CS-GY 6763: Lecture 11
Power Method, Krylov Subspace Methods,
Spectral Clustering

NYU Tandon School of Engineering, Prof. Christopher Musco



SINGULAR VALUE DECOMPOSITION

One of the most fundamental results in linear algebra.

Any matrix X can be written:

C| left singular vectors  singular values  right singular vectors
0,
0,

X = u 3 &

Where U'U=1,VIV=1land o1 >0, > ...04 > 0.

Singular values are unique. Factors are not. E.g. would still get
a valid SVD by multiplying both it" column of V and U by —1. )



IMPORTANT NOTE FOR PROBLEM SET

(‘C“».\-._(\/QL)
If X has rank r < min(n, d) it only have r non-zero singular

values. Some software packages will still return a full size U

and V matrix.
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OTHER THINGS TO NOTE
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LOW-RANK APPROXIMATION

Approximate X as the product of two rank k matrices:

d k q
I—‘% i . 1 [ |
X [ 2
Xy G .bk

matrix Ey
X c,
matrix X matrix C Y,

Typically choose C and B to minimizez/-7 RN
min ||X — CB||
B,C

for some matrix norm. Common choice is ||X — CB||Z 5



EQUIVALENT FORMULATION

When measuring error with the Frabenius norm (or spectral
wn) it suffices to find d x k orthogonal matrix W minimizing:

& @ X

u"«?

XW

1]

l.e., best low-rank approximation projects X's rows to a lower
dimensional space.



EQUIVALENT FORMULATION

Alternatively, suffices to find n x k orthogonal matrix Z
minimizing:

JIX = ZZ"X| |

C %



WHY IS DATA LOW-RANK

Row redundancy: If a data set only had k unique data points,
it would be exactly rank k. If it has k “clusters” of data points
(e.g. the 10 digits) it's often very close to rank k.

projections omﬁ‘i\

784 dimensional vectors \dlmenswnatspace) orthonormal basis vy,...,V45
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WHY IS DATA LOW-RANK

Column redundancy: Colinearity/correlation of data features
leads to a low-rank data matrix. a -\

bedrooms| bathrooms| sq.ft.|floors

2 2 1800 | 2
4 2.5 2700 | 1




APPLICATIONS OF LOW-RANK APPROXIMATION

Fact that [[x; — x;ll2 ~ [X'Wylf — W, = llc; — i, leads to
- o= =
lots of applications.

- Data compression. E.g. used in state-of-the-art data
dependent methods for nearest neighbor search.
(,- Data visualization when k =2 or 3.

- Data embeddings (e.g. word2vec, node2vec).
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APPLICATIONS OF LOW-RANK APPROXIMATION

- Reduced order modeling for solving physical equations. )

u(x,t) ~ i+ Ev;.\x)m,\/J
POD 2
<) B

4
sew

- Constructing preconditioners in optimization./

- Noisy triangulation (on problem set)./
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PARTIAL SVD

Key result: Can find the best projection from the singular value

decomposition./ﬂ op¥eel ¢t W spprex. of x

d

/

Xy

= Uk

0,
Oy

A

(frmlar vectors singular values right singular vectors
V

Vi =

U, = arg min
orthogonal ZERdxFk

arg min
orthogonal WeRdxk

IX = ZZ'X||?

X — Xww' |

E \)\Li\«yg
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OPTIMAL LOW-RANK APPROXIMATION

Claim: X, € UpX,V] —w XV, V],

——

)% Uer : % UK(UZVT;%ZKVM’/
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OPTIMALITY OF SVD

v T
Claim 1 (

argmin ||X — B||2 = {arg min ||[UX — B]%} @
rank k B rank kB

AXB
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OPTIMALITY OF SVD

Claim 2: ) UT[UQ'%T>: =W

argmin ||[UX — B ||% =(arg min || X — UTBﬁHF
rank kR B rankkB ———

Choose B'so that UTBis an optimal rank k approximation of

et u'g V' | Su '}
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USEFUL OBSERVATIONS

d left singular vectors  singular values  right singular vectors

o,
Oy

X = | Uy 2,

A
Observation 1:

arg min || X — XWWT||%\:('arg max HXWWTH%>
JeRDE

WeRdxk WeRdxk
Follows from fact that for all orthogonal W:

X — Xww||2 - xww| 2
B,

This is often the perspective peopte take when thinking about
Principal Component Analysis.
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USEFUL OBSERVATIONS

S Ik —xy oeT]l v
Claim: fj Py v

X = XWWT[Z = X[ — [XWw|2

X, WWT
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USEFUL OBSERVATIONS

N

d lef singular values right singular vectors

o va

Ok

Xy = %

Observation 2: The optimal low-rank approximation error
Er, = [|X — Xgl|2 = [|IX]|2 — || X]|2 can be written:

18



SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er, = [|X — Xgl|2 = [|IX]|2 — ||X||2 can be written:

Rilts e 3 o I, > = as bl
({ 7‘“2/ i=k+1 ——

Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

784 dimensional vectors
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SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er, = [|X — Xgl|2 = [|IX]|2 — ||X||2 can be written:

d
Er = Z 0,-2.

i=k+1
Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

ctors

784 dim

singular _
value g, .




SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er, = [|X — Xgl|2 = [|IX]|2 — ||X||2 can be written:

d
Er = Z U,-z.

i=k+1
Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

0o singular
> value g,
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COMPUTING THE SVD

Suffices to compute right singular vector

: Comput /’7 Ogj)

- Find eigendecomposition@\_f :@sing eg QR

algorithm.
- Compute L = XV. Sean

Xz 02vT X\ - U2

Total runtime ~ O (n A/v>
-—/‘/‘
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COMPUTING THE SVD (FASTER)

How to go faster?

- Compute aggroximawgn.

- Only compute top k singular vectors/values.

- Iterative algorithms achieve runtime ~ O(ndR) vs. O(nd?)

time.
Krylov subspace methods like the Lanczos method are
most commonly used in practice.
( Power method is the simplest Krylov subspace method,

and still works very well.

23



POWER METHOD

Today: What about when .’E_ij?

Goal: Find some z ~ \Val

Input: X € R4 with SVD UZ@ k—z,\,\\\7’< =
ekt b ks (0 &)

Power method:

- Choose z(9) randomly. uNN(O 1).
» 200 =20 /)2,

. Fori=1,, W2 (X TK)OK) - (KTx ) 2
200 X7 - (3D -
ni = [1z0], c—
200 = z0) /p; WQ;);/ X VVE\S
Return z(N X' X
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POWER METHOD INTUITION

0 iterations 1 iterations 2 iterations

4
4R
4

a
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POWER METHOD FORMAL CONVERGENCE

. =7 ” X -)(‘2— ’\Z“
Theorem (Basic Power Method Convergence) A I xTx=~

= |
Let v = %2 be parameter capturing the “gap” between g K vzu
first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high

probabilit after T=0 '°gd/e) steps, we have either:

or vi = (=22 < e.
logd/e | =
0 (nd- ﬁ) 705
= ]-.4
6 61«4—? y _"4 °T \
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ONE STEP ANALYSIS OF POWER METHOD

T o . Vi, Vy
Write z() in the right singular vector basis: —  ——

7% = v+, + . +cgo)vd

z0 = Dy s + .+ vy

20 = vy + Dy, ..+ Dy
w v v
V( 1/ 0 o
Note: [c{",..., )] = ) = VT_zg.

Also: Since V is orthogonal and [|z0[); =1, [|[c|3 = 1.

-
—_— T T

N AT N PN
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ONE STEP ANALYSIS OF POWER METHOD

Claim: After update z() = IXTXz(—",

260 =X TX 26D - vy ml Vsr i)

n,
i VeV - Vsry T V2. SyIveta
L P
X0 T iy = L gretit)
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MULTI-STEP ANALYSIS OF POWER METHOD

=0
Claim: After T updates: 7

Let aj = %ﬂc}o)af/. Goal: Show that oj < a4 forallj # 1.

29



POWER METHOD FORMAL CONVERGENCE

d
K=1

Since z(N is a unit vecto o? =1.50 |ay| < 1.

If we can prove tha en we will have that

vi— 2|2 < e

| >1—°
a1 = —
W I HD2ONT — g g S ety
& i 72— 2o
“F
vi = 2013 = 2 — 2(w,2D) < e

\
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POWER METHOD FORMAL CONVERGENCE

Let's see how many steps T it takes to ensure that ‘ ‘ <y i,
where a; = C(O)

' /
Assumption: Starting coefficient on first eigenvector is not too
small: y - 6~ 6.

5 ’>o< ) 3

We will prove shortl\y that it holds with probability 99/100.
r ort
Jogl _ ajzr |c |< (g) (6¢>»r - ﬁ\;
‘Oé‘|| U J\)
! +
zolmy . -Y)’rﬂéft
)
Need T = /)/ '\°2‘( /&u) - C)CK/ oé(é/e)})




STARTING COEFFICIENT ANALYSIS

Need to prove: Starting coefficient on first eigenvector is not
too small. l.e.,, with probability 99/100,

)

Prove using Gaussiaonce lon. First use rotational
%\,_u‘;y“'\ NHA@W LY

invariance of Gaussian: ~ _~7

o V2 VO | e )
= 2Oz [IVzZOl2 gl

where g ~ N(0,1)4. V/T ,L(é) —~ }\\ (0, X)
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STARTING COEFFICIENT ANALYSIS

ced to show that with high probability, first entry of
) - .

Part 1: With super high probability (e.g. 99/100),
gl < 24wt sy

. AUV
Igll, s6(z) W pestD

33



STARTING COEFFICIENT ANALYSIS

Need to show that with high probability, the magnitude of the
first entry of g > ¢ for a constant ¢. Think e.g. ¢ =1/10.

Part 2: With probablility 1 — O(a), |- 6(Vio)

91| > a. Yoo

34



POWER METHOD FORMAL CONVERGENCE

Theorem (Basic Power Method Convergence)

Let v = =22 be parameter capturing the “gap” between the
first and second largest singular values. If Power Method is
/7 Qeldco

initialized with a randomian vector then, with high
L. - mogd € i ; 5 3
pfo/tagtillty after T=0 ( 2 ste%s,dv\ie have either: p(\, i)c e,

i = 2D||, < e or vi = (=2D)|lz < e.

The method truly won't converge if v is very small. Consider
extreme case when v = 0.

) 1 [CEO)

_ (0)
IT i —

Z( -V1+C2 ‘Vz—i-...—l—C((jO) - Vqg
=
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POWER METHOD — NO GAP DEPENDENCE

Theorem (Gapless Power Method Convergence)
If Power Method Is initialized with a random Gaussian vector

then, with high probability, after T =0 (%) steps, we
obtain a z satisfying:

X —XezT|[2 < (1 + €)X = Xuy] |2
—_— = - =

Intuition: For a good low-rank approximation, we don't
actually need to converge to vq if o1 and o, are the same or
very close. Would suffice to return either v, or v,, or some

linear combination of the two.

36



GENERALIZATIONS TO LARGER R

- Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration
_ ’/’—a

Power method: 1 dele 0(4\/\’/)
- Choose G € RY%* befa random Gaussian matrix.
- Zy = orth(G). _srcdhs g
- Fori=1,...,T
. 20 = X7 (x20-7)
- ZU) = orth(z()

Return z(M bt of wsvers> =X

Guarantee: After O (%) iterations:

X = X2ZZ|} < (1 + €)X — XV 12

_—

Runtime: O(nnz(X) - k- T) < O(ndR - T). D(Ccék> 37
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KRYLOV METHODS
—— V.
Possible to “accelerate” these methods. Y

\
'y

Convergence Guarantee: T= 0 '°gd/6 iterations to obtain a

nearly optimal low- rank appro><|mat|on:

X = X2ZZT[}E < (1+ €)X — XVieVi |

38



For a normalizing constant ¢, power method returns:

pAC) (xTx)q :

g
= =

Along the way we computed:

2
Kq = [g, X'X) - g, (XX)*-g,...,
K is called the Krylov subspace of degree q.

ix(%)

Idea behind Krlyov methods: Don't throw away everything
before (X'X)7 - g.

KRYLOV SUBSPACE METHODS

39



KRYLOV SUBSPACE METHODS

Want to find v, which minimizes ||X — Xwv||2.

Lanczos method: 7 & \),_dr::
-
- Let Q € RY*® bg an orthonormal span for the vectors in K.
* Solve miny—qy [|[X — Xw/|2.
- Find best vector in the Krylov subspace instead of just
using last vector. AN\ leo o oud ko
- Can be done in O (ndk + dfe%{)"’Ume
- What you're using when you run svds or eigs in MATLAB

or Python.

40



LANCZOS METHOD ANALYSIS

For a degree t polynomial p, let v, = % We always have

that v, € K4, the Krylov subspace contructed with t iterations.
“-

Power method returns: 22 é&f)() %

-
(kYN

Vit

Lanczos method returns vp- where:

p* = argmin [|X — XVPVpHF
degree tp

41



LANCZOS METHOD ANALYSIS

Claim: Thereisat=0 < degree(polynomial p

approximating gup to error A on [0, o%].

4

o
co(’\e\ :
¥ v

X = Xvge VD 2 < [IX = XV [[2 A~ X = X |12 ~ X — Xviv] 2
— . - —_—

Runtime: O ('°g\(2/6) : nnz(X)) vs. O (% : nnz(X))

42



GENERALIZATIONS TO LARGER R

ETE
- Block Krylov methods \ﬁ\\é“ ot (;f(”i X _,(,.(l;]

(-2

- Let G € Rk be a random Gaussian matrix.

- Kq =[G (XX) -6, (%) G,...., (XX)" - 6]

Runtime: O (nnz(X) R %) to obtain a nearly optimal
low-rank approximation.

& ] ~
v 1 T o jf;

z

2 + Shz Wk
F\:dewt\ w2 |

S ) 9 onel &\7'\\1\}?/‘- 1
$oc o\l T =
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SPECTRAL GRAPH THEORY

Main idea: Understand graph data by constructing natural
matrix representations, and studying that matrix’

(eigenvalues/eigenvectors).

2

For now assume G = (V,E) is an undirected, unweighted graph

with n nodes.
Lty



MATRIX REPRESENTATIONS OF GRAPHS

Two most common representations: n x n adjacency matrix A
and graph Laplacian L = D — A where D is the diagonal degree

matrix. PPN o
M
X4 D A
« 1000 0100 1-100
' mmp |0 300 N 1311
X —_
’ 0020 o101 |~ |0-12-1
0 00 ~ 0110 0-1-12
X3

Also common to look at normalized versions of both of these:
A=D""2AD""2and L =1- D~"2AD~"/2,
e

45



SPECTRAL GRAPH THEORY TIDBITS

(

If L have k eigenvalues equal to 0, then G has k connected
components.

Sum of cubes of A’s eigenvalues is equal to number of
triangles in the graph times 6.

- Sum of eigenvalues to the power g is proportional to the

number of g cycles.

- Today: Eigenvectors of super useful in clustering graph

-

data.

46



THE LAPLACIAN VIEW

MT—H:LAW N7 %IOPL'

X4 L A
000 0100 -10
‘ 0 00_1011 _ 13141
00 0 0101 |~ |0-12-
000 0110 0 -1-1
X3

L = B'B where B is the signed “edge-vertex incidence” matrix.

g_ (I~
-

$ o7

B weded

47



THE LAPLACIAN VIEW

WA
l— = E 131_ ,} @ - \_i——l ‘0“\0‘,\, /")0\’((-5- f—(o¢\=_“/

L=B'B=bsb] +b,bl +...+bybl,

where b is the i row of B (each row corresponds to a single

edge).
1)1 1-1 1A
1 T B T 1 -
b1 =] b2 =]
1 1
b, X b,

48



THE LAPLACIAN VIEW

T T - o
Conclusions from L = B'B x"bx 2 xTBBy -\l$'}le, 730}

- L is positive semidefinite: x'Lx > 0 for all x.
- -_— =

- L=VXZ2VT where UXVT is B's SVD. Columns of V are
eigenvectors of L.

- For any vectonx € R"

|l ’3x”; - B'— X ()-xGD
X

49



THE LAPLACIAN VIEW

> jyee(x(1) = x(j))*. So x"Lx is small if x is a “smooth”

unction with respect to the graph. A 2 -1

Lx = Ax

XTLx = AxTx

Eigenvectors of the Laplacian with small eigenvalues
correspond to smooth functions over the graph.

50



ANOTHER EXAMPLE OF A SMOOTH FUNCTION

Any function that only has a large change across a small cut in
the graph is also smooth.

1 L1 Vel =0

51



SMALLEST LAPLACIAN EIGENVECTOR

Fischer min-max principle

LetV = [vy,...,Vp] be the eigenvectors of L.

Vp =argminV'Lv. =0
= fIvi=1

Vp—_1 = argmin v/Lv
~— [[v|[=1,vLvn

Vp_p = argmin viLv
[[V||[=1,vLvn, Vo1

Vi = argmin v/Lv
~ HVH:‘IVVJJI”?--WVZ

52



LARGEST LAPLACIAN EIGENVECTOR

Courant-Fischer min-max principle

LetV = [vy,...,Vp] be the eigenvectors of L.

Vi = arg max V' Lv
- lIvil=1

V, = argmax V'Lv
[[V||[=1,vLv

V3= argmax V'Lv
[[v||[=1,vLvq,vy

vy = argmax  V'Lv
[IV||[=1,vLve,..Vp 1

53



EXAMPLE APPLICATION OF SPECTRAL GRAPH THEORY

- Study graph partitioning problem important in 1)
understanding social networks 2) nonlinear clustering in
unsupervised machine learning (spectral clustering). 3)
Graph visualization 4) Mesh partitioning

- See how this problem can be solved heuristically using
Laplacian eigenvectors.

- Give a full analysis of the method for a common random

graph model.
- Use two tools: matrix concentration and eigenvector
perturbation bounds.

54



BALANCED CUT

Common goal: Given a graph G = (V, E), partition nodes along
a cut that:

- Has few crossing edges: |{(u,v) € E:u e S,v e T} is small.
- Separates large partitions: |S|,|T| are not too small.

\ *
;l .\P , ® ®
o\ =) &
‘\‘ @ "_j‘ »
A - C
e - - \ @ ®
® .‘ \\
® ! . N\
® ™,
@ ®
[

(a) Zachary Karate Club Graph

Important in understanding community structure in social
networks.
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SOCIAL NETWORKS IN THE 1970S

Wayne W. Zachary (1977). An Information Flow Model for
Conflict and Fission in Small Groups.

“The network captures 34 members of a karate club, documenting
links between pairs of members who interacted outside the club.
During the study a conflict arose between the administrator "John A”
and instructor "Mr. Hi” (pseudonyms), which led to the split of the
club into two. Half of the members formed a new club around Mr. Hi;
members from the other part found a new instructor or gave up
karate. Based on collected data Zachary correctly assigned all but
one member of the club to the groups they actually joined after the
split” — Wikipedia

Beautiful paper - definitely worth checking out!
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BALANCED CUT

Common goal: Given a graph G = (V, E), partition nodes along
a cut that:

- Has few crossing edges: |{(u,v) € E:u e S,v e T} is small.
- Separates large partitions: |S|,|T| are not too small.

\ *
;l .\P , ® ®
o\ =) &
‘\‘ @ "_j‘ »
A - C
e - - \ @ ®
® .‘ \\
® ! . N\
® ™,
@ ®
[

(a) Zachary Karate Club Graph

Important in understanding community structure in social
networks.
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SPECTRAL CLUSTERING

Idea: Construct synthetic graph for data that is hard to cluster.

e.g. k-nn _ o
graph AN
O] Y
Vg </ 9
/l 1 I\/
N 3 _\‘/_‘l\ y ‘Z‘ y

Spectral Clustering, Laplacian Eigenmaps, Locally linear

embedding, Isomap, etc.
58



SPECTRAL GRAPH PARTITIONING

There are many way's to formalize Zachary's problem:
B-Balanced Cut:
msin cut(S,V\S) suchthat min(|S|,|V\S|)> B forps<.5

Sparsest Cut:
cut(S,V\ S)
5" min (IS, [V \ SI)

Most formalizations lead to NP-hard problems. Lots of interest
in designing polynomial time approximation algorithms, but
tend to be slow. In practice, much simpler methods based on
the graph spectrum are used.

Spectral methods run in at worst O(n?) time (faster if you use

iterative methods). =



SPECTRAL GRAPH PARTITIONING

Basic spectral clustering method:

- Compute second smallest eigenvalue of graph, v,_1.

- Vp_1 has an entry for every node i in the graph.
- If the i entry is positive, put node i in T.
- Otherwise if the " entry is negative, putiin S.

This shouldn’t make much sense yet! We will see that is a
“relax and round” algorithm in disguise.

60



THE LAPLACIAN VIEW

Another conclusion from L = B'B:

For a cut indicator vector c € {—1,1}" with ¢(i) = —1fori e S
andc(i)=1forieT=V\S:

cle= )" (c(i) — c(j))* = 4~ cut(S,T). ()

(i,))eE
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THE LAPLACIAN VIEW

® e
i ’. it e o
o -\ N ® o
a A s 5
e
@ .. \ e ®
o P N
®
® o @ \\
® -
® e
@ o ®

(a) Zachary Karate Club Graph

For a cut indicator vector c € {—1,1}" with ¢(i) = —1fori € S
andc(i)=1forieT:

- c'Lc = 4-cut(S,T).
- c1=T| -8

Want to minimize both c¢Lc (cut size) and |c™| (imbalance).
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THE LAPLACIAN VIEW

® e
®
o. o o
A M R
\
®
@ ® v \\“ ® @
o %o N
® \
A Q. @ Ny
®
e ®
@ ®

Equivalent formulation if we divide everything by v/n so that ¢
has norm 1. Thenc € {——~ f}” and:

- c'le= % cut(S,T).
= \%(\T\ — IS]).

Want to minimize both c¢Lc (cut size) and |c™| (imbalance).
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RELAX AND ROUND

Consider the “perfectly balanced” version of the balanced cut
problem:

min  ¢’Lc such that ¢/1 = 0.
ce{=J5 75"

Claim: If we relax the constraint ¢ € {—ifi}” to ||cll =1,
n+v/n
then this problem is exactly minimized by the second smallest

eigenvector v,_1 of L.

Approach: Relax, find v,_4, then round back to a vector with

1 1 i
~7 o= entries.
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SMALLEST LAPLACIAN EIGENVECTOR

The smallest eigenvector/singular vector v, satisfies:

1 _ ;
Vp=—=-1= argmin Vv Lv
Vvn VER" with |[v]|=1
vl v —
with v, Lv, = 0.
X4
. 1100
v aad L
0 -1-12
X3
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SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, v,_1 is given by:

Vp_1 = argmin viLv
[[v[=1, vjv=0

which is equivalent to

Vp_1 = argmin viLv.
[lv[|=1, 1Tv=0
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CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Final relax and round algorithm: Compute
Vp_q1 = arg min viLv
veR" with |lv||=1, vI1=0
Set S to be all nodes with v,_4(i) < 0, and T to be all with
Vp_1(1) > 0. l.e. set ¢ = sign(Vp_1)

4

0.8
3

0.6

1
1
1
1
1
1
2 ! 7
| o1, 4 04
1
1
1
I

o5
1 2 ®12 02
922
= - 018 0
2 1020 =
0 28 / "~ 98 13
P 29 g-{—o( —— 02
i —  f
o 1] y
-1 o7 = f 08
k<) 10
5 | \ I 06
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SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~/2LD~"/2,

Important consideration: What to do when we want to split
the graph into more than two parts?

d
pgatiste .
]
af....':“. :5 .r
o /.
0. '."boodvﬁ" .,‘o
DD /o PSS
5000 S/ A= ® o
OB |
G Q;Q?Ooq% | ke s
.DOOOO@O% o
| e e Ny SRV
L .'...... 2 b =\ 08(;)&
° Q
"&:}l&“ "
L ® Q o °
et o
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SPECTRAL PARTITIONING IN PRACTICE

Spectral Clustering:

- Compute smallest k eigenvectors vp_1,...,Vy_g Of L.

- Represent each node by its corresponding row in V € R"*¢
whose rows are Vp_1,...Vh_p.

- Cluster these rows using k-means clustering (or really any
clustering method).

- Often we choose £ = R, but not necessarily.
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LAPLACIAN EMBEDDING

Original Data: (not linearly separable)
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k-Nearest Neighbors Graph:

o i

Pun s Rt 4
o
» L &7 %a
£
.?% & < &
= 8o ﬁf'; al
&uﬂas 2 P
N, o
Cieg, r

LAPLACIAN EMBEDDING

71



LAPLACIAN EMBEDDING

Embedding with eigenvectors v,,_,v,_,: (linearly separable)
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WHY DOES THIS WORK?

Intuitively, since v € v, ... vy are smooth over the graph,
> (vl = vij])?
ijeE
is small for each coordinate. I.e. this embedding explicitly
encourages nodes connected by an edge to be placed in
nearby locations in the embedding.

Also useful e.g,, in graph drawing.
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TONS OF OTHER APPLICATIONS!

Fast balanced partitioning algorithms are also use in
distributing data in graph databases, for partitioning finite
element meshes in scientific computing (e.g., that arise when
solving differential equations), and more.

Lots of good software packages (e.g. METIS).
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GENERATIVE MODELS

So far: Showed that spectral clustering partitions a graph
along a small cut between large pieces.

- No formal guarantee on the ‘quality’ of the partitioning.
- Difficult to analyze for general input graphs.

Common approach: Design a natural generative model that
produces random but realistic inputs and analyze how the
algorithm performs on inputs drawn from this model.

- Very common in algorithm design and analysis. Great way
to start approaching a problem.

- This is also the whole idea behind Bayesian Machine
Learning (can be used to justify ¢, linear regression,
k-means clustering, PCA, etc.)
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STOCHASTIC BLOCK MODEL

Ideas for a generative model for social network graphs that
would allow us to understand partitioning?
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STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model):

Let Gn(p, q) be a distribution over graphs on n nodes, split
equally into two groups B and C, each with n/2 nodes.

- Any two nodes in the same group are connected with
probability p (including self-loops).

- Any two nodes in different groups are connected with
prob. g < p.




STOCHASTIC BLOCK MODEL

Next class we will analyze spectral clustering for SBM graphs.

Have a good Thanksgiving break!
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