claim: $Pr[c_i(q) = c_i(y)] = J(q, y)$.



2. Every non-zero index in $\mathbf{q} \cup \mathbf{y}$ is equally likely to produce the lowest hash value. $c_i(\mathbf{q}) = c_i(\mathbf{y})$ only if this index is 1 in <u>both</u> \mathbf{q} and \mathbf{y} . There are $\mathbf{q} \cap \mathbf{y}$ such indices. So:

$$\Pr[c_i(q) = c_i(y)] = \frac{|q \cap y|}{|q \cup y|} = J(q, y)$$

Let J = J(q, y) denote the Jaccard similarity between q and y.

Return:
$$\tilde{J} = \frac{1}{k} \sum_{i=1}^{k} \mathbb{1}[\underline{c_i(\mathbf{q})} = c_i(\mathbf{y})].$$

Unbiased estimate for Jaccard similarity:

$$\mathbb{E}\tilde{J} = \frac{1}{K} \sum_{i=1}^{K} \mathbb{E} \left(\mathbb{I} \left[C_{i} \left(\mathcal{V} \right) : C_{i} \left(\mathcal{V} \right) \right] \right) = \frac{1}{K} \sum_{i=1}^{K} \mathbb{J} \left(\mathcal{V} \right)$$

$$C(q) \frac{.12}{.24} \frac{.24}{.76} \frac{.35}{.35} C(y) \frac{.12}{.98} \frac{.98}{.76} \frac{.76}{.11}$$

The more repetitions, the lower the variance.

MINHASH ANALYSIS

Let J = J(q, y) denote the true Jaccard similarity.

Estimator: $\tilde{J} = \frac{1}{k} \sum_{i=1}^{k} \mathbb{1}[c_i(\mathbf{q}) = c_i(\mathbf{y})]$

$$Var[\tilde{J}] = \frac{1}{N} \sum_{i=1}^{N} Voc(1(i, i) = (i, i)) = \frac{1}{N} \cdot J$$

Plug into Chebyshev inequality. How large does k need to be so that with probability $> 1 - \delta$, $|J - \tilde{J}| \le \epsilon$?

$$Pr\left[\left|\widehat{J}-J\right| > \alpha \cdot \sigma\right] \leq \frac{1}{\alpha r} \qquad \alpha = \frac{1}{\sqrt{s}} \qquad 6 \leq \frac{1}{\sqrt{s}}$$

$$q \cdot \sigma = \frac{1}{\sqrt{s}} \cdot \frac{1}{\sqrt{s}} = \varepsilon \qquad \frac{1}{\varepsilon r} = \kappa \cdot \delta \qquad \left[\kappa = \frac{1}{\delta \varepsilon^{2}}\right]$$

MINHASH ANALYSIS



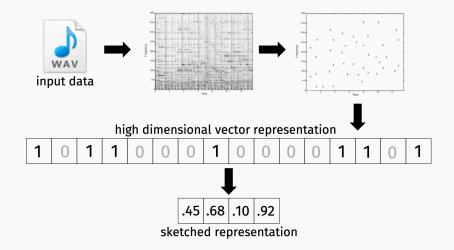
Chebyshev inequality: As long as $k = O\left(\frac{1}{\epsilon^2 \delta}\right)$, then with prob. $1 - \delta$,

$$J(q, y) - \epsilon \le \tilde{J}(C(q), C(y)) \le J(q, y) + \epsilon.$$

And \tilde{J} only takes O(k) time to compute! Independent of original fingerprint dimension d.

Can be improved to $\log(1/\delta)$ dependence. Can anyone tell me how?

SIMILARITY SKETCHING



Common goal: Find all vectors in database $\underline{\mathbf{q}}_1, \dots, \underline{\mathbf{q}}_n \in \mathbb{R}^d$ that are close to some input query vector $\underline{\mathbf{y}} \in \mathbb{R}^d$. I.e. find all of $\underline{\mathbf{y}}$'s "nearest neighbors" in the database.

· The Shazam problem.

K = 100(4)

- · Audio + video search.
- · Finding duplicate or near duplicate documents.
- · Detecting seismic events.

How does similarity sketching help in these applications?

- Improves runtime of "linear scan" from O(nk) to O(nk).
- Improves space complexity from O(nd) to O(nk). This can be super important – e.g. if it means the linear scan only accesses vectors in fast memory.

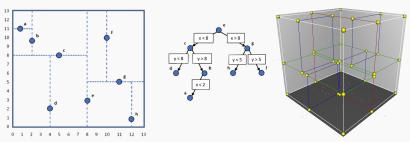
BEYOND A LINEAR SCAN

nevst

New goal: Sublinear o(n) ime to find near neighbors.

BEYOND A LINEAR SCAN

This problem can already be solved for a small number of dimensions using space partitioning approaches (e.g. kd-tree).



Runtime is roughly $O(d \cdot \min(n, 2^d))$, which is only sublinear for $d = o(\log n)$.

HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

Groph James now version search

Only been attacked much more recently:

```
    Locality-sensitive hashing [Indyk, Motwani, 1998]
    ✓ Spectral hashing [Weiss, Torralba, and Fergus, 2008]
    ✓ Vector quantization [Jégou, Douze, Schmid, 2009]
```

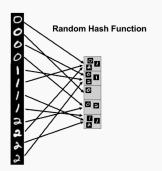
Key Insight of LSH: Trade worse space-complexity for better time-complexity. I.e. typically use more than O(n) space.

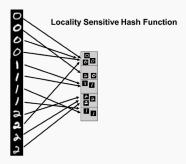
LOCALITY SENSITIVE HASH FUNCTIONS

Let $h : \mathbb{R}^d \to \{1, \dots, m\}$ be a random hash function.

We call h <u>locality sensitive</u> for similarity function s(q, y) if Pr[h(q) == h(y)] is:

- Higher when q and y are more similar, i.e. s(q, y) is higher.
- Lower when q and y are more dissimilar, i.e. s(q, y) is lower.





LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q,y) equal to Jaccard similarity: $\begin{cases} \mathcal{L}(\zeta) \\ \mathcal{L}(\zeta) \end{cases}$. Let $\underline{c}: \{0,1\}^d \to [0,1]$ be a single instantiation of MinHash.

- Let (9): $[0,1] \rightarrow \{1,\ldots,m\}$ be a uniform random hash function.
- h(8)= h(y) with history

 prob if)(8y) is

 (arge. • Let h(q) = g(c(q)). q

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

- Let $c: \{0,1\}^d \to [0,1]$ be a single instantiation of MinHash.
- Let $g:[0,1] \to \{1,\ldots,m\}$ be a uniform random hash function.

Let
$$h(x) = g(c(x))$$
. $h(x) = h(x)$ where $h(x) = g(c(x))$.

$$\Pr[h(q) == h(y)] = \bigvee \qquad (1-v) \cdot \frac{1}{v}$$

Basic approach for near neighbor search in a database.

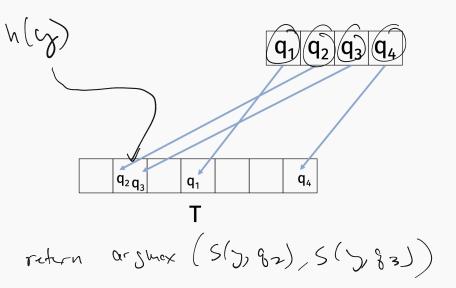
Pre-processing:

- Select random LSH function $h: \{0,1\}^d \to 1, \dots, m$.
- Create table T with $\underline{m} = O(n)$ slots.¹
- For i = 1, ..., n, insert \mathbf{q}_i into $T(h(\mathbf{q}_i))$.

Query:

- Want to find near neighbors of input $\mathbf{y} \in \{0,1\}^d$.
- Linear scan through all vectors $\mathbf{q} \in T(h(\mathbf{y}))$ and return any that are close to \mathbf{y} . Time required is $O(d \cdot |T(h(\mathbf{y})|)$.

¹Enough to make the O(1/m) term negligible.



Two main considerations:

```
False Negative Rate: What's the probability we do not find a vector that is close to y?

False Positive Rate: What's the probability that a vector in T(h(y)) is not close to y?
```

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime – we need to compute J(q, y) for every $q \in T(h(y))$ to check if it's actually close to y.

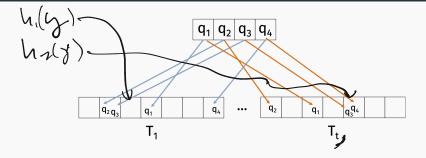
Note: The meaning of "close" and "not close" is application dependent. E.g. we might specify that we want to find anything with Jaccard similarity \geq .4, but not with Jaccard similarity \leq .2.

REDUCING FALSE NEGATIVE RATE

Suppose the nearest database point
$$\underline{q}$$
 has $J(\underline{y}, \underline{q}) = .4$. = V

What's the probability we do not find \underline{q} ?

REDUCING FALSE NEGATIVE RATE



Pre-processing:

- Select t independent LSH's $h_1, \ldots, h_t : \{0,1\}^d \to 1, \ldots, m$.
- Create tables T_1, \ldots, T_t , each with m slots.
- For i = 1, ..., n, j = 1, ..., t,
 - Insert \mathbf{q}_i into $T_j(h_j(\mathbf{q}_i))$.

REDUCING FALSE NEGATIVE RATE

Query:

- Want to find near neighbors of input $\mathbf{y} \in \{0,1\}^d$.
- Linear scan through all vectors in $T_1(h_1(y)) \cup T_2(h_2(y)) \cup \dots, T_t(h_t(y))$.

Suppose the nearest database point q has J(y, q) = .4.

What's the probability we find q?

(10, 99%)

WHAT HAPPENS TO FALSE POSITIVES?

Suppose there is some other database point **z** with $J(\underline{y}, \mathbf{z}) = .2$.

What is the probability we will need to compute J(z, y) in our hashing scheme with one table? I.e. the probability that y hashes into at least one bucket containing z.

In the new scheme with t = 10 tables?

(89%)

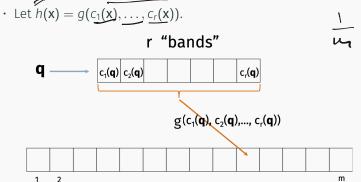
REDUCING FALSE POSITIVES

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

(4,.....

- Choose parameter $r \in \mathbb{Z}^+$.
- Let $c_1, \ldots, c_r : \{0,1\}^d \to [0,1]$ be random MinHash.
- Let $g: [0,1]^r \to \{1,\ldots,m\}$ be a uniform random hash function.



REDUCING FALSE POSITIVES

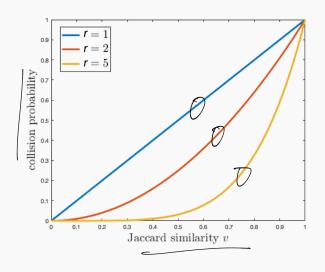
Tunable LSH for Jaccard similarity:

- Choose parameter $r \in \mathbb{Z}^+$.
- Let $c_1, \ldots, c_r : \{0,1\}^d \to [0,1]$ be random MinHash.
- Let $g:[0,1]^r \to \{1,\ldots,m\}$ be a uniform random hash function.
- Let $h(\mathbf{x}) = g(c_1(\mathbf{x}), \dots, c_r(\mathbf{x})).$

If
$$J(q,y) = v$$
, then $\Pr[h(q) == h(y)] = v + \frac{1}{v}$

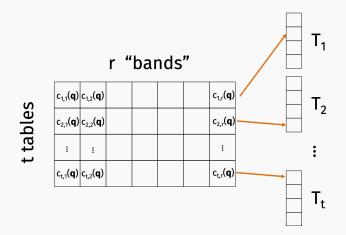
where v is the v

TUNABLE LSH



TUNABLE LSH

Full LSH cheme has two parameters to tune:



TUNABLE LSH

Effect of **increasing number of tables** *t* on: False Negatives

False Positives

Effect of increasing number of bands *r* on:

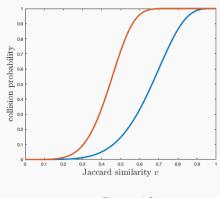
False Negatives

False Positives



Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

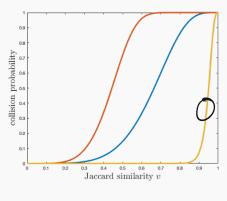
$$\approx 1 - (1 - v^r)^t$$



$$r = 5, t = 40$$

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

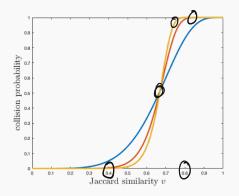
$$\approx 1 - (1 - v^r)^t$$



$$r = 40, t = 5$$

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

$$1 - (1 - v^r)^t$$



Increasing both *r* and *t* gives a steeper curve.

Better for search, but worse space complexity.

FIXED THRESHOLD

Use Case 1: Fixed threshold.

- Shazam wants to find match to audio clip y in a database of 10 million clips.
- There are 10 true matches with J(y,q) > .9.
- There are 10,000 <u>near matches</u> with $J(y, q) \in [.7, .9]$.
- All other items have J(y, q) < .7.

With r = 25 and t = 40,

- Hit probability for J(y,q) > .9 is $\gtrsim 1 (1 .9^{25})^{40} \ge .95$
- Hit probability for $J(y,q) \in [\underline{.7,.9}]$ is $\lesssim 1 (1 .9^{25})^{40} = .95$
- Hit probability for J(y,q) < .7 is $\lesssim 1 (1 .7^{25})^{40} = .005$

Upper bound on total number of items checked:

FIXED THRESHOLD

Space complexity: 40 hash tables $\approx 40 \cdot O(n)$.

Directly trade space for fast search.

Near Neighbor Search Problem

Concrete worst case result:

Theorem (Indyk, Motwani, 1998)

If there exists some q with $\|\mathbf{q} - \mathbf{y}\|_0 \le R$, return a vector $\tilde{\mathbf{q}}$ with $\|\tilde{\mathbf{q}} - \mathbf{y}\|_0 \le C \cdot R$ in:

- Time: $O(n^{1/C})$.
- Space: $O(n^{1+1/C})$.

 $\|\mathbf{q} - \mathbf{y}\|_0$ = "hamming distance" = number of elements that differ between \mathbf{q} and \mathbf{y} .

APPROXIMATE NEAREST NEIGHBOR SEARCH

Theorem (Indyk, Motwani, 1998)

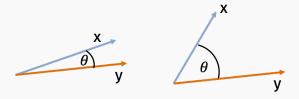
Let q be the closest database vector to y. Return a vector $\tilde{\mathbf{q}}$ with $\|\tilde{\mathbf{q}}-\mathbf{y}\|_0 \leq C \cdot \|\mathbf{q}-\mathbf{y}\|_0$ in:

- Time: $\tilde{O}(n^{1/C})$.
- Space: $\tilde{O}(n^{1+1/C})$.

OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other similarity measures.

Cosine similarity
$$\cos(\theta(x, y)) = \frac{\langle x, y \rangle}{\|x\|_2 \|y\|_2}$$
:



$$-1 \le \cos\left(\theta(\mathbf{x}, \mathbf{y})\right) \le 1.$$

COSINE SIMILARITY

Cosine similarity is natural "inverse" for Euclidean distance.

Euclidean distance $||x - y||_2^2$:

• Suppose for simplicity that $\|\mathbf{x}\|_2^2 = \|\mathbf{y}\|_2^2 = 1$.

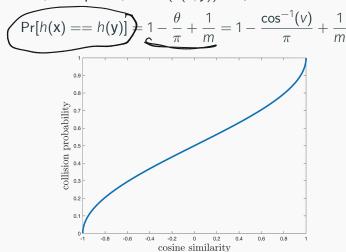
Locality sensitive hash for cosine similarity:

- Let $\mathbf{g} \in \mathbb{R}^d$ be randomly chosen with each entry $\mathcal{N}(0,1)$.
- Let $f: \{-1,1\} \rightarrow \{1,\ldots,m\}$ be a uniformly random hash function.
- $h : \mathbb{R}^d \to \{1, \dots, m\}$ is definied $h(\mathbf{x}) = f(\operatorname{sign}(\langle \mathbf{g}, \mathbf{x} \rangle))$.

If
$$cos(\theta(x, y)) = v$$
, what is $Pr[h(x) == h(y)]$?

SIMHASH ANALYSIS IN 2D

Theorem (to be prove): If $cos(\theta(x, y)) = v$, then



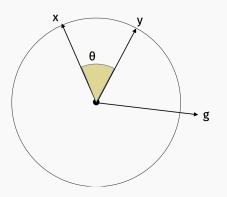
SimHash can be tuned, just like our MinHash based LSH function for Jaccard similarity:

- Let $\mathbf{g}_1, \dots, \mathbf{g}_r \in \mathbb{R}^d$ be randomly chosen with each entry $\mathcal{N}(0,1)$.
- Let $f: \{-1,1\}^r \to \{1,\ldots,m\}$ be a uniformly random hash function.
- $h: \mathbb{R}^d \to \{1, \dots, m\}$ is defined $h(\mathbf{x}) = f([\operatorname{sign}(\langle \mathbf{g}_1, \mathbf{x} \rangle), \dots, \operatorname{sign}(\langle \mathbf{g}_r, \mathbf{x} \rangle)]).$

$$\Pr[h(\mathbf{x}) == h(\mathbf{y})] = \left(1 - \frac{\theta}{\Pi}\right)^r$$

SIMHASH ANALYSIS IN 2D

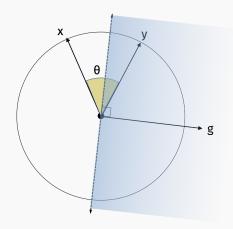
To prove: $\Pr[h(\mathbf{x}) == h(\mathbf{y})] = 1 - \frac{\theta}{\pi}$, where $h(\mathbf{x}) = f(\operatorname{sign}(\langle \mathbf{g}, \mathbf{x} \rangle))$ and f is uniformly random hash function.



$$\Pr[h(\mathbf{x}) == h(\mathbf{y})] = z + \frac{1 - v}{m} \approx z.$$

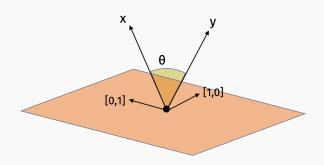
where
$$z = \Pr[\operatorname{sign}(\langle g, \mathbf{x} \rangle) == \operatorname{sign}(\langle g, \mathbf{y} \rangle)]$$

SIMHASH ANALYSIS 2D



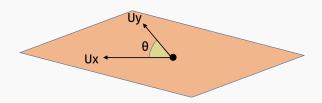
 $\Pr[h(\mathbf{x}) == h(\mathbf{y})] \approx \text{probability } \mathbf{x} \text{ and } \mathbf{y} \text{ are on the same side of hyperplane orthogonal to } \mathbf{g}.$

SIMHASH ANALYSIS HIGHER DIMENSIONS



There is always some <u>rotation matrix</u> U such that Ux, Uy are spanned by the first two-standard basis vectors and have the same cosine similarity as x and y.

SIMHASH ANALYSIS HIGHER DIMENSIONS



There is always some <u>rotation matrix</u> \mathbf{U} such that \mathbf{x} , \mathbf{y} are spanned by the first two-standard basis vectors.

Note: A rotation matrix **U** has the property that $\mathbf{U}^T\mathbf{U} = \mathbf{I}$. I.e., \mathbf{U}^T is a rotation matrix itself, which reverses the rotation of **U**.

SIMHASH ANALYSIS HIGHER DIMENSIONS

Claim:

$$1 - \frac{\theta}{\pi} = \Pr[\operatorname{sign}(\langle g[1, 2], (Ux)[1, 2] \rangle) == \operatorname{sign}(\langle g[1, 2], (Uy[1, 2] \rangle)]$$

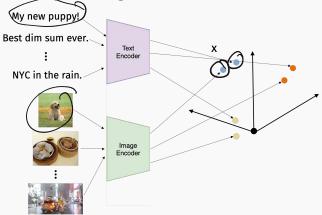
$$= \Pr[\operatorname{sign}(\langle g, Ux \rangle) == \operatorname{sign}(\langle g, Uy \rangle)]$$

$$= \Pr[\operatorname{sign}(\langle g, x \rangle) == \operatorname{sign}(\langle g, y \rangle)]$$

Why?

MODERN NEAR NEIGBHOR SEARCH

 High-dimensional vector search is exploding as a research area with the rise of machine-learned multi-modal embeddings for images, text, and more.



Web-scale image search is now a vector search problem.

GRAPH BASED NEAR NEIGBHOR