
CS-GY :ࠂ676 Lecture ࠂ
Exponential Concentration Inequalities,
Fingerprinting

NYU Tandon School of Engineering, Prof. Christopher Musco

ࠀ

LAST TIME

Lemma (Chebyshev’s Inequality)
Let X be a random variable with expectation E[X] and
variance σࠁ = Var[X]. Then for any k > ,߿

Pr[|X− E[X]| ≥ k · σ] ≤ ࠀ
kࠁ

One application: Proved that if you throw n balls into n bins,
the maximum loaded bin has O(

√
n) balls. We used

Chebyshevs + .

This lecture, we’ll prove a bound of O(log n) using stronger
tools. ࠁ

=

a

- = f

- Union B a r >d -

-

BEYOND CHEBYSHEV

Motivating question: Is Chebyshev’s Inequality tight?

It is the worst case, but often not in reality.

ࠈࠈ-ࠄࠈ-ࠇࠅ rule for Gaussian bell-curve. X ∼ N(߿,σࠁ)

Chebyshev’s Inequality:

Pr (|X− E[X]| ≥ (σࠀ ≤ %߿߿ࠀ
Pr (|X− E[X]| ≥ (σࠁ ≤ %ࠄࠁ
Pr (|X− E[X]| ≥ (σࠂ ≤ %ࠀࠀ
Pr (|X− E[X]| ≥ (σࠃ ≤ .%ࠅ

Truth:

Pr (|X− E[X]| ≥ (σࠀ ≈ %ࠁࠂ
Pr (|X− E[X]| ≥ (σࠁ ≈ %ࠄ
Pr (|X− E[X]| ≥ (σࠂ ≈ %ࠀ
Pr (|X− E[X]| ≥ (σࠃ ≈ %ࠀ߿. ࠂ

-

-

L
- I

= ÷

GAUSSIAN CONCENTRATION

For X ∼ N (µ,σࠁ):

Pr[X = µ± x] ∼ ࠀ
σ
√
πࠁ

e−xࠁ/ࠁσࠁ

Lemma (Gaussian Tail Bound)
For X ∼ N (µ,σࠁ):

Pr[|X− EX| ≥ k · σ] ≤ .ࠁ/ࠁe−kࠁ

Compare this to:

Lemma (Chebyshev’s Inequality)
For X ∼ N (µ,σࠁ):

Pr[|X− EX| ≥ k · σ] ≤ ࠀ
kࠁ

ࠃ

÷ ' s
a

GAUSSIAN CONCENTRATION

Standard y-scale. Logarithmic y-scale.

Takeaway: Gaussian random variables concentrate much
tighter around their expectation than variance alone (i.e.
Chebyshevs’s inequality) predicts.

Why does this matter for algorithm design?
ࠄ

CENTRAL LIMIT THEOREM

Theorem (CLT – Informal)
Any sum of mutually independent, (identically distributed)
r.v.’s Xࠀ, . . . , Xk with mean µ and finite variance σࠁ converges to
a Gaussian r.v. with mean k · µ and variance k · σࠁ, as k → ∞.

S =
n∑

i=ࠀ

Xi =⇒ N (k · µ, k · σࠁ).

ࠅ

K

-

. . -

INDEPENDENCE

Recall:

Definition (Mutual Independence)
Random variables Xࠀ, . . . , Xk are mutually independent if, for
all possible values vࠀ, . . . , vk,

Pr[Xࠀ = vࠀ, . . . , Xk = vk] = Pr[Xࠀ = vࠀ] · . . . · Pr[Xk = vk]

Strictly stronger than pairwise independence.

ࠆ

-

EXERCISE

If I flip a fair coin ߿߿ࠀ times, lower bound the chance I get between
߿ࠂ and ߿ࠆ heads?

For this problem, we will assume the limit of the CLT holds exactly –
i.e., that this sum looks exactly like a Gaussian random variable.

Lemma (Gaussian Tail Bound)
For X ∼ N (µ,σࠁ):

Pr[|X− EX| ≥ k · σ] ≤ .ࠁ/ࠁe−kࠁ

ࠇ−eࠁ = .%ࠅ߿. Chebyshev’s inequality gave a bound of .%ࠄࠁ.ࠅ

ࠇ

→ n.-100 Vc r(X i) :IIIx;)-IIIx:P

- - Prlls-1151220]Ezek"
i s

20=4-o

"

m

s r . EI,X i → X i : I l i t h c o i n i s heads) I I .(Xi)= k

secs] .% . - s o was .mn-zs o . . .

"
' " " "

barcxi).-Yg

e -

QUANTITATIVE VERSIONS OF THE CLT

These back-of-the-envelop calculations can be made
rigorous! Lots of different “versions” of bound which do so.

• Chernoff bound
• Bernstein bound
• Hoeffding bound
• . . .

Different assumptions on random varibles (e.g. binary vs.
bounded), different forms (additive vs. multiplicative error),

etc. Wikipedia is your friend.

ࠈ

QUANTITATIVE VERSIONS OF THE CLT

Theorem (Chernoff Bound)
Let Xࠀ, Xࠁ, . . . , Xk be independent ,߿} valued-{ࠀ random
variables and let pi = E[Xi], where ߿ < pi < .ࠀ Then the sum
S =

∑k
i=ࠀ Xi, which has mean µ =

∑k
i=ࠀ pi, satisfies

Pr[S ≥ +ࠀ) ε)µ] ≤ e
−εࠁµ
ε+ࠁ .

and for ߿ < ε < ࠀ

Pr[S ≤ −ࠀ) ε)µ] ≤ e
−εࠁµ

ࠁ .

߿ࠀ

- -

=

-

=

CHERNOFF BOUND

Theorem (Chernoff Bound Corollary)
Let Xࠀ, Xࠁ, . . . , Xk be independent ,߿} valued-{ࠀ random
variables and let pi = E[Xi], where ߿ < pi < .ࠀ Let S =

∑k
i=ࠀ Xi

and E[S] = µ. For ε ∈ ,߿) ,(ࠀ

Pr[|S− µ| ≥ εµ] ≤ ࠂ/µࠁe−εࠁ

Why does this look like the Gaussian tail bound of
Pr[|S− µ| ≥ k · σ] ! ?ࠁ/ࠁe−kࠁ What is σ(S)?

ࠀࠀ

6 = 0 (ru)

Pres-ul?4¥¥3 e 2 e-%?!?
" %

F i x . ÷:#a.
i,.±÷÷"

-

E:&,I Ehi.) = EE,I Ek i] = ⇐Var(s): O(m)i n

QUANTITATIVE VERSIONS OF THE CLT

Theorem (Bernstein Inequality)
Let Xࠀ, Xࠁ, . . . , Xk be independent random variables with each
Xi ∈ ,ࠀ−] .[ࠀ Let µi = E[Xi] and σࠁ

i = Var[Xi]. Let µ =
∑

i µi and
σࠁ =

∑
i σ

ࠁ
i . Then, for k ≤ ࠀ

,σࠁ S =
∑

i Xi satisfies

Pr[|S− µ| > k · σ] ≤ .ࠃ/ࠁe−kࠁ

ࠁࠀ

o - ¥

QUANTITATIVE VERSIONS OF THE CLT

Theorem (Hoeffding Inequality)
Let Xࠀ, Xࠁ, . . . , Xk be independent random variables with each
Xi ∈ [ai,bi]. Let µi = E[Xi] and µ =

∑
i µi. Then, for any k > ,߿

S =
∑

i Xi satisfies:

Pr[|S− µ| > k] ≤ eࠁ
− kࠁ∑k

i=ࠀ(bi−ai)
ࠁ
.

ࠂࠀ

- -

i i . I d o .)

HOW ARE THESE BOUNDS PROVEN?

Variance is a natural measure of central tendency, but there
are others.

qth central moment: E[(X− EX)q]

q = ࠁ gives the variance. Proof of Chebyshev’s applies Markov’s
inequality to the random variable (X− EX)ࠁ).

Idea in brief: Apply Markov’s inequality to E[(X− EX)q] for
larger q, or more generally to f(X− EX) for some other
non-negative function f. E.g., to exp(X− EX).

ࠃࠀ

-6=4

=

EXERCISE

If I flip a fair coin ߿߿ࠀ times, lower bound the chance I get between
߿ࠂ and ߿ࠆ heads?

Corollary of Chernoff bound: Let S =
∑k

i=ࠀ Xi and µ = E[S]. For
߿ < ε < ,ࠀ

Pr[|S− µ| ≥ εµ] ≤ ࠂ/µࠁe−εࠁ

Here Xi = [ith flip is heads].

.%ࠃ.ࠀ

ࠄࠀ

±÷±""
⇐
¥Fa÷÷÷÷

§%
-06%1

CHERNOFF BOUND APPLICATION

General Statement: Flip biased coin k times: i.e. the coin is
heads with probability b. As long as k ≥ O

(
log(ࠀ/δ)

εࠁ

)
,

Pr[|# heads− b · k| ≥ εk] ≤ δ

Pay very little for higher probability – if you increase the
number of coin flips by ,xࠃ δ goes from
߿ࠀ/ࠀ → ߿߿ࠀ/ࠀ → ߿߿߿߿ࠀ/ࠀ

ࠅࠀ

- .

F r omChernoff, f o r a n y e 'eco,i) ↳ µ . E

. .

'
" "

Pra#heads- b .k / z • 'buy⇐
ze-d-bag's%

PrfI#heads.bu tz E k] E ze ."
" ↳bez e-s-k13.

" " "÷÷÷÷i÷÷.,.........
E s

LOAD BALANCING

Recall: n jobs are distributed randomly to n servers using a hash
function. Let Si be the number of jobs sent to server i. What’s the
smallest B for which we can prove:

Pr[max
i

Si ≥ B] ≤ ߿ࠀ/ࠀ

Recall: Suffices to prove that, for any i, Pr[Si ≥ B] ≤ :n߿ࠀ/ࠀ

Pr[max
i

Si ≥ B] = Pr[Sࠀ ≥ B or . . . or Sࠀ ≥ B]

≤ Pr[Sࠀ ≥ B] + . . .+ Pr[Sn ≥ B] (union bound).

ࠆࠀ

O

①
i n

a

→

LOAD BALANCING

Theorem (Chernoff Bound)
Let Xࠀ, Xࠁ, . . . , Xn be independent ,߿} valued-{ࠀ random
variables and let pi = E[Xi], where ߿ < pi < .ࠀ Then the sum
S =

∑n
j=ࠀ Xi, which has mean µ =

∑n
j=ࠀ pi, satisfies

Pr[X ≥ +ࠀ) ε)µ] ≤ e
−εࠁµ
ε+ࠁ .

Consider a single bin. Let Xj = [ball j lands in that bin].

Pr[S ≥ +ࠀ) c log n)µ] ≤ e
−cࠁ logࠁ n
c+ࠁ log n ≤ e

−c logࠁ n
ࠁ log n ≤ e−.ࠄc log n ≤ ࠀ

n߿ࠀ
,

for sufficiently large c

ࠇࠀ

2tclojCu7s2clojCn
1g@SiE0ClgcIpi.t
⑤ = I I .X's

HTxj3=YnE¥¥Ei);E,
Yui z

i @ t - e = : - - d
e -2105",ulna.You

LOAD BALANCING

So max load for randomized load balancing is O(log n)! Best
we could prove with Chebyshev’s was O(

√
n).

ࠈࠀ

⇒

POWER OF TWO CHOICES

Power of ࠁ Choices: Instead of assigning job to random server,
choose ࠁ random servers and assign to the least loaded. With
probability ߿ࠀ/ࠀ the maximum load is bounded by:

(a) O(log n) (b) O(
√
log n) (c) O(log log n) (d) O(ࠀ)

߿ࠁ

I D

- o - o -

¥ §
1%1%6)

BREAK

߿ࠁ

PSEUDORANDOM HASH FUNCTIONS

Recall from last class:
Definition (Universal hash function)
A random hash function h : U → ,ࠀ} . . . ,m} is universal if, for
any fixed x, y ∈ U ,

Pr[h(x) = h(y)] ≤ ࠀ
m
.

Efficient construction: Let p be a prime number between |U|
and .|U|ࠁ Let a,b be random numbers in ,߿ . . . ,p, a += .߿

h(x) = [a · x+ b (mod p)] (mod m)

is universal.

We’re not going to prove this, but this year I want to give a
flavor for what tools are used.

ࠀࠁ

PRIME NUMBER CHECKING

One of the most famous applications of randomness in
algorithm design.

Computational Problem: Given a number x, is x prime?

Recall:

• A number is prime if it can only be divided evenly by ࠀ and
itself.

• The first few primes are ,ࠁ ,ࠂ ,ࠄ ,ࠆ ,ࠀࠀ ,ࠂࠀ ,ࠆࠀ ,ࠈࠀ
• Is ࠂࠁ߿ࠁ prime?
• What about ?ࠀࠈࠁࠈࠀࠆࠆࠄࠄࠃࠅ߿ࠆࠆࠈࠀ߿ࠂࠈࠃ

How would you design a generic algorithm to check?

ࠁࠁ

-

- (h : inputlength

2 " i f = 20"?

PRIME NUMBER CHECKING

Suppose we have an integer represented as a length n binary
string.

x = ࠀ߿ࠀ߿ࠀࠀ߿ࠀ߿߿߿ࠀ߿ࠀࠀ߿ . . . ߿ࠀࠀࠀ߿߿߿ࠀ߿ࠀ

The naive prime checking algorithm runs in O(ࠁn) time.

NYU Greene Super Computer has ࠁ petaFLOPS of throughput.
When n = ,ࠇࠁࠀ would need ࠀ million Greene Super computers
running for ࠀ million years to check is x is prime.

ࠂࠁ

-

I

RANDOMIZED PRIMALITY TEST

Miller-Rabin ,976ࠀ :߿98ࠀ There is a randomized algorithm
running in O(nࠂ logࠁ(ࠀ/δ)) time that, with probability −ࠀ δ

determines if an n-bit integer x is prime.

• n = ࠇࠁࠀ
• δ = ࠈ−߿ࠀ (chance of winning the Powerball Jackpot)
• nࠂ logࠁ(ࠀ/δ) ≈ ߿ࠅ million operations.

Could check in < ࠀ. second on my laptop.

This was a really big break through!

ࠃࠁ

20h) 206" Y
l - I

-

- -

- -

RANDOMIZED PRIMALITY TEST

Took over ߿ࠁ more years to find a deterministic polynomial
time primality test.

ࠄࠁ

-)

WHY DO PRIMES MATTER?

Basis for modern public-key cryptography.

Goal: Bob wants to send Alice an email. Wants to encrypt it in
some way so that even if it is intercepted, no one can read it
besides Alice.

ࠅࠁ

- -

WHY DO PRIMES MATTER?

Basis for modern public-key cryptography.

Goal: Bob wants to send Alice an email. Wants to encrypt it in
some way so that even if it is intercepted, no one can read it
besides Alice.

Option :ࠀ Share some sort of secret key/codebook in advance.

Impractical if you have a large number of uncoordinated
senders and receivers. ࠆࠁ

1

PUBLIC-KEY CRYPTOGRAPHY

Option :ࠁ Create a way-ࠀ lock box.

Anyone can deliver, only Alice can open/read the messages.

ࠇࠁ

0

WHY DO PRIMES MATTER?

RSA crytosystem (Rivest, Shamir, Adleman :(ࠆࠆࠈࠀ

• Private key: Two large (e.g. ࠇࠁࠀ bit) prime numbers p,q.
• Public key: Based on z = p× q.

Even though checking if a number of prime can be done
quickly, we do not have efficient algorithms for factoring
numbers. E.g. for finding p,q based on z.ࠀ

Atࠀ least on classical computers we don’t... different story on quantum
computers.

ࠈࠁ

-

0 0 O

FROM PRIME TESTING TO PRIME GENERATION

How to find a 8ࠁࠀ bit prime number p? Use randomness,
twice.

• Pick a random ࠇࠁࠀ bit number.
• Check if it’s prime (using randomized primality test).
• If not, repeat.

Roughly how many tries do you expect this to take?

߿ࠂ

- -

l)
()

PRIME NUMBER THEOREM

Let π(x) denote the number of primes less than some integer
x. Informally:

π(x) ∼ x
log(x)

ࠀࠂ

O

O

PRIME NUMBER THEOREM

Formally: For x > ,ࠆࠀ

x
log(x)

≤ π(x) ≤ x
log(x)− ࠃ

So if we select a random ࠇࠁࠀ bit number p, the chance that it is
prime is great than:

ࠀ
log(ࠇࠁࠀࠁ)

≥ ࠀ
߿ࠈ

After a few hundred tries, we will almost definitely find a prime
number. In general, need O(n) tries to find a prime with n bits.

ࠁࠂ

a -
":÷÷*,

=
= one)

PRIME NUMBERS AND HASHING

Finding large prime numbers is also a critical step in
constructing efficiently computable universal hash.

Remainder of lecture: Discuss a simple but really important
application of prime numbers to hashing.

ࠂࠂ

f

FINGERPRINTING

Goal: Construct a compact “fingerprint” h(f) for any given file f
with two properties:

• The fingerprints h(fࠀ) and h(fࠁ) should be different with
high probability if the contents of fࠀ and fࠁ differ at all.

• If the contents of fࠀ and fࠁ are identical, we should have
h(fࠀ) = h(fࠁ).

ࠃࠂ

=

-

- - -

- - - -

APPLICATIONS OF FINGER PRINTING

• Quickly check if two versions of the same file are identical
(e.g. in version control systems like Git). Do not need to
communicate the entire file between servers. Also used in
webcaching and content delivery networks.

• Check that a file pieced together from multiple parts is not
missing anything.

ࠄࠂ

/

APPLICATIONS OF FINGER PRINTING

ࠅࠂ

APPLICATIONS OF FINGER PRINTING

Fingerprints used as file names for the images to make sure we
did not reupload new images that we already had, and to
detect duplicate images and listings. ࠆࠂ

FINGERPRINTING

Goal: Construct a compact “fingerprint” function h(f) such that:

• h(fࠀ) += h(fࠁ) if fࠀ += fࠁ with high probability.

Ideally, length of h(fࠀ) (i.e. the size of the integers hashed to) is
much less than the file size.

ࠇࠂ

RANDOM FINGERPRINTING

Rabin Fingerprint :(ࠀ98ࠀ) Let file f = ߿ࠀ߿ . . . ࠀ߿ࠀࠀ of length n be
interpreted as an n bit integer. So something between ߿ and .nࠁ

Construct h randomly: Choose random prime number p
between ࠁ and tn log(tn) for a constant t.

h(f) = f (mod p).

How many bits does h(f) take to store?

ࠈࠂ

(I - - -
= -

- -

= -

64Gt Hog)

\log(p) b i t s t o s t o r e

E log (tulogan)) stogatu)').to/lodtnD

RANDOM FINGERPRINTING

h(f) = f (mod p) for prime p ∈ ,ࠁ} . . . , tn log(tn)}

Claim: If fࠀ += fࠁ then h(fࠀ) = h(fࠁ) with probability ≤ ࠁ
t .

Since our fingerprint only takes O(log n+ log t)) space, we can
set t to be super large, so effectively the probability of h(fࠀ)
and h(fࠁ) colliding is negligible for all real-world applications.

E.g. set fingerprint length to log n+ ࠇࠁ bits and you are more
likely to win the Powerball.

߿ࠃ

o o
-

- -

RANDOM FINGERPRINTING

h(f) = f (mod p) for prime p ∈ ,ࠁ} . . . , tn log(tn)}

Claim: If fࠀ += fࠁ then h(fࠀ) = h(fࠁ) with probability just ࠁ
t .

First observation: If h(fࠀ) = h(fࠁ), then:

(fࠀ − fࠁ) (mod p) = .߿

In other words, we only fail if the fࠀ − fࠁ is divisible by p.

ࠀࠃ

f .(nodp) : f , Cuo dp)

- 0
-

RANDOM FINGERPRINTING

Question: What is the chance that fࠀ − fࠁ, which is an integer
less than ,nࠁ is divisible by a random prime
p ∈ ,ࠁ} . . . , tn log(tn)}?

ࠁࠃ

RANDOM FINGERPRINTING

Number of distinct prime factors of fࠀ − fࠁ: At most n.

Number of primes between ,ࠁ} . . . , tn log(tn)}: At least
tn log(tn)

log(tn log(tn)) via prime number theorem.

Chance we pick a prime factor of fࠀ − fࠁ is less than:
n

tn log(tn)
log(tn log(tn))

=
log(tn log(tn))

t log(tn)
≤ ࠁ log(tn)

t log(tn)
ࠂࠃ

→ I

I = 2 . 5 . 5 . 2 ' I z # t prime
Pfa

s o n s

⇒ o ÷ " "
-

o o o

- e x

/ ? S lookin)') = 2 1 g(tu)
(i ' / - - I

RANDOM FINGERPRINTING

Conclusion: The chance that a random prime
p ∈ ,ࠁ} . . . , tn log(tn)} is a factor of fࠀ − fࠁ is ≤ ࠁ

t .

So, for two files fࠀ += fࠁ, the chance that h(fࠀ) = h(fࠁ) ≤ ࠁ
t .

Set t = ࠇࠀ߿ࠀ (the chance you win the Powerball twice in a row).

Fingerprint size: At most ࠁ logࠁ(nt) = ࠁ log(n) + ࠁ log(ࠇࠀ߿ࠀ)ࠁ bits.

Suppose we are fingerprinting mbࠀ image files. n ≈ ࠇ · ,ࠅ߿ࠀ so
our fingerprint has size:

66ࠀ bits

This amounts to a x߿߿߿,߿ࠄ reduction over sending and
comparing the original files.

ࠃࠃ

-

-

- 0

