
CS-GY :ࠂ676 Lecture ߿ࠀ
Ellipsoid Method, Linear Programming,
Singular Value Decomposition

NYU Tandon School of Engineering, Prof. Christopher Musco

ࠀ

DIMENSION DEPENDENT CONVEX OPTIMIZIATION

Consider a convex function f(x) be bounded between [−B,B]
on a constraint set S .
Theorem (Dimension Dependent Convex Optimization)
The Center-of-Gravity Method finds x̂ satisfying
f(x̂) ≤ minx∈S f(x) + ε using O(d log(B/ε)) calls to a function
and gradient oracle for convex f.

ࠁ

-

i t Ya t

f : f t → 13

CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

• Sࠀ = S
• For t = ,ࠀ . . . , T :

• ct = center of gravity of St.
• Compute ∇f(ct).
• H = {x

∣∣〈∇f(ct), x− ct〉 ≤ .{߿
• St+ࠀ = St ∩ H

• Return x̂ = argmint f(ct)

ࠂ

A

•X t

CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

• Sࠀ = S
• For t = ,ࠀ . . . , T :

• ct = center of gravity of St.
• Compute ∇f(ct).
• H = {x

∣∣〈∇f(ct), x− ct〉 ≤ .{߿
• St+ࠀ = St ∩ H

• Return x̂ = argmint f(ct)

ࠃ

CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

• Sࠀ = S
• For t = ,ࠀ . . . , T :

• ct = center of gravity of St.
• Compute ∇f(ct).
• H = {x

∣∣〈∇f(ct), x− ct〉 ≤ .{߿
• St+ࠀ = St ∩ H

• Return x̂ = argmint f(ct)

ࠄ

Noll"

@x'

!

CENTER OF GRAVITY METHOD

Proof Reminder:

• By Grünbaum’s Theorem, cut the volume of the search
space by a constant every step.

• Need to reduce to a convex body whose volume is roughly
εd smaller than the volume of S .

• Final number of iterations scales with log(ࠀ/εd)

ࠅ

-

k e

-

F o (Ya y

0¥

RUNTIME ISSUE

In general computing the centroid is hard. #P-hard even when
when S is an intersection of half-spaces (a polytope).

Even if the problem isn’t hard for your starting convex body S ,
it likely will become hard for S ∩Hࠀ ∩Hࠁ ∩Hࠂ

So while the oracle complexity of dimension-dependent
optimization was settled in the ,s߿ࠅ a number of basic
questions in terms of computational complexity.

We will see how to resolve this issue with an elegant cutting
plane methods called the Ellipsoid Method that was
introduced by Naum Shor in .ࠆࠆࠈࠀ

ࠆ

-

O

PROBLEM SIMPLIFICATION

Slightly more general problem: Given a convex set K via access to
separation oracle SK for the set, determine if K is empty, or
otherwise return any point x ∈ K.

Sk(y) =
{
∅ if y ∈ K.

separating hyperplane (a, c) if y /∈ K.

Let H = {x : aTx = c}.

ࠇ

t h o
-

-

r,
K

%

For anyzek , µ.:¥oz t a < c

Also

yta Z u ytd7 .a

SEPARATION ORACLE

Example: How would you implement a separation oracle for a
polytope {x : Ax ≥ b}.

ࠈ

x t q ¥

: f ."""i÷÷÷÷...... ytaj <b ibout

FROM MEMBERSHIP TO OPTIMIZATION

Original problem: minx∈S f(x).

How to reduce to determining if a convex set K is empty or not?

߿ࠀ

- k=§nEflx)#
Ig(blue)

" ' ""Xing"
i i i ." 'ar 's

FROM MEMBERSHIP TO OPTIMIZATION

Original problem: minx∈S f(x).

How to reduce to determining if a convex set K is empty or not?

Binary search! For a convex function f(x), {x : f(x) ≤ c} is
convex, and you can get a separation oracle via the gradient. ࠀࠀ

ELLIPSOID METHOD SKETCH

Goal of ellipsoid algorithm: Solve “Is K empty or not?” given a
separation oracle for K under the assumptions that:

.ࠀ K ⊂ B(cR,R).
.ࠁ If non-empty, K contains B(cr, r) for some r < R.

ࠁࠀ

- -

- 0

a .
• Cps

ELLIPSOID METHOD SKETCH

Application to original problem: For a convex function f such
that ‖∇f(x)‖ࠁ ≤ G, it can be checked that the convex set
{x : f(x) ≤ ε} contains a ball of radius ε/G.

ࠂࠀ

ELLIPSOID METHOD SKETCH

Iterative method similar to center-of-gravity:

.ࠀ Check if center cR of B(cR,R) is in K.
.ࠁ If it is, we are done.
.ࠂ If not, cut search space in half, using separating

hyperplane.

ࠃࠀ

*⇒

ELLIPSOID METHOD SKETCH

Key insight: Before moving on, approximate new search region
by something that we can easily compute the centroid of.
Specifically an ellipse!

Produce a sequence of ellipses that always contain K and
decrease in volume: B(cR,R) = Eࠀ, Eࠁ, Once we get to an
ellipse with volume ≤ B(cr, r), we know that K must be empty. ࠄࠀ

x :

ELLIPSE

An ellipse is a convex set of the form: {x : ‖A(x− c)‖ࠁࠁ ≤ α} for
some constant c and matrix A. The center-of-mass is c.

Often re-parameterized to say that the ellipse is all x with
{x : (x− c)TQ−ࠀ(x− c) ≤ {ࠀ ࠅࠀ

"

§
↳ w

Q :Kt'-A)" o

ELLIPSOID UPDATE

There is a closed form solution for the equation of the
smallest ellipse containing a given half-ellipse. I.e. let Ei have
parameters Qi, ci and consider the half-ellipse:

Ei ∩ {x : aTi x ≤ aTi ci}.

Then Ei+ࠀ is the ellipse with parameters:

Qi+ࠀ =
dࠁ

dࠁ − ࠀ

(
Qi −

ࠁ
d+ ࠀ

hhT
)

ci+ࠀ = ci −
ࠀ

n+ ࠀ
h,

where h =
√
aTi Qiai · ai.

Computing the update takes O(dࠁ) time.

ࠆࠀ

-

O
o _ O

l - O -

-I-aita:

GEOMETRIC OBSERVATION

Claim: vol(Ei+ࠀ) ≤ −ࠀ) ࠀ
(dࠁ vol(Ei).

Proof: Via reduction to the “isotropic case”. I will post a proof
on the course website if you are interested.

Not as good as the −ࠀ) ࠀ
e) constant-factor volume reduction

we got from center-of-gravity, but still very good! ࠇࠀ

- I - a-±,@÷

if⇒¥

GEOMETRIC OBSERVATION

Claim: vol(Ei+ࠀ) ≤ −ࠀ) ࠀ
(dࠁ vol(Ei)

After O(d) iterations, we reduce the volume by a constant.

In total require O(dࠁ log(R/r)) iterations to solve the problem.

ࠈࠀ

dlo,C k)

I f r u n f o r

(2)
&¥1184317step,

-

voller).-(5)droll
}

roller)s Vol(Bar,r))

°

LINEAR PROGRAMMING

Linear programs (LPs) are one of the most basic convex
constrained, convex optimization problems:

Let c ∈ Rd,b ∈ Rn,A ∈ Rn×d be fixed vectors that define the
problem, and let x be our variable parameter.

min f(x) = cTx
subject to Ax ≥ b.

Think about Ax ≥ b as a union of half-space constraints:

{x : aTࠀx ≥ bࠀ}
{x : aTࠁx ≥ bࠁ}

...
{x : aTnx ≥ bn}

߿ࠁ

- -

£×eLµ
fixed

KILLER APPLICATION: LINEAR PROGRAMMING

min f(x) = cTx
subject to Ax ≥ b.

ࠀࠁ

t i l l

LINEAR PROGRAMMING APPLICATIONS

• Classic optimization applications: industrial resource
optimization problems were killer app in the .s߿ࠆ

• Robust regression: minx ‖Ax− b‖ࠀ.
• Lࠀ constrained regression: minx ‖x‖ࠀ subject to Ax = b. Lots
of applications in sparse recovery/compressed sensing.

• Solve minx ‖Ax− b‖∞.
• Polynomial time algorithms for Markov Decision Processes.
• Many combinatorial optimization problems can be solved
via LP relaxations.

ࠁࠁ

•

I

LINEAR PROGRAMMING

Theorem (Khachiyan, (979ࠀ
Assume n = d. The ellipsoid method solves any linear
program with L-bit integer valued constraints exactly in
O(nࠃL) time.

Front page of New York Times, November ,ࠈ .ࠈࠆࠈࠀ
ࠂࠁ

- I r

INTERIOR POINT METHODS

Theorem (Karmarkar, (ࠃ98ࠀ
Assume n = d. The interior point method solves any linear
program with L-bit integer valued constraints in O(nࠄ.ࠂL) time.

Front page of New York Times, November ,ࠈࠀ .ࠃࠇࠈࠀ
ࠃࠁ

I -

INTERIOR POINT METHODS

Lecture notes are posted on the website (optional reading).

Projected Gradient Descent Optimization Path

ࠄࠁ

E X

D@i f ÷
i.

INTERIOR POINT METHODS

Lecture notes are posted on the website (optional reading).

Ideal Interior Point Optimization Path

ࠅࠁ

x : # %

D

POLYNOMIAL TIME LINEAR PROGRAMMING

Both results had a huge impact on the theory of optimization,
although at the time neither the ellipsoid method or interior
point method were faster than a heuristic known at the
Simplex Method.

These days, improved interior point methods compete with
and often outperform simplex.

Polynomial time linear programming algorithms have also had
a huge impact of combinatorial optimization. They are often
the work-horse behind approximation algorithms for NP-hard
problems.

ࠆࠁ

@

1 - -

EXAMPLE: VERTEX COVER

Given a graph G with n nodes and edge set E. Each node is
assigned a weight wࠀ, . . . ,wn.

Goal: Select subset of nodes with minimum total weight that
covers all edges.

ࠇࠁ

= -

5

Afar(01 l O O] ⇒
u

6 5 4 3 I 5 3 = 0

I I .K i w i 5 4 + 3 = 7

EXAMPLE: VERTEX COVER

Given a graph G with n nodes and edge set E. Each node is
assigned a weight wࠀ, . . . ,wn.

Formally: Denote if node i is selected by assigning variable xi
to ߿ or .ࠀ Let x = [xࠀ, . . . , xn].

min
x

n∑

i=ࠀ

xiwi subject to xi ∈ ,߿} {ࠀ for all i

xi + xj ≥ ࠀ for all (i, j) ∈ E

NP-hard to solve exactly. We will use convex optimization give
a approximation-ࠁ in polynomial time.

Function to minimize is linear (so convex) but constraint set is
not convex. Why?

ࠈࠁ

i f
00,l , Z

O
•

-

ta t
I'"'"'"m.........IE?F

RELAX-AND-ROUND

High level approach:

• Relax to a problem with convex constraints.
• Round optimal solution of convex problem back to
original constraint set.

߿ࠂ

O

•

•
× ' ¥ * z non-covers

t o p

RELAX-AND-ROUND

High level approach:

• Relax to a problem with convex constraints.
• Round optimal solution of convex problem back to
original constraint set.

ࠀࠂ

lol"0 OH)

0 Oi ,o l
10,0)

RELAX-AND-ROUND

High level approach:

• Relax to a problem with convex constraints.
• Round optimal solution of convex problem back to
original constraint set.

Let S̄ ⊇ S be the relaxed constraint set. Let x∗ = argminx∈S f(x)
and let x̄∗ = argminx∈S̄ f(x). We always have that:

f(x̄∗) ≤ f(x∗).

So typically the goal is to round x̄∗ to S in such a way that we
don’t increase the function value too much.

ࠁࠂ

§
" " ' "" " "

" " " "

µY
¥*

.

-

-

I t → y e s f l y) c . feet) + e
-

RELAXING VERTEX COVER

Vertex Cover:

min
x

n∑

i=ࠀ

xiwi subject to xi ∈ ,߿} {ࠀ for all i

xi + xj ≥ ࠀ for all (i, j) ∈ E

Relaxed Vertex Cover:

min
x

n∑

i=ࠀ

xiwi subject to ߿ ≤ xi ≤ ࠀ for all i

xi + xj ≥ ࠀ for all (i, j) ∈ E

The second problem is a linear program! It can be solved in
poly(n) time!

ࠂࠂ

O
O Q I

f t) E M¥7,f-Cx)

ROUNDING VERTEX COVER

Simply set all variable xi = ࠀ of x̄∗i ≥ ࠁ/ࠀ and xi = ߿ otherwise.

Observation :ࠀ All edges remain covered. I.e., the constraint
xi + xj ≥ ࠀ for all (i, j) ∈ E is not violated.

ࠃࠂ

H o l l G]

¥0 eye

ROUNDING VERTEX COVER

Observation :ࠁ Let x be the rounded version of x̄∗. We have
f(x) ≤ ࠁ · f(x̄), and thus f(x) ≤ ࠁ · f(x∗).

Proof:

ࠄࠂ

*
-

f (x) : EE,W i 11512k] s,}w i - 2 .I i '
= 2 f (E)

f (Et) = §,w i I T
• 7 → I

flet) s f (xto)

VERTEX COVER

So, a polynomial time algorithm for solving LPs immediately
yields a approximation-ࠁ algorithm for the NP-hard problem of
vertex cover.

• Proven that it is NP-hard to do better than a ࠅࠂ.ࠀ
approximation in [Dinur, Safra, .[ࠁ߿߿ࠁ

• Recently improved to
√
ࠁ ≈ ࠀࠃ.ࠀ in [Khot, Minzer, Safra

,[ࠇࠀ߿ࠁ which proved the ࠁ-to-ࠁ games conjecture.
• Widely believed that doing better than −ࠁ ε is NP-hard for
any ε > ,߿ and this is implied by Subhash Khot’s Unique
Games Conjecture.

There is a simpler greedy approximation-ࠁ algorithm that
doesn’t use optimization at all. Try coming up with it on your
own!

ࠅࠂ

•
O

f- - t o -

BREAK

ࠅࠂ

SPECTRAL METHODS

Next section of course: Spectral methods and numerical linear
algebra.

Spectral methods generally refer to methods based on the
“spectrum” of a matrix. I.e. on it’s eigenvectors/eigenvalues
and singular vectors/singular values. We will look at
applications in:

• Low-rank approximation and dimensionality reduction.
• Data clustering and related problems.
• Constructing data embeddings (e.g. WordࠁVec).

ࠆࠂ

SPECTRAL METHODS

Reminder: A vector v ∈ Rd is an eigenvector of a matrix
X ∈ Rd×d, if there exists a scalar λ such that

Xv = λv

The scalar λ is called the eigenvalue associated with v.

Matrices can often be written completely in terms of their
eigenvectors and eigenvalues. This is called
eigendecomposition.

We will actually focus on a related tool called singular value
decomposition.

ࠇࠂ

I

-

I
l

LINEAR ALGEBRA REMINDER

If a square matrix has orthonormal rows, it also has
orthonormal columns:

VTV = I = VVT

ࠁࠅ.߿− ࠇࠆ.߿ ࠀࠀ.߿−
ࠇࠁ.߿− ࠄࠂ.߿− ࠈࠇ.߿−
ࠂࠆ.߿− ࠁࠄ.߿− ࠃࠃ.߿

 ·

ࠁࠅ.߿− ࠇࠁ.߿− ࠂࠆ.߿−
ࠇࠆ.߿ ࠄࠂ.߿− ࠁࠄ.߿−
ࠀࠀ.߿− ࠈࠇ.߿− ࠃࠃ.߿

 =

ࠀ ߿ ߿
߿ ࠀ ߿
߿ ߿ ࠀ

ࠈࠂ

•

0 0 -

LINEAR ALGEBRA REMINDER

Implies that for any vector x, ‖Vx‖ࠁࠁ = ‖x‖ࠁࠁ and ‖VTx‖ࠁࠁ.

Same thing goes for Frobenius norm: for any matrix X,
‖VX‖ࠁF = ‖X‖ࠁF and ‖VTX‖ࠁF = ‖X‖ࠁF.

߿ࠃ

= -

O
O

AVxp ; = (Vx)TVx = x TUTUx =xtx..11×11,'

¥
INTxH i = x¥fTx i I xI n

LINEAR ALGEBRA REMINDER

The same is not true for rectangular matrices:

VTV = I but VVT /= I

For any x, ‖Vx‖ࠁࠁ = ‖x‖ࠁࠁ but ‖VTx‖ࠁࠁ /= ‖x‖ࠁࠁ in general.

ࠀࠃ

NO O
I n

LINEAR ALGEBRA REMINDER

Multiplying a vector by V with orthonormal columns rotates
and/or reflects the vector.

ࠁࠃ

,

' " ' " a "
(Va ,Us>= a Tu t ub

= a tb

LINEAR ALGEBRA REMINDER

Multiplying a vector by a rectangular matrix VT with
orthonormal rows projects the vector (representing it as
coordinates in the lower dimensional space).

So we always have that ‖VTx‖ࠁ ≤ ‖x‖ࠁ. ࠂࠃ

I : #

SINGULAR VALUE DECOMPOSITION

One of the most fundamental results in linear algebra.

Any matrix X can be written:

Where UTU = I, VTV = I, and σࠀ ≥ σࠁ ≥ . . .σd ≥ .߿

Singular values are unique. Factors are not. E.g. would still get
a valid SVD by multiplying both ith column of V and U by .ࠀ− ࠃࠃ

Foo l
-

SINGULAR VALUE DECOMPOSITION

Important take away from singular value decomposition.

Multiplying any vector a by a matrix X to form Xa can be viewed
as a composition of ࠂ operations:

.ࠀ Rotate/reflect the vector (multiplication by to VT).
.ࠁ Scale the coordinates (multiplication by Σ.
.ࠂ Rotate/reflect the vector again (multiplication by U).

ࠄࠃ

0

Y a

Yetta)

SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT

ࠅࠃ

COMPARISON TO EIGENDECOMPOSITION

Recall that an eigenvalue of a square matrix X ∈ Rd×d is any
vector v such that Xv = λv. A matrix has at most d linearly
independent eigenvectors. If a matrix has a full set of d
eigenvectors vࠀ, . . . , vd with eigenvalues λࠀ, . . . ,λd it is called
“diagonalizable” and can be written as:

VΛV−ࠀ.

V’s columns are vࠀ, . . . , vd.

ࠆࠃ

(= , =

X :

p.... y 'FA

COMPARISON TO EIGENDECOMPOSITION

Singluar value decomposition

• Exists for all matrices,
square or rectangular.

• Singular values are always
positive.

• Factors U and V are
orthogonal.

Eigendecomposition

• Exists for some square
matrices.

• Eigenvalues can be
positive or negative.

• Factor V is orthogonal if
and only if X is symmetric.

ࠇࠃ

I
l d

I

CONNECTION TO EIGENDECOMPOSITION

• U contains the orthogonal eigenvectors of XXT.
• V contains the orthogonal eigenvectors of XTX.
• σࠁ

i = λi(XXT) = λi(XTX)

ࠈࠃ

O O ,O -

O -

X : OSU's X¥ u s # s t u t
= U s t

SVD APPLICATIONS

Lots of applications.

• Compute pseudoinverse VΣ−ࠀUT.
• Read off condition number of X, σࠁ

σ/ࠀ
ࠁ
d.

• Compute matrix norms. E.g. ‖X‖ࠁ = σࠀ, ‖X‖F =
√∑d

i=ࠀ σ
ࠁ
i .

• Compute matrix square root – i.e. find a matrix B such that
BBT = X. Used e.g. in sampling from Gaussian with
covariance X.

• Principal component analysis.

Killer app: Read off optimal low-rank approximations for X.

߿ࠄ

O

O - O
D = U { " o u t

=

RANK

The column span of a matrix X ∈ Rn×d is the set of all vectors
that can be written as Xa for some a.

The dimension of the column span, Dc, is the maximum
number of linear independent vectors in that set.

The row span of a matrix X ∈ Rn×d is the set of all vectors that
can be written as bTX for some b.

The dimension of the row span, Dr, is the maximum number of
linear independent vectors in that set.

ࠀࠄ

°o°-o

RANK

For a matrix X ∈ Rn×d we have:

Dc ≤ d
Dr ≤ n
Dc = Dr.

We call the value of Dc = Dr the rank of X.

ࠁࠄ

8
FA
E

rankE u n (dir)

LOW-RANK APPROXIMATION

Approximate X as the product of two rank k matrices:

Typically choose C and B to minimize:

min
B,C

‖X− CB‖

for some matrix norm. Common choice is ‖X− CB‖ࠁF. ࠂࠄ

y

0
"" " d

n
y "

•

APPLICATIONS OF LOW-RANK APPROXIMATION

• CB takes O(k(n+ d)) space to store instead of O(nd).
• Regression problems involving CB can be solved in O(nkࠁ)
instead of O(ndࠁ) time.

• Will see a bunch more in a minute.

ࠃࠄ

G)and')
O -

LOW-RANK APPROXIMATION

Without loss of generality can assume that the right matrix is
orthogonal. I.e. WT with WTW = I

Then we should choose C to minimize:

min
C

‖X− CWT‖ࠁF

This is just n least squares regression problems! ࠄࠄ

°

.

@ O ooo

c . BT

I ¢-B)w t
i hinllx,-(full}
µ A t.ae?&-x.llJ

LOW-RANK APPROXIMATION

ci = argmin
c

‖Wc− xi‖ࠁࠁ

ci = WTxi
C = XW

So our optimal low-rank approximation always has the form:

X ≈ XWWT

ࠅࠄ

X i n x ;w u t

x ; x x ;w u t@ X - X ⇐ t

Ci. (btw)-'wtX i = w i x ;
w i n
llx-xw.utll.ie

¥
= §,I lX i

- x .wake'

0

hey,} "X-CBlle' n g 11X - x
w u t 117 wherew i t I

PROJECTION MATRICES

WWT is a symmetric projection matrix.

ࠆࠄ

I
' 8
I

LOW-RANK APPROXIMATION

C = XW can be used as a compressed version of data matrix X.

ࠇࠄ

÷ . : O
* HE C) .#A

DATA COMPRESSION

Let C = XW. We have that:

‖xi − xj‖ࠁ ≈ ‖xTiWWT − xTjWWT‖ࠁ = ‖ci − ci‖ࠁ

Similarly, we expect that:

• ‖xi‖ࠁ ≈ ‖ci‖ࠁ
• 〈xi, xj〉 ≈ 〈ci, cj〉
• etc.

How does this compare to Johnson-Lindenstrauss projection?

ࠈࠄ

C i : X ., W C j= X ;W

0 - - 4 " - 0

E

WHY IS DATA APPROXIMATELY LOW-RANK?

Rows of X (data points) are approximately spanned by k
vectors. Columns of X (data features) are approximately
spanned by k vectors.

߿ࠅ

ROW REDUNDANCY

If a data set only had k unique data points, it would be exactly
rank k. If it has k “clusters” of data points (e.g. the ߿ࠀ digits) it’s
often very close to rank k.

ࠀࠅ

COLUMN REDUNDANCY

Colinearity/correlation of data features leads to a low-rank
data matrix.

ࠁࠅ

APPLICATIONS OF LOW-RANK APPROXIMATION

Fact that ‖xi − xj‖ࠁ ≈ ‖xTiWWT − xTjWWT‖ࠁ = ‖ci − ci‖ࠁ leads to
lots of applications.

• Data compression. E.g. used in state-of-the-art data
dependent methods for nearest neighbor search.

• Data visualization when k = ࠁ or .ࠂ

• Data embeddings (next lecture). ࠂࠅ

APPLICATIONS OF LOW-RANK APPROXIMATION

• Reduced order modeling for solving physical equations.

• Constructing preconditioners in optimization.
• Noisy triangulation (on problem set).

ࠃࠅ

PARTIAL SVD

Can find the best projection from the singular value
decomposition.

Vk = argmin
orthogonal W∈Rd×k

‖X− XWWT‖ࠁF

ࠄࠅ

OPTIMAL LOW-RANK APPROXIMATION

Claim: Xk = UkΣkVTk = XVkVTk.

ࠅࠅ

OPTIMALITY OF SVD

Claim :ࠀ

argmin
rank k B

‖X− B|ࠁF = U · argmin
rank k B

‖ΣVT − B‖ࠁF

ࠆࠅ

OPTIMALITY OF SVD

Claim :ࠁ

argmin
rank k B

‖ΣVT − B‖ࠁF = argmin
rank k B

‖VΣ− BT‖ࠁF

Claim :ࠂ

argmin
rank k B

‖VΣ− BT‖ࠁF = argmin
rank k B

‖Σ− VTBT‖ࠁF

Chose BT so that VTBT = Σk.

ࠇࠅ

USEFUL OBSERVATIONS

Observation :ࠀ

argmin
W∈Rd×k

‖X− XWWT‖ࠁF = argmax
W∈Rd×k

‖XWWT‖ࠁF

Follows from fact that for all orthogonal W:

‖X− XWWT‖ࠁF = ‖X‖ࠁF − ‖XWWT‖ࠁF

ࠈࠅ

USEFUL OBSERVATIONS

Claim:

‖X− XWWT‖ࠁF = ‖X‖ࠁF − ‖XWWT‖ࠁF

߿ࠆ

USEFUL OBSERVATIONS

Observation :ࠁ The optimal low-rank approximation error
Ek = ‖X− XVkVTk‖

ࠁ
F = ‖X‖ࠁF − ‖XVkVTk‖

ࠁ
F can be written:

Ek =
d∑

i=k+ࠀ

σࠁ
i .

ࠀࠆ

SPECTRAL PLOTS

Observation :ࠁ The optimal low-rank approximation error
Ek = ‖X− XVkVTk‖

ࠁ
F = ‖X‖ࠁF − ‖XVkVTk‖

ࠁ
F can be written:

Ek =
d∑

i=k+ࠀ

σࠁ
i .

Can immediately get a sense of “how low-rank” a matrix is
from it’s spectrum:

ࠁࠆ

SPECTRAL PLOTS

Observation :ࠁ The optimal low-rank approximation error
Ek = ‖X− XVkVTk‖

ࠁ
F = ‖X‖ࠁF − ‖XVkVTk‖

ࠁ
F can be written:

Ek =
d∑

i=k+ࠀ

σࠁ
i .

Can immediately get a sense of “how low-rank” a matrix is
from it’s spectrum:

ࠂࠆ

SPECTRAL PLOTS

Observation :ࠁ The optimal low-rank approximation error
Ek = ‖X− XVkVTk‖

ࠁ
F = ‖X‖ࠁF − ‖XVkVTk‖

ࠁ
F can be written:

Ek =
d∑

i=k+ࠀ

σࠁ
i .

Can immediately get a sense of “how low-rank” a matrix is
from it’s spectrum:

ࠃࠆ

COMPUTING THE SVD

Suffices to compute right singular vectors V:

• Compute XTX.
• Find eigendecomposition VΛVT = XTX using e.g. QR
algorithm.

• Compute L = XV. Set σi = ‖Li‖ࠁ and Ui = Li/‖Li‖ࠁ.

Total runtime ≈

ࠄࠆ

COMPUTING THE SVD (FASTER)

Next class:

• Compute approximate solution.
• Only compute top k singular vectors/values. Runtime will
depend on k. When k = d we can’t do any better than
classical algorithms based on eigendecomposition.

• Iterative algorithms achieve runtime ≈ O(ndk) vs. O(ndࠁ)
time.

• Krylov subspace methods like the Lanczos method are
most commonly used in practice.

• Power method is the simplest Krylov subspace method,
and still works very well.

ࠅࠆ

