CS-GY 6763: Lecture 10 Ellipsoid Method, Linear Programming, Singular Value Decomposition

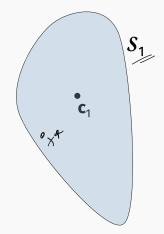
NYU Tandon School of Engineering, Prof. Christopher Musco

Consider a convex function $f(\mathbf{x})$ be bounded between [-B, B] on a constraint set S.

Theorem (Dimension Dependent Convex Optimization) The Center-of-Gravity Method finds $\hat{\mathbf{x}}$ satisfying $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x} \in S} f(\mathbf{x}) + \epsilon using O(d \log(B/\epsilon))$ calls to a function and gradient oracle for convex f. 62 f: Bd > B

Natural "cutting plane" method.

- $\cdot \ \mathcal{S}_1 = \mathcal{S}$
- For t = 1, ..., T:
 - \mathbf{c}_t = center of gravity of \mathcal{S}_t .
 - Compute $\nabla f(\mathbf{c}_t)$.
 - $\mathcal{H} = \{ \mathbf{x} | \langle \nabla f(\mathbf{c}_t), \mathbf{x} \mathbf{c}_t \rangle \leq 0 \}.$
 - $\cdot \ \mathcal{S}_{t+1} = \mathcal{S}_t \cap H$
- Return $\hat{\mathbf{x}} = \arg\min_t f(\mathbf{c}_t)$

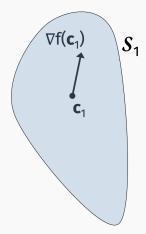


Natural "cutting plane" method.

- $\cdot \ \mathcal{S}_1 = \mathcal{S}$
- For t = 1, ..., T:
 - $\mathbf{c}_t = \text{center of gravity of } \mathcal{S}_t$.
 - Compute $\nabla f(\mathbf{c}_t)$.

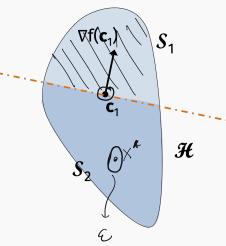
•
$$\mathcal{H} = \{ \mathbf{x} | \langle \nabla f(\mathbf{c}_t), \mathbf{x} - \mathbf{c}_t \rangle \leq 0 \}.$$

- $\cdot \ \mathcal{S}_{t+1} = \mathcal{S}_t \cap H$
- Return $\hat{\mathbf{x}} = \arg\min_t f(\mathbf{c}_t)$



Natural "cutting plane" method.

- $\cdot \ \mathcal{S}_1 = \mathcal{S}$
- For t = 1, ..., T:
 - $\mathbf{c}_t = \text{center of gravity of } \mathcal{S}_t$.
 - Compute $\nabla f(\mathbf{c}_t)$.
 - $\mathcal{H} = \{ \mathbf{x} | \langle \nabla f(\mathbf{c}_t), \mathbf{x} \mathbf{c}_t \rangle \leq 0 \}.$
 - $\cdot \ \mathcal{S}_{t+1} = \mathcal{S}_t \cap H$
- Return $\hat{\mathbf{x}} = \arg\min_t f(\mathbf{c}_t)$

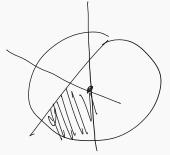


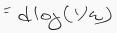
CENTER OF GRAVITY METHOD

Proof Reminder:

Ve

- By <u>Grünbaum's Theorem</u>, cut the volume of the search space by a constant every step.
- Need to reduce to a convex body whose volume is roughly ϵ^d smaller than the volume of \mathcal{S} .
- Final number of iterations scales with $\log(1/\epsilon^d)$





In general computing the centroid is hard. $#\underline{P}$ -hard even when when S is an intersection of half-spaces (a polytope).

Even if the problem isn't hard for your starting convex body S, it likely will become hard for $S \cap \mathcal{H}_1 \cap \mathcal{H}_2 \cap \mathcal{H}_3 \dots$

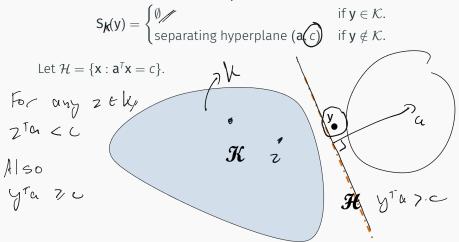
So while the <u>oracle complexity</u> of dimension-dependent optimization was settled in the 60s, a number of basic questions in terms of <u>computational complexity</u>.

We will see how to resolve this issue with an elegant cutting plane methods called the **Ellipsoid Method** that was introduced by Naum Shor in 1977.

PROBLEM SIMPLIFICATION

Guerofization

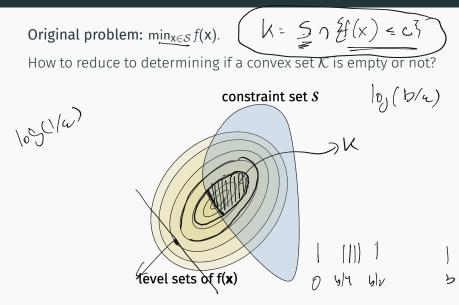
Slightly more general problem: Given a convex set $\underline{\mathcal{K}}$ via access to <u>separation oracle $S_{\mathcal{K}}$ </u> for the set, determine if \mathcal{K} is empty, or otherwise return any point $\mathbf{x} \in \mathcal{K}$



SEPARATION ORACLE

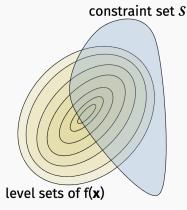
Example: How would you implement a separation oracle for a polytope { $\mathbf{x} : \mathbf{Ax} \ge \mathbf{b}$ }. xte, 7, b, xtaz z b= χ Xtay > by Ø < b; but Q; > b, for gell ZEK g

FROM MEMBERSHIP TO OPTIMIZATION



Original problem: $\min_{x \in S} f(x)$.

How to reduce to determining if a convex set \mathcal{K} is empty or not?

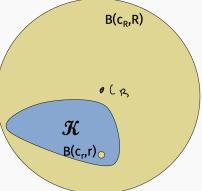


Binary search! For a convex function $f(\mathbf{x})$, $\{\mathbf{x} : f(\mathbf{x}) \le c\}$ is convex, and you can get a separation oracle via the gradient.

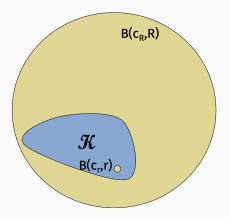
٩

Goal of ellipsoid algorithm: Solve "Is \mathcal{K} empty or not?" given a separation oracle for \mathcal{K} under the assumptions that:

1. $\mathcal{K} \subset B(\underline{c}_R, \underline{R})$. 2. If non-empty, \mathcal{K} contains $B(\underline{c}_r(\underline{f})$ for some r < R. $B(\underline{c}_n, \underline{R})$



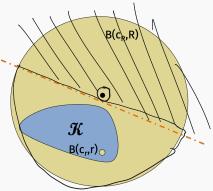
ELLIPSOID METHOD SKETCH



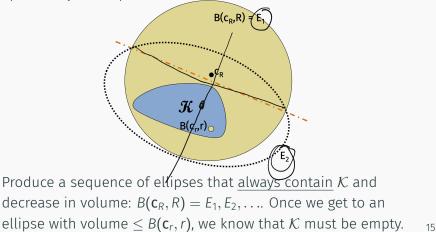
Application to original problem: For a convex function f such that $\|\nabla f(\mathbf{x})\|_2 \leq G$, it can be checked that the convex set $\{\mathbf{x} : f(\mathbf{x}) \leq \epsilon\}$ contains a ball of radius ϵ/G .

Iterative method similar to center-of-gravity:

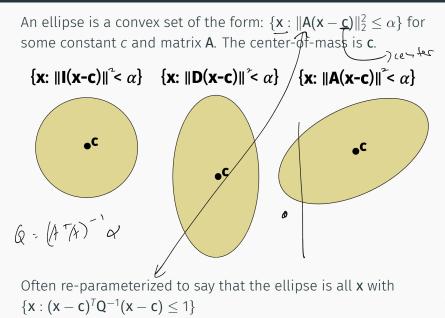
- 1. Check if center \mathbf{c}_R of $B(\mathbf{c}_R, R)$ is in \mathcal{K} .
- 2. If it is, we are done.
- 3. If not, cut search space in half, using separating hyperplane.



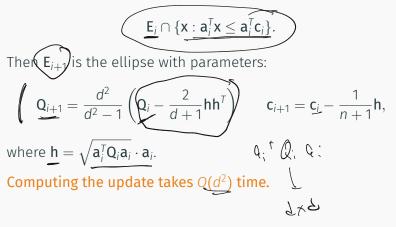
Key insight: Before moving on, approximate new search region by something that we can easily compute the centroid of. Specifically an ellipse!



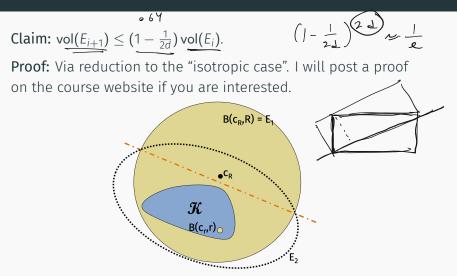
ELLIPSE



There is a <u>closed form solution for the equation of the</u> smallest ellipse containing a given half-ellipse. I.e. let E_i have parameters Q_i , c_i and consider the half-ellipse:

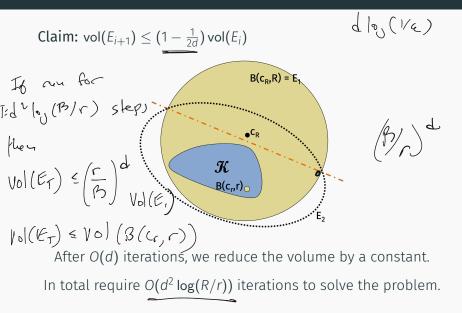


GEOMETRIC OBSERVATION



Not as good as the $(1 - \frac{1}{e})$ constant-factor volume reduction we got from center-of-gravity, but still very good!

GEOMETRIC OBSERVATION

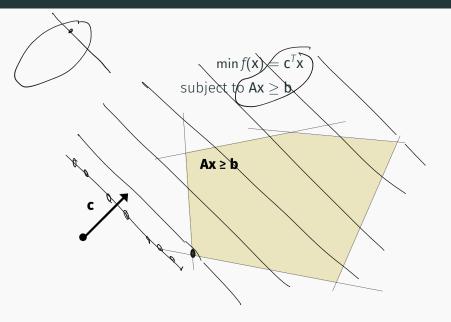


Linear programs (LPs) are one of the most basic convex constrained, convex optimization problems:

Let $\mathbf{c} \in \mathbb{R}^d$, $\mathbf{b} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{n \times d}$ be fixed vectors that define the problem, and let \mathbf{x} be our variable parameter.

$$\min \underline{f(\mathbf{x})} = \underline{\mathbf{c}^T \mathbf{x}}$$
subject to $\underline{A\mathbf{x} \ge \mathbf{b}}$.
Subject to $\underline{A\mathbf{x} \ge \mathbf{b}$.
Subject to $\underline{A\mathbf{x} \ge \mathbf{b}}$.
Subject to $\underline{A\mathbf{x} \ge \mathbf{b}$.
Subject to $\underline{A\mathbf{x} \ge \mathbf{b}}$.
Subject to $\underline{A\mathbf{x} \ge \mathbf{b}}$.
Subject to $\underline{A\mathbf{x} \ge \mathbf{b}}$.
Subject to $\underline{A\mathbf{x} \ge \mathbf{b}$.
Subject to \underline

KILLER APPLICATION: LINEAR PROGRAMMING



LINEAR PROGRAMMING APPLICATIONS

- Classic optimization applications: industrial resource optimization problems were killer app in the 70s.
- Robust regression: $\min_{x} ||Ax b||_{1}$.
- L1 constrained regression: $\min_{\mathbf{x}} ||\mathbf{x}||_1$ subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$. Lots of applications in sparse recovery/compressed sensing.
- $\cdot \ \text{Solve min}_x \, \|Ax b\|_\infty.$
- Polynomial time algorithms for Markov Decision Processes.
- Many combinatorial optimization problems can be solved via LP relaxations.

Theorem (Khachiyan, 1979)

Assume n = d. The ellipsoid method solves any linear program with L-bit integer valued constraints exactly in O(n⁴L) time.

A Soviet Discovery Rocks World of Mathematics

By MALCOLM W. BROWNE

A surprise discovery by an obscure Soviet mathematician has rocked the world of mathematics and computer analysis, and experts have begun exploring its practical applications.

Mathematicians describe the discoverv by L.G. Khachian as a method by which computers can find guaranteed solutions to a class of very difficult problems that have hitherto been tackled on a kind of hit-or-miss basis.

Apart from its profound theoretical interest, the discovery may be applicable

in weather prediction, complicated indus- could take billions of years to compute. trial processes, petroleum refining, the scheduling of workers at large factories, secret codes and many other things.

"I have been deluged with calls from virtually every department of government for an interpretation of the significance of this," a leading expert on computer methods, Dr. George B. Dantzig of Stanford University, said in an interview.

The solution of mathematical problems by computer must be broken down into a series of steps. One class of problem sometimes involves so many steps that it

The Russian discovery offers a way by which the number of steps in a solution can be dramatically reduced. It also offers the mathematician a way of learning quickly whether a problem has a solution or not, without having to complete the entire immense computation that may be required.

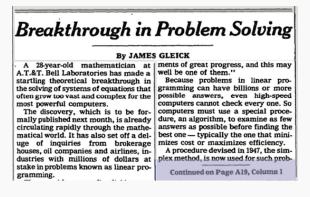
According to the American journal Sci-

Continued on Page A20, Column 3

ONLY \$10.00 A MONTHI!! 24 Hr. Phone Answering Service, Totally New Concept" Increable!! 279-3870-ADVT.

Front page of New York Times, November 9, 1979.

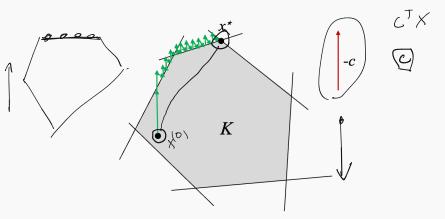
Theorem (Karmarkar, 1984) Assume n = d. The interior point method solves any linear program with L-bit integer valued constraints in $O(n^{3.5}L)$ time.



Front page of New York Times, November 19, 1984.

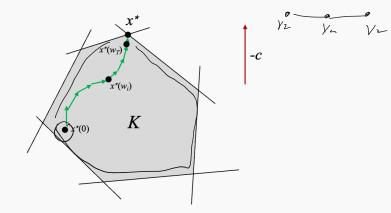
INTERIOR POINT METHODS

Lecture notes are posted on the website (optional reading).



Projected Gradient Descent Optimization Path

Lecture notes are posted on the website (optional reading).

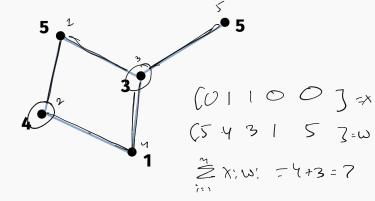


Ideal Interior Point Optimization Path

Both results had a huge impact on the theory of optimization, although at the time neither the ellipsoid method or interior point method were faster than a heuristic known at the Simplex Method.

These days, improved interior point methods compete with and often outperform simplex.

Polynomial time linear programming algorithms have also had a huge impact of <u>combinatorial optimization</u>. They are often the work-horse behind approximation algorithms for <u>NP-hard</u> problems. Given a graph G with <u>n nodes</u> and edge set <u>E</u>. Each node is assigned a weight w_1, \ldots, w_n .

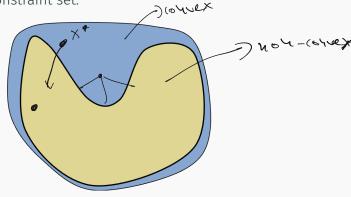


Goal: Select subset of nodes with minimum total weight that covers all edges.

Given a graph G with n nodes and edge set E. Each node is assigned a weight w_1, \ldots, w_n . , 2 **Formally:** Denote if node *i* is selected by assigning variable x_i to 0 or 1. Let $\underline{x} = [x_1, \dots, x_n]$. $\min_{\mathbf{x}} \sum_{i=1}^{n} x_i W_i \quad \text{subject to}$ $x_i \in \{0, 1\}$ for all $x_i + x_i \ge 1$ for all $(i, j) \in E$ NP-hard to solve exactly. We will use convex optimization give a 2-approximation in polynomial time.

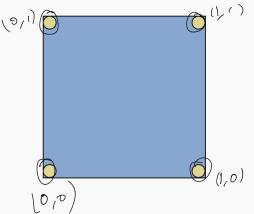
High level approach:

Relax to a problem with convex constraints.
 Round ptimal solution of convex problem back to original constraint set.



High level approach:

- <u>Relax</u> to a problem with convex constraints.
- <u>Round</u> optimal solution of convex problem back to original constraint set.



RELAX-AND-ROUND

High level approach: \mathcal{A}^{i} \mathcal{A}^{i} <t

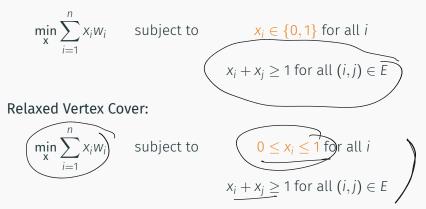
$$f(\bar{\mathbf{x}}^*) \leq f(\mathbf{x}^*).$$

So typically the goal is to round \bar{x}^* to \mathcal{S} in such a way that we don't increase the function value too much.

$$\bar{X}^{\bullet} \rightarrow JES \quad f(\bar{J}) \in f(\bar{X}^{\bullet}) + e$$

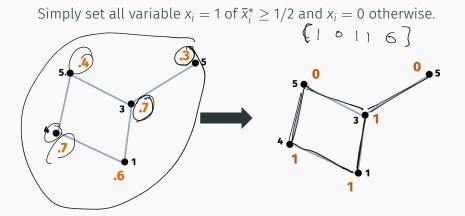
RELAXING VERTEX COVER

Vertex Cover:



The second problem is a linear program! It can be solved in poly(*n*) time!

$$f(x^{*}) \leq w. \gamma f(x)$$



Observation 1: All edges remain covered. I.e., the constraint $x_i + x_j \ge 1$ for all $(i, j) \in E$ is not violated.

Observation 2: Let **x** be the rounded version of $\overline{\mathbf{x}}^*$. We have $f(\mathbf{x}) \leq 2 \cdot f(\overline{\mathbf{x}}^*)$, and thus $f(\mathbf{x}) \leq 2 \cdot f(\mathbf{x}^*)$. **Proof:**

$$f(\mathbf{x}) = \sum_{i=1}^{n} \omega_{i} \, \mathbb{1}[\overline{\mathbf{x}}^{\dagger} \geqslant \frac{1}{2}] \leq \sum_{i=1}^{n} \omega_{i} \cdot \frac{1}{\overline{\mathbf{x}}} = 2f(\overline{\mathbf{x}}^{\dagger})$$

$$f(\overline{\mathbf{x}}^{\dagger}) = \sum_{i=1}^{n} \omega_{i} \cdot \overline{\mathbf{x}}^{\dagger};$$

$$.7 \rightarrow 1$$

$$f(\overline{\mathbf{x}}^{\dagger}) \leq f(\mathbf{x}^{\dagger})$$

So, a polynomial time algorithm for solving LPs immediately yields a 2-approximation algorithm for the NP-hard problem of vertex cover.

- Proven that it is NP-hard to do better than a 1.36 approximation in [Dinur, Safra, 2002].)
 - Recently improved to $\sqrt{2} \approx 1.41$ in [Khot, Minzer, Safra 2018], which proved the 2-to-2 games conjecture.
 - Widely believed that doing better than 2ϵ is <u>NP-har</u>d for any $\epsilon > 0$, and this is implied by Subhash Khot's Unique Games Conjecture.

There is a simpler greedy 2-approximation algorithm that doesn't use optimization at all. Try coming up with it on your own!

BREAK

Next section of course: <u>Spectral methods</u> and <u>numerical linear</u> <u>algebra</u>.

Spectral methods generally refer to methods based on the "spectrum" of a matrix. I.e. on it's eigenvectors/eigenvalues and singular vectors/singular values. We will look at applications in:

- Low-rank approximation and dimensionality reduction.
- Data clustering and related problems.
- Constructing data embeddings (e.g. Word2Vec).

Reminder: A vector $\mathbf{v} \in \mathbb{R}^d$ is an <u>eigenvector</u> of a matrix $\mathbf{X} \in \mathbb{R}^{d \times d}$, if there exists a scalar λ such that

 $Xv = \lambda v$

The scalar λ is called the <u>eigenvalue</u> associated with **v**.

Matrices can often be written completely in terms of their eigenvectors and eigenvalues. This is called eigendecomposition.

We will actually focus on a related tool called <u>(singular value</u>) <u>decomposition</u>

If a square matrix has orthonormal rows, it also has orthonormal columns:

$$\begin{bmatrix} -0.62 & 0.78 & -0.11 \\ -0.28 & -0.35 & -0.89 \\ -0.73 & -0.52 & 0.44 \end{bmatrix} \cdot \begin{bmatrix} -0.62 & -0.28 & -0.73 \\ 0.78 & -0.35 & -0.52 \\ -0.11 & -0.89 & 0.44 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Implies that for any vector \mathbf{x} , $\|\mathbf{V}\mathbf{x}\|_2^2 = \|\mathbf{x}\|_2^2$ and $\|\mathbf{V}^T\mathbf{x}\|_2^2$.

Same thing goes for Frobenius norm: for any matrix \mathbf{X} , $\|\mathbf{V}\mathbf{X}\|_{F}^{2} = \|\mathbf{X}\|_{F}^{2}$ and $\|\mathbf{V}^{\mathsf{T}}\mathbf{X}\|_{F}^{2} = \|\mathbf{X}\|_{F}^{2}$.

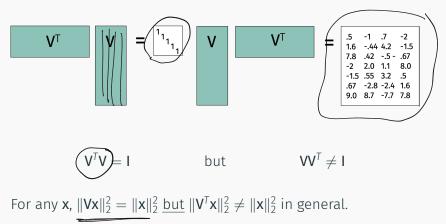
$$\| V \times \|_{r}^{L} = (V \times)^{T} V_{X} = \chi^{T} V^{T} V \times = \chi^{T} X = \| X \|_{r}^{2}$$

$$\| V \times \|_{r}^{L} = \chi V V^{T} \times = \| X \|_{r}$$

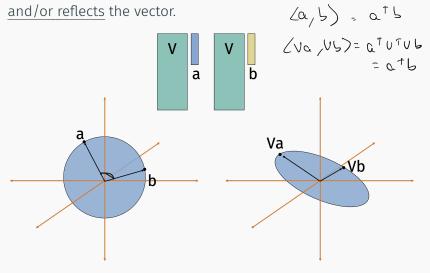
$$\tilde{L}$$

LINEAR ALGEBRA REMINDER

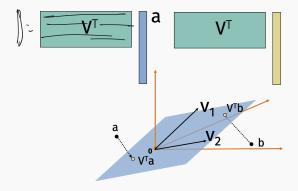
The same is <u>not true</u> for rectangular matrices:



Multiplying a vector by V with orthonormal columns rotates and/or reflects the vector.



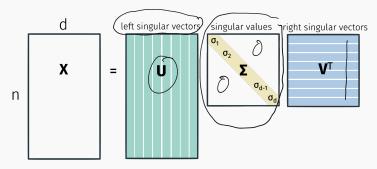
Multiplying a vector by a rectangular matrix \mathbf{V}^{T} with orthonormal rows <u>projects</u> the vector (representing it as coordinates in the lower dimensional space).



So we always have that $\|\mathbf{V}^{\mathsf{T}}\mathbf{x}\|_2 \leq \|\mathbf{x}\|_2$.

One of the most fundamental results in linear algebra.

Any matrix **X** can be written:



Where $\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}, \mathbf{V}^{\mathsf{T}}\mathbf{V} = \mathbf{I}$, and $\sigma_1 \geq \sigma_2 \geq \ldots \sigma_d \geq 0$.

Singular values are unique. Factors are not. E.g. would still get a valid SVD by multiplying both i^{th} column of V and U by -1.

Important <u>take away</u> from singular value decomposition.

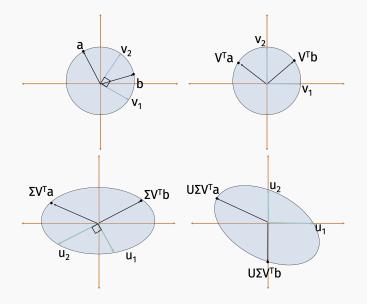
Multiplying any vector **a** by a matrix **X** to form **Xa** can be viewed as a composition of 3 operations:

- 1. Rotate/reflect the vector (multiplication by to V^{T}).
- 2. Scale the coordinates (multiplication by Σ .)
- 3. Rotate/reflect the vector again (multiplication by U).

$$\mathcal{V}\left(\mathcal{Z}\left(\mathcal{V}^{\mathsf{T}}\mathcal{A}\right)\right)$$

Xa

SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT



Recall that an eigenvalue of a square matrix $\mathbf{X} \in \mathbb{R}^{d \times d}$ is any vector \mathbf{v} such that $\mathbf{X}\mathbf{v} = \lambda \mathbf{v}$. A matrix has at most d linearly independent eigenvectors. If a matrix has a full set of d eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_d$ with eigenvalues $\lambda_1, \ldots, \lambda_d$ it is called "diagonalizable" and can be written as:

$$\chi : V \wedge V^{-1}.$$
s columns are $\mathbf{v}_1, \dots, \mathbf{v}_d$.
$$\left[\begin{array}{ccc} & & \\ &$$

Singluar value decomposition

- Exists for all matrices, square or rectangular.
- Singular values are always positive.
- Factors **U** and **V** are orthogonal.

Eigendecomposition

- Exists for <u>some</u> square matrices.
- Eigenvalues can be positive or negative.
- Factor V is orthogonal if and only if X is symmetric.

CONNECTION TO EIGENDECOMPOSITION

U contains the orthogonal eigenvectors of (XX^T) V contains the orthogonal eigenvectors of X^TX . $\sigma_i^2 = \lambda_i (XX^T) = \lambda_i (X^TX)$

X= USUT

 (XX^{+}) USUTUSTUT = US2UT

Lots of applications.

- Compute pseudoinverse $V\Sigma^{-1}U^{T}$.
- Read off condition number of **X**, σ_1^2/σ_d^2 .
- Compute matrix norms. E.g. $||\mathbf{X}||_2 = \sigma_{1,j} ||\mathbf{X}||_F = (\sqrt{\sum_{i=1}^d \sigma_i^2})$
- Compute matrix square root i.e. find a matrix **B** such that $BB^T = (X)$. Used e.g. in sampling from Gaussian with covariance **X**.
- Principal component analysis.

Killer app: Read off optimal <u>low-rank</u> approximations for X.

RANK

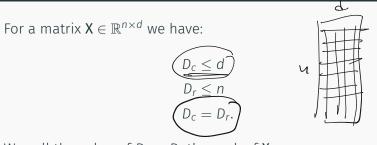
The column span of a matrix $X \in \mathbb{R}^{n \times d}$ is the set of all vectors that can be written as Xa for some **a**.

The dimension of the column span D_c is the maximum number of linear independent vectors in that set.

The row span of a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ is the set of all vectors that can be written as $\mathbf{b}^T \mathbf{X}$ for some **b**.

The dimension of the row span, D_r , is the maximum number of linear independent vectors in that set.

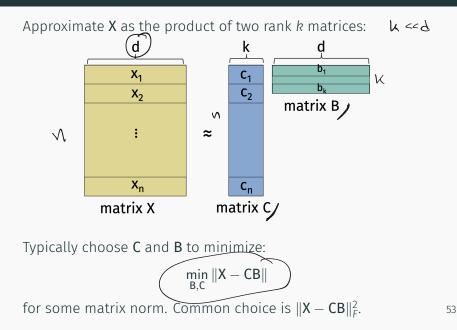
RANK



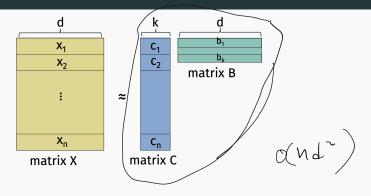
We call the value of $D_c = D_r$ the <u>rank</u> of **X**.

rould
$$\in$$
 upp (d, u)

LOW-RANK APPROXIMATION

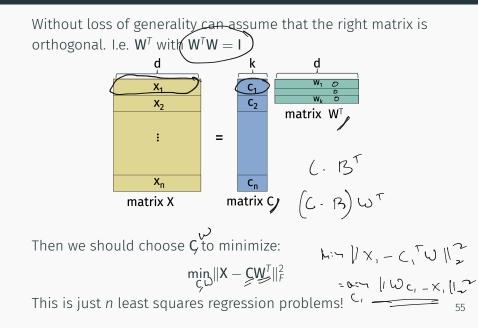


APPLICATIONS OF LOW-RANK APPROXIMATION



- **CB** takes O(k(n + d)) space to store instead of O(nd).
- Regression problems involving **CB** can be solved in $O(nk^2)$ instead of $O(nd^2)$ time.
- Will see a bunch more in a minute.

LOW-RANK APPROXIMATION



LOW-RANK APPROXIMATION

So our optimal low-rank approximation always has the form:

$$X \approx XWW^{T}$$
Win $|| X - CB ||_{p}^{2}$
Win $|| X - X UU^{T} ||_{p}^{2}$
Use $U^{U} = I$

$$G, B$$

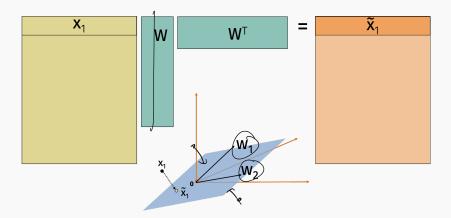
$$U^{T} = U^{T} U^{T}$$

$$U^{T} = U^{T} U^{T} U^{T} U^{T}$$

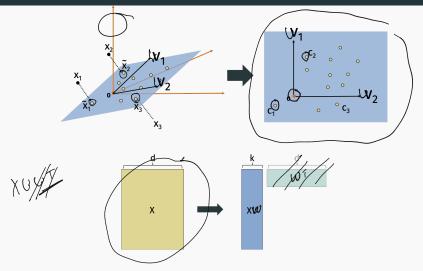
$$U^{T} = U^{T} U^{T} U^{T} U^{T} U^{T} U^{T} U^{T}$$

$$U^{T} = U^{T} U^{T}$$

WW^T is a symmetric projection matrix.



LOW-RANK APPROXIMATION



C = XW can be used as a compressed version of data matrix X.

Let C = XW. We have that:

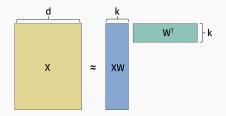
$$\|\mathbf{x}_{i} - \mathbf{x}_{j}\|_{2} \approx \|\mathbf{x}_{i}^{\dagger} \mathbf{W} \mathbf{W}^{T} - \mathbf{x}_{j}^{\dagger} \mathbf{W} \mathbf{W}^{T}\|_{2} = \|\mathbf{c}_{i} - \mathbf{c}_{j}\|_{2}$$

Similarly, we expect that:

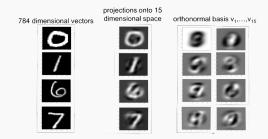
$$\begin{array}{c} \cdot \|\mathbf{x}_i\|_2 \approx \|\mathbf{c}_i\|_2 \\ \cdot \|\mathbf{x}_i, \mathbf{x}_j\rangle \approx \langle \mathbf{c}_i, \mathbf{c}_j\rangle \\ \cdot \text{ etc.} \end{array}$$

How does this compare to Johnson-Lindenstrauss projection?

Rows of **X** (data points) are approximately spanned by *k* vectors. Columns of **X** (data features) are approximately spanned by *k* vectors.



If a data set only had *k* unique data points, it would be exactly rank *k*. If it has *k* "clusters" of data points (e.g. the 10 digits) it's often very close to rank *k*.



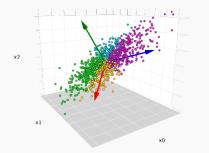
Colinearity/correlation of data features leads to a low-rank data matrix.

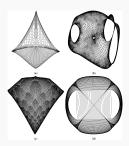
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
•	-		•			
•	•	•	•	•	·	•
	•	•	•	•	•	•
home n	5	3.5	3600	3	450,000	450,000

APPLICATIONS OF LOW-RANK APPROXIMATION

Fact that $\|\mathbf{x}_i - \mathbf{x}_j\|_2 \approx \|\mathbf{x}_i^T \mathbf{W} \mathbf{W}^T - \mathbf{x}_j^T \mathbf{W} \mathbf{W}^T\|_2 = \|\mathbf{c}_i - \mathbf{c}_i\|_2$ leads to lots of applications.

- Data compression. E.g. used in state-of-the-art data dependent methods for nearest neighbor search.
- Data visualization when k = 2 or 3.

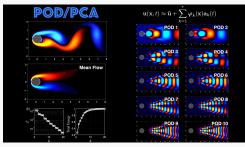




• Data embeddings (next lecture).

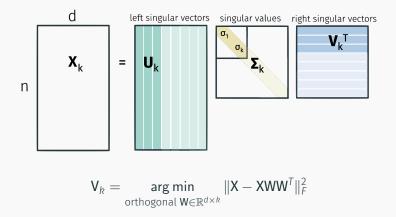
APPLICATIONS OF LOW-RANK APPROXIMATION

• Reduced order modeling for solving physical equations.



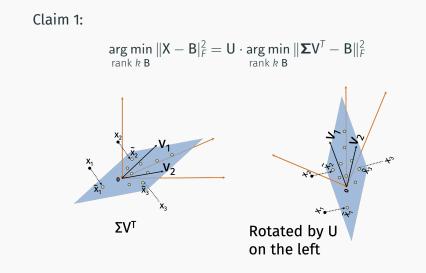
- Constructing preconditioners in optimization.
- Noisy triangulation (on problem set).

Can find the best projection from the singular value decomposition.



Claim:
$$X_k = U_k \Sigma_k V_k^T = X V_k V_k^T$$
.

OPTIMALITY OF SVD



OPTIMALITY OF SVD

Claim 2:

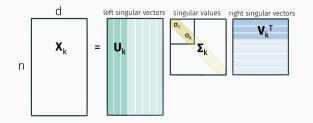
$$\underset{\text{rank }k \ B}{\arg\min} \| \boldsymbol{\Sigma} \boldsymbol{V}^{T} - \boldsymbol{B} \|_{F}^{2} = \underset{\text{rank }k \ B}{\arg\min} \| \boldsymbol{V} \boldsymbol{\Sigma} - \boldsymbol{B}^{T} \|_{F}^{2}$$

Claim 3:

$$\underset{\text{rank }k \text{ B}}{\arg\min} \| \mathbf{V} \mathbf{\Sigma} - \mathbf{B}^T \|_F^2 = \underset{\text{rank }k \text{ B}}{\arg\min} \| \mathbf{\Sigma} - \mathbf{V}^T \mathbf{B}^T \|_F^2$$

Chose \mathbf{B}^T so that $\mathbf{V}^T \mathbf{B}^T = \mathbf{\Sigma}_k$.

USEFUL OBSERVATIONS



Observation 1:

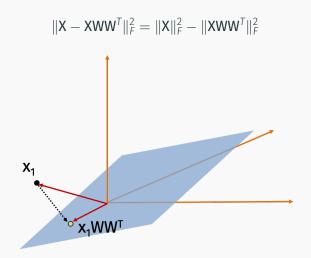
 $\underset{W \in \mathbb{R}^{d \times k}}{\arg\min} \| \mathbf{X} - \mathbf{X} \mathbf{W} \mathbf{W}^T \|_F^2 = \underset{W \in \mathbb{R}^{d \times k}}{\arg\max} \| \mathbf{X} \mathbf{W} \mathbf{W}^T \|_F^2$

Follows from fact that for <u>all</u> orthogonal **W**:

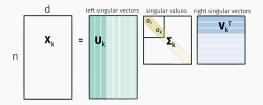
$$\|\mathbf{X} - \mathbf{X}\mathbf{W}\mathbf{W}^{\mathsf{T}}\|_{\mathsf{F}}^{2} = \|\mathbf{X}\|_{\mathsf{F}}^{2} - \|\mathbf{X}\mathbf{W}\mathbf{W}^{\mathsf{T}}\|_{\mathsf{F}}^{2}$$

USEFUL OBSERVATIONS

Claim:



USEFUL OBSERVATIONS



Observation 2: The optimal low-rank approximation error $E_k = \|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2$ can be written:

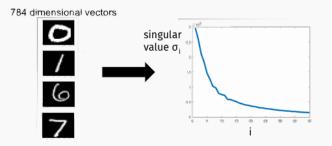
$$E_k = \sum_{i=k+1}^d \sigma_i^2$$

SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error $E_k = \|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2$ can be written:

$$E_k = \sum_{i=k+1}^d \sigma_i^2.$$

Can immediately get a sense of "how low-rank" a matrix is from it's spectrum:

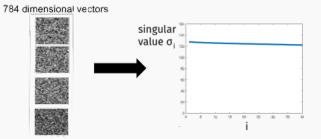


SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error $E_k = \|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2$ can be written:

$$E_k = \sum_{i=k+1}^d \sigma_i^2.$$

Can immediately get a sense of "how low-rank" a matrix is from it's spectrum:

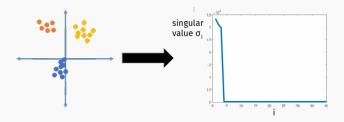


SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error $E_k = \|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2$ can be written:

$$E_k = \sum_{i=k+1}^d \sigma_i^2.$$

Can immediately get a sense of "how low-rank" a matrix is from it's spectrum:



Suffices to compute right singular vectors V:

- Compute $\mathbf{X}^T \mathbf{X}$.
- Find eigendecomposition VAV^T = X^TX using e.g. QR algorithm.
- Compute $\mathbf{L} = \mathbf{XV}$. Set $\sigma_i = \|\mathbf{L}_i\|_2$ and $\mathbf{U}_i = \mathbf{L}_i / \|\mathbf{L}_i\|_2$.

Total runtime pprox

COMPUTING THE SVD (FASTER)

Next class:

- Compute <u>approximate</u> solution.
- Only compute top k singular vectors/values. Runtime will depend on k. When k = d we can't do any better than classical algorithms based on eigendecomposition.
- <u>Iterative algorithms</u> achieve runtime $\approx O(ndk)$ vs. $O(nd^2)$ time.
 - Krylov subspace methods like the Lanczos method are most commonly used in practice.
 - **Power method** is the simplest Krylov subspace method, and still works very well.