CS-GY 6763: Lecture 4
High Dimensional Geometry, the
Johnson-Lindenstrauss Lemma

NYU Tandon School of Engineering, Prof. Christopher Musco



UNIFYING THEME OF THE COURSE

How do we deal with data (vectors) in high dimensions?

- Locality sensitive hashing for similarity search.
- Iterative methods for optimizing functions that depend on
many variables.

- SVD + low-rank approximation to find and visualize
low-dimensional structure.

- Convert large graphs to high dimensional vector data.



HIGH DIMENSIONAL IS NOT LIKE LOW DIMENSIONAL

Often visualize data and algorithms in 1,2, or 3 dimensions.

First part of lecture: Prove that high-dimensional space looks
very different from low-dimensional space. These images are
rarely very informative!



SKETCHING AND DIMENSIONALITY REDUCTION

Second part of lecture: Ignore our own advice.

Learn about sketching, aka dimensionality reduction
techniques that seek to approximate high-dimensional vectors
with much lower dimensional vectors.

- Johnson-Lindenstrauss lemma for ¢, space.
- MinHash for binary vectors.

( First part of lecture should help you understand the potential
and limitations of these methods.



ORTHOGONAL VECTORS

Recall the inner product between two@iimensional vectors:
d
xy) =Xy = y'x = 3Kyl
i:1/'
lX/U> ~ O
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{x,y) = cos() - [x[[2 - [ly]l>
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ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors
X1y o ns Xt In d-dimensional space? l.e. with inner product
xTxj| = 0 for all i, j.
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ORTHOGONAL VECTORS

What is the largest set nearly orthogonal ctors xq, .. ., xﬂ

in d dimensions. l.e., with inner product [x/x;| < e for all
Consider the case when e is a constant. E.g. e = 1,/10.
——




ORTHOGONAL VECTORS

What is the largest set nearly orthogonal unit vectors x;, .. ., Xi

in d dimensions. l.e,, with inner product |x/x;| < e for all i, j.
Consider the case when e is a constant. E.g. e = 1/10.



ORTHOGONAL VECTORS

Claim: There is an exponential number of nearly orthogonal
unit vectors in d dimension e, ~ 29). 2 Soc ¢

Proof strategy: Use thdrgbabilistic Method) For t = 29(9)_ <1
define a random process which generates random vectors
(X1, . ,xt)that are unlikely to have large inner product.

1. Claim that, with non-zero probability, |xI-ij\ < eforallij.

2. Conclude that there must exists some set of t unit vectors
with all pairwise inner-products bounded by e.




PROBABILISTIC METHOD

Claim: There is an exponential number (i.e., 2°2(®) of nearly
orthogonal unit vectors in d dimensional space.

Proof: Let xq,...,X; all have mdependent random entries, each
set to iT W|th equal probab|l|ty (/@ j = /@/ K’L]
Il = i X, = Z
)" /d = 1, PLEL

mxl= (2 )% m} 2 E(xwﬂﬂw«l}

© Var[x/x] = lg' Vo/(X (S ¥ f\‘—Q JZ;:(
e Y
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INFORMAL PROOF

d o
Let Z : > =1 G where each C; is random 1__:11_

Zis a sum of many i.i.d. random variables, so looks
approximately Gaussian. Fggghly, we expect that:

Pr[|Z—EZ| > a - 0] < O(e™)
. d . ]
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FORMAL PROOF

Use an exponential concentration inequality!

Theorem (Chernoff Bound) )

Let X1, Xy, ...,Xq be mdependent {O 1}-valued random

variables and let S = Z, 1 Xi. We have forany e <1:
Pr|S — E[S]| > €E[S]] < 2~

Does not immediately apply because we have random
variables that are £1/d, no 0, 1.

Common trick: shift and scale to transform to the binary case.
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FORMAL PROOF
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where each B; is uniform in {0,1}.
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FORMAL PROOF
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where each B; is uniform in {0, 1}.
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CHERNOFF BOUND

Theorem (Chernoff Bound)
Let X1, X2, ...,Xq be independent {0, 1}-valued random
variables and let S = Y% X;. We have for any e < 1:

—ZE[5]

Pr[|S — E[S]| > €E[S]] <273 .

Y g (51
P BB > £ < 20 T2
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PROBABILISTIC METHOD

Formally, using a Chernoff bound:

Pr[|Z — EZ| > €] < 29/

Forwi7j pail’, Pr[\X,TXj] < 6| > ‘]ﬂ

By a union bound:
X,

For all 1,/ pairs simultaneously, Pr[|x,-ij| <e€>1- (;) . Dp—€%d/6

N )’ J,lzé;éqi/e
\

VD.;H»L . +4{7£ ca,"cL/n,
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ORTHOGONAL VECTORS

Final result: In d-dimensional space, there are 29(€9) ynit
vectors with all pairwise inner products < e.

Corollary of proof: Random vectors tend to be far apart (and
roughly equidistant) in high-dimensions.

||§(_7\|:’ = xS ’rl\b\\; ’ZX,%)
L Sl - 2

"fv'}’t’li
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CURSE OF DIMENSIONALITY

Curse of dimensionality: Suppose we want to use e.g.
k-nearest neighbors to learn a function or classify points in RY.
If our data distribution is truly random, we typically need an
exponential amount of data.

The existence of lower dimensional structure is our data is
often the only reason we can hope to learn.

18



CURSE OF DIMENSIONALITY

Low-dimensional structure.

o .-'e.g. k-nn graph inputl hiddenlayer 1 iddenlayer2  hidden ayer 3
2. — : D S \
“° « \\& < \

X S
‘Z&
&

% clustering

or classification

For example, data lies on low-dimensional subspace, or does
so after transformation. Or function can be represented by a
restricted class of functions, like neural net with specific

architecture.
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UNIT BALL IN HIGH DIMENSIONS

Let By be the unit ball in d dimensions:
By={xeR:|x|; <1}

What percentage of volume of B, falls with € of its surface?

02 (), (1-9)
m —
Vt\( @.L(.\)
T%-1¢ ,x(.a.eﬁd

e

2 | C\/‘=>cl
/2

= \/{__ J&_
Volume of radius R ball is ok RY. ) (( \'{‘> }
’ da O(-Je)
4 dEUANENEY
C
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ISOPERIMETRIC INEQUALITY

All but a vanishing small 2=©(<9) fraction of a unit ball’s volume
is within e of its surface.

Isoperimetric Inequality: the ball has the minimum surface
area/volume ratio of any shape.

ooQ

- If we randomly sample points from any high-dimensional
shape, nearly all will fall near its surface.

- ‘All points are outliers! o



INTUITION

1D: Surface cubes

total cubes }/)D ,_"L

~
2[): Surface cubes _ ov—9"~ lem 6% _  z¢
total cubes o™ = \od

total cubes -
>3

3D: Surface cubes _ \c_”_/gg _ |ogo-5Sn _ 'q4<l)
\o? (el
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SLICES OF THE UNIT BALL

What percentage of the volume of By falls within € of its
equator?

S={X€By:|x[<e} .




SLICES OF THE UNIT BALL

What percentage of the volume of By falls within e of its
equator? Answer: all but a 2=9(€9) fraction.

LI

By symmetry, this is true for any equator:
St={x€By:xt<e} 24



BIZARRE SHAPE OF UNIT BALL

1. (1 —279(d) fraction of volume lies ¢ close to surface.
2. (1—29(d) fraction of volume lies e close to any equator.

High-dimensional ball looks nothing like 2D ball!



CONCENTRATION AT EQUATOR

Claim: All but a Z:i(i‘j’_) fraction of the volume of the ball falls
within e of its equator. /)

ivglent: If we draw a point x randomly from the unit ball,
X1| < € With probability > 1 — 2-0(€d),
%[

\a e ‘“‘Wﬁ
ij 0)

/

/
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CONCENTRATION AT EQUATOR

> £ies* L-—.("B o3 yaiker

Letv/l: % Because [|x]], <1, Y
Prixi] <€ > Pr[|lwq| < ¢].

Claim: |w1| < e with probability > 1—2-9(¢9)_ This then proves
our statement from the previous slide.

How can we generate w, which is a random vector taken from
the unit sphere (the surface of the ball)?

27



IMPORTANT FACT IN HIGH DIMENSIONAL GEOMETRY

Rotational Invariancg?of Gaussian distribution: Let g be a

random Gaussian vector, with each entry drawn from A/(0, 1).
Then w = g/||g||2 is distributed uniformly on the unit sphere.

Why? Consider the probability density function of a high
dimensional Gaussian:

P(g))= P(g[]) - --. - P(g[d]) H co—élil?/2
_ ﬁ(‘(’lqjv = C/er:1 —gli*/2
_ cdo—lgl/2 )

rodun( & ‘> A~~~
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PROOF STRATEGY:

LI/&/ [0‘\/ N(O} |>A/ Losa 4 -'-o é\uu et

Y, o
“S\T"—— V{o\v.

€ |_o o(e*d)

\\oa\\yv
(2 d

1. Prove that with high probability, the first entry of g/(ﬂs
small.
2. Prove that gﬂ/ls very very close to g/||gH so this vector
also has small first entry. 29




CONCENTRATION AT EQUATOR

Let g be a random Gaussian vector and w = g/||g||.

- Efllgl}] = LL[? 9. } %I?ﬁy *]- Z‘Uw(s

- ol

|




CONCENTRATION AT EQUATOR

#
For 1 — 2=9( fraction of vectors g,{|g|l» > +/d/2. )Zondition on
the event that we get a random vector In this set. If £ ond

. : ke olds T

Given this event: o | € ©
Pr [[Wﬂ-\/d/zge- a2
\ev
> P o1 < e Vi) & N
/ / >1-2(V) ) °
&S iGh - \/’l/

By union bound, overall we have: <

Prijwi| < ¢] > 1—279(d) _ -8
—_— = .,\t,ol
"\311

So after conditioning, we have |wq| < 2|

Recall: w = IIgH v =~
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BIZARRE SHAPE OF UNIT BALL

1. (1 —279(d) fraction of volume lies ¢ close to surface.
2. (1—29(d) fraction of volume lies e close to any equator.

High-dimensional ball looks nothing like 2D ball!



HIGH DIMENSIONAL CUBE

Let C4 be the d-dimensional cube:

Cq={xeRY:|x(i)| <1Vi}l.

b S G
@/Q\. 4. 3 =

In two dimensions, the cube is pretty similar to the ball.

d

But volume ofﬁiis 24 while volume of unit ball is %.

This is a huge gap! Cube has 0(d)°(@ more volume. 33



HIGH DIMENSIONAL CUBE

Some other ways to see these shapes are very different:

 maxes, KB = ¥

s maxeee, X3 =Y (1 10 (1) 0 &
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HIGH DIMENSIONAL CUBE

Some other ways to see these shapes are very different:
By XI3 <3y

d
Bealii= £ 2 W3 E(e] - e,

—

X] Q["/O < ' = )
. l‘[/g/l X d x /}

~
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HIGH DIMENSIONAL CUBE

Almost all of the volume of the unit cube falls in its corners,
and these corners lie far outside the unit ball.

2 dime

nsions

high dimensions

-
h

~
v
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RECENT ARTICLE
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SeekThe Journey to Define Dimension)from Quanta Magazjne

for another fun example comparing cubes to balls!
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https://www.quantamagazine.org/a-mathematicians-guided-tour-through-high-dimensions-20210913/

DIMENSIONALITY REDUCTION

Despite all this warning that low-dimensional space looks
nothing like high-dimensional space, next we are going to
learn about how to compress high dimensional vectors to low
dimensions.

We will be very careful not to compress things too far. An
extremely simple method known as Johnson-Lindenstrauss
Random Projection pushes right up to the edge of how much
compression is possible.

38
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EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points qu, ..., q, € RY there exists a

- . md k — S {(logn

{/Ijear map ; RY — R® where k = O ( S ) such that for all
L

(1=ellai —aqjll2 < INg; — Nqjll < (1+ €)lla; — gjll2-

d
\LH=\'\ Mn

T *
ﬂ%,...ﬂ%& %/

\ ) N
fer oy VS Ly 5




EUCLIDEAN DIMENSIONALITY REDUCTION

Please remember: This is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points qu, ..., qn € RY there exists a
linear map M : RY — R* where k = O ('°g”) such that for all

1),
(1=¢)llai —qjll; < INg; — Nqjll; < (1+€)lla; — qjll3-

because for small e (1 +¢€)2 =1+ 0(e) and (1—€)? =1— 0(e).

Y Y (122
¢ lr 2¢ 40



EUCLIDEAN DIMENSIONALITY REDUCTION

And this is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points qu, ..., qn € RY there exists a
linear map N : RY — Rf where k = 0 <'°g”> such that for all
L,

(1-e)INg; — Ng;|3 < [la; — qj|3 < (1 + ¢)||Na; — Na;f3.

because for small e, = = 1— O(¢) and 1= = 1+ O(e).
e

41



SAMPLE APPLICATION

(k-means clustering}Give data points a1, ..., a, € RY, find
centers p, ..., puy, € RY to minimize:

n

Cost(py, - - -, He) = Z}._’}”ink 1 — aill5

i=1 —lieeey

G
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SAMPLE APPLICATION

k-means clustering: Give data points as,...,a, € RY, find
centers p, ..., pu, € RY to minimize:

n

Cost(py, - - -, He) = Z}._’}”ink 1 — aill5

=17

a, aQ

H4

H3 43



SAMPLE APPLICATION

k-means clustering: Give data points as,...,a, € RY, find
centers p, ..., pu, € RY to minimize:

n
Cost(pry .-y php) = Z __Tinh ) — ajll5
e
a, a

H2
H4

4



K-MEANS CLUSTERING

Equivalent form: Find clusters Gy,...,C, C {1,...,n} to
minimize: 1
Cost(Cy, .-, G Z 31 > Hau av||3.
J=1 / u,ve@
a, a
~
1‘2/'
an
N
I
)

Exercise: Prove this to your self. 3
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K-MEANS CLUSTERING

NP hard to solve exactly/ but there are many good
approximation algorithms. All depend at least linearly on the
(dimension d.)

Approximation scheme: Find clusters G, ..., G, for the
k=0 ('°%”> dimension data set May, ..., Na.

€
_——

%

-05 05

Argue these clusters are near optimal for as, ..., an.
46



K-MEANS CLUSTERING

(&) (Jou ol € Tad-Tewly
/ < (1<) -
kR

Cost(Cy, . .., Cp Z Z lay — aVHZ) fecol
__/__.

uveC “'If
R
Cost(C, .., Ce) = sz 3 May — a3 ))
= D u,veG

Claim: For any clusters Cy, ..., Cg:

(1= €)Cost(C, .. .,Cp) < Cost(Cy,...,Cq) < (14 €)Cost(C, ..., Cp)

Lokt () e
(;:’{4 N (b:* ( Zl"/ "/Z":> 4 (;\;f((«y‘/' - (\f) < (H’(') (O\,‘ (G’A;:}



K-MEANS CLUSTERING

Suppose we use an approximation algorithm to find clusters
B1,..., Bk such that:

Cost(Bs, ..., Bg) < (14 a)Cost

Then:
c—
COSt(B1, boag B/?) < fCOSt(B% aaog Bk)
— €

< (1+ 0(e))(1 + a)Cost”
< (14 0(e))(1+ a)(1+ €)Cost”
= (14 O(a + €)) Cost

Cost® = ming,,. ¢, Cost(Cy,. .., Cg) and

77777

Cost’ = min,....c, Cost(Cy, ..., Cy) 48
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EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points qu, ..., qn € RY there exists a
linear map N : RY — Rf where k = 0 ('°§2”) such that for all

(1=ellai —aqjll2 < INg; — Nqjll < (1+ €)lla; — gjll2-

o

49



EUCLIDEAN DIMENSIONALITY REDUCTION

Remarkably, T can be chosen completely at random!

One possible construction: Random Gaussian.

(n,,,- _ \;EN(OJ)

{The map M is oblivious to the data set. This stands in contrast

to e.g. PCA, amoung other differences.

[Indyk, Motwani 1998] [Arriage, Vempala 1999] [Achlioptas 2001]
[Dasgupta, Gupta 2003].

Many other possible choices suffice — you can use random
({+1, -1} variable% sparse random matrices, pseudorandom [1.
. . /
Each with different advantages.

50



RANDOMIZED JL CONSTRUCTIONS

Let M € R**9 be chosen so that each entry equals N (0,7).

+ 1 with equal probability.

d

a1

.. or each entry equals T

0.0220  0.5201 02038 13320 13617 -0.1952
L L L e L S Y

0.2620 -0.0200 -0.8479 -2.3290  0.4550 -0.2176 T2 1 a1 o4 o4 a4 1 a1 1 1 oa 1 a o a oa
17502 -0.0348 11201 -1.4491 -0.8487 -0.3031 I S N S =, A= S B G S = . = B
0,287 -0.7982  2.560 0,335 -0.3349  0.0230 A 4 @ A R A oao@ A A A A oA a4 A A
o834 L0187  Lesss 0,394 0.5528  0.0513 (N A R W T A R I
Solo792 01332 0.3075 04517 10391 0.8261 3t el e aE e
-1.1564  -0.7145 -1.2571 -0.1303 -1.1176  1.5270 : : ’: : : '; : 'i 3 'i : ': : : : ': ':
01533  1.3514 08655  0.1837  1.2607  0.4669 I E a2 & 4
20026 -0.2248 -0.1765 -0.4762  0.6601 ~0.2097 300 4 a4 b a a4 4w a
0.9642 0,589 07914 0.8620 -0.067 0.6252

>> Pi = randn(m,d); ) >> Pi = 2*randi(2,m,d)-3;

>> s = (1/sqrt(m))*Pjxq; >> s = (1/sqrt(m))*Pixq;
> Tl

A random orthogonal matrix also works. |.e. vvithﬂl‘lT = lpyp.
For this reason, the JL operation is often called a “random
projection”, even though it technically isn't a projection when

ries are i.i.d.

ITSU -\ ]



RANDOM PROJECTION

Intuitively, close points will remain close after projection, qnd

far points will remain far.
52



EUCLIDEAN DIMENSIONALITY REDUCTION

Intermediate result:

Lemma (Distributional JL Lemma)

Let M € R**? be chosen so that each entry equals o=N(0,7),
where N(0,1) denotes a standard Gaussian random var:abl
If we choose kR = O ("’%ﬁ) then for any vector x, with
probability (1 —6):

S

(1= e)lx[3 < [IMx]lz < (1+ €)]x]2

X- %} - %S (-, SN2 el ]’(‘,‘J %J>h - (“Q)Dﬁ -l
\rg A% Vo
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JL FROM DISTRIBUTIONAL JL

We have a set of vectors qq,...,qQn. Fixi,j€1,...,n
Let x = g; — q;. By linearity, Mx = MN(q; — q;) = Nq; — Ng;.
By the Distributional JL Lemma, with probability 1— 4,

(1—ellai—aqjll2 < INg; — Ngjll2 < (1+ €)lla; — gjll2-

Finally, set 6 = % Since there are < n? total i,/ pairs, by a
union bound we have that with probability 9/10, the above will
hold for all ,J, as long as we compress to:

k:O(bgm/(M) _O(loeg ) dimensions. O

€2
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PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability (1 — ¢),

(1= e)lx[5 < [x])5 < (1+ €)Ix]13
Some notation:

1/Vk) 1, [
= 1/vVk) 11,
N9,

1

So each =j contains AM/(0, 1) entries. 55



PROOF OF DISTRIBUTIONAL JL

Intermediate Claim:

E [IInx|3] = E [ ((m,0)?]

Goal: Prove E||Mx||3 = ||x|[3.

56



PROOF OF DISTRIBUTIONAL JL

where each 7, ...,Z4 is a standard normal A/(0, 1) random
variable.

We have that Z; - x(i) is a normal A/(0, x(i)?) random variable.

Goal: Prove E[[Mx|2 = ||x|2. Established: E||Nx|3 = E [((w,-,x>)2]

57



STABLE RANDOM VARIABLES

What type of random variable is (7, x)?

Fact (Stability of Gaussian random variables)

N(p1,09) + N(pz, 03) = N(u1 + pa, o + 03)

(71, X) = N(0,X[1]%) + N (0, X[2]>) + ... + N(0,x(d)?)
= N(0, [Ix]}3)-

So E|Nx|2 = E [(<7r,-,x>)2} = |Ix|12, as desired.

58



PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability (1 — ¢),

(1= e)lIxllz < M]3 < (1+ ) x5

1. E[nx||5 = [Ix[|5.
2. Need to use a concentration bound.

k 1 k

IPXIB = 2 7 (¢min ) = SN0, IxIR)

i=1 i=1

“Chi-squared random variable with k degrees of freedom.”

59



CONCENTRATION OF CHI-SQUARED RANDOM VARIABLES

Lemma
Let Z be a Chi-squared random variable with k degrees of
freedom.

Pr[[EZ — Z| > EZ] < 2e~F</8

Goal: Prove ||Nx||% concentrates within 14 ¢ of its expectation,
which equals ||x]|2. 60



CONNECTION TO EARLIER PART OF LECTURE

If high dimensional geometry is so different from
low-dimensional geometry, why is dimensionality reduction
possible? Doesn't Johnson-Lindenstrauss tell us that
high-dimensional geometry can be approximated in low
dimensions?
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CONNECTION TO DIMENSIONALITY REDUCTION

Hard case: xi, ..., X, € RY are all mutually orthogonal unit
vectors:

IX; — X||3 =2 for all i, ;.

From our result earlier, in O(log n/e?) dimensions, there exists
20(e*logn/€®) > 1 ynit vectors that are close to mutually
orthogonal.

O(log n/e€?) = just enough dimensions.
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DIMENSIONALITY REDUCTION

The Johnson-Lindenstrauss Lemma let us sketch vectors and
preserve their ¢, Euclidean distance.

We also have dimensionality reduction techniques that
preserve alternative measures of similarity. Start on that next
week!
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