
CS-GY 6763: Lecture 7

Fine Grained Complexity

NYU Tandon School of Engineering, Feyza Duman Keles

1



Limitations for the Algorithms

Previously, our focus in class has been on algorithms and their

theoretical guarantees of success.

The first application was CAPTCHAs,

Instead of counting all the cases, we developed a faster algorithm

(counting duplicates) that requires less checking and gives true

results with high probability.

Another problem was k-means clustering,

By using JL, we decreased the cost by (1 + ϵ) times.

2



Limitations for the Algorithms

Main question: Can we always improve algorithms if everyone

works to their full potential, or will progress eventually stall?

There are some problems for which the best algorithms available

today are still 40 years old. Until now, no one has been able to

beat them.

3



Self-Attention

Self-Attention

For given 3 inputs: Query Q ∈ Rn×dk , Key K ∈ Rn×dk , and Value

V ∈ Rn×dv , the attention is calculated as

Attention(Q,K ,V ) = softmax
(

QKT
√
dk

)
V

We will focus on the self-attention function as an example of

fine-grained complexity.

Self-attention is the main layer in Transformers (Architectures of

Chat-GPT, Dall-E, and many other deep models are based on

Transformers.).

4



Self-Attention Hardness

Self-Attention

For given 3 inputs: Query Q ∈ Rn×dk , Key K ∈ Rn×dk , and Value

V ∈ Rn×dv , the attention is calculated as

Attention(Q,K ,V ) = softmax
(

QKT
√
dk

)
V

What is computational complexity?

Q matrix size n × dk

KT matrix size dk × n

Brute force calculation is O(n2) because of the input for softmax.

5



Can we do better than quadratic?

Theoretical guarantees?

6



Limitations for the Algorithms

How can we say no one can have a faster algorithm for a problem?

It is not easy to prove directly.

Can we prove there is no other life in the universe other than

Earth?

We have to look at every inch of the universe (until we find life), if

there is nothing then we can conclude that there is no life.
7



Limitations for the Algorithms

However, if we know that some problems are hard, then we can

relate our current problem with the known problems.

Consider this scenario; Mars has been observed extensively, and

while it has not been conclusively proven, it is widely believed that

there is no life on the planet. By comparing the environmental

conditions of Jupiter and Mars, one could hypothesize that if life

were to exist on Jupiter, then it could also exist on Mars because

the conditions on Mars are more favorable.

8



Limitations for the Algorithms

Similarly, there are some fundamental questions (k-SAT, k-clique,

etc.) and no one will be able to improve their algorithms for

decades. And people conjectured their hardness. And extend their

assumptions to other problems.

9



P ̸= NP

The main conjecture in complexity theory. (Levin-Cook 1971)

In informal terms, it asks whether every problem whose solution

can be quickly verified can also be quickly solved.

P = problems can be solved in poly-time. O(n),O(nk), etc.

NP = problems can be verified in poly-time.

10



Boolean Satisfiability Problem (SAT)

Consider a Boolean function f (x1, x2, . . . , xn) : {0, 1}n → {0, 1}

If the function has some instances to make f (x1, x2, . . . , xn) = 1,

then it is called satisfiable.

f (x1, x2) = x1 ∧ x ′2 is satisfiable (x1 = 1 and x2 = 0)

f (x1, x2) = x1 ∧ x ′1 is un-satisfiable.

It is the first proven NP-complete problem. (Cook/Levin Theorem)

11



k-SAT problem

Conjunctive Normal Form (CNF): conjunction of clauses

(x1 ∨ x2) ∧ (x ′1 ∨ x3) ∧ (x2 ∨ x ′3 ∨ x4)

k-SAT: In each clause, there are are most k literals.

2-SAT is in P.

3-SAT is NP-complete. (Also, when P ̸= NP, 3-SAT complexity is

not in P)

12



2-SAT in P

Construct directed graph G (V ,E ) on 2n edges, by using the

formula:

(a ∨ b) is same with (a′ ⇒ b) and also (b′ ⇒ a)

Example: f = (x ′ ∨ y) ∧ (y ′ ∨ y) ∧ (x ∨ z ′) ∧ (z ∨ y)

13



2-SAT in P

Claim 1. If G contains a path from α to β, then it also contains a path

from β′ to α′.

14



2-SAT in P

Claim 2. A 2-CNF function f is unsatisfiable iff there exists a variable

x , such that:

1. There is a path from x to x ′ in the graph

2. There is a path from x ′ to x in the graph

15



3-SAT is NP-complete.

There is a reduction from SAT(Cook/Levin Theorem) to 3-SAT.

Consider a clause with m variables: x1 ∨ x2 ∨ · · · ∨ xm.

We can express it as the construction of m − 2 clauses:

(x1 ∨ x2 ∨ y2)∧

(y2 ∨ x3 ∨ y3)∧

(y3 ∨ x4 ∨ y4)∧

. . .

(yn−3 ∨ xn−2 ∨ yn−2)∧

(yn−2 ∨ xn−1 ∨ yn)∧

where y2, y3, . . . yn−2 are fresh variables not occurring elsewhere. 16



Is P ̸= NP adequate?

Even polynomial time might not be efficient,

• O(n2)-time algorithm can take 1000 CPU years for n = 109

• So we need almost linear time.

P ̸= NP cannot distinguish O(n) and O(n100), both in polynomial

time.

17



Exponential Time Hypothesis

The best-known algorithms for k-SAT run in exponential time in n

(the number of variables).

The hardness assumption: better algorithms do not exist.

Exponential Time Hypothesis(ETH)

For any k, there is a constant sk , such that the the time complexity of

n variable k-SAT is at least O(2skn).

18



Strong Exponential Time Hypothesis

Besides, the best algorithms known for k-SAT have exponents that

approach n as k increases.

Strong Exponential Time Hypothesis(SETH)

For every ϵ, there is a k , such that n variable k-SAT requires more than

O(2(1−ϵ)n) time.

This is a well-accepted hypothesis among the researchers in this

area.

19



Other Conjectures in Polynomial Time

All Pairs Shortest Path(APSP)

There is no O(n3−ϵ)-time algorithm to find the shortest path between

all pairs in an n-vertices graph.

3SUM

There is no O(n2−ϵ)-time algorithm to determine if there is a triplet in

n numbers that their sum is 0.

k-clique

There is no O(n(1−ϵ)k)-time algorithm to determine if there is a k-

clique in an n-vertices graph.

Orthogonal Vectors(OV)

There is no O(n2−ϵ)-time algorithm to determine if there is an

orthogonal pair between 2 sets that both include n vectors.

20



Orthogonal Vectors Problem

Orthogonal Vectors Problem (Formal Definition)

Given two sets: A = {a1, a2, . . . , an} ⊆ {0, 1}d and

B = {b1, b2, . . . , bn} ⊆ {0, 1}d of n binary vectors.

Decide if there exists a pair a ∈ A and b ∈ B such that aTb = 0

O(n2d) baseline algorithm that checks the inner products of all

possible pairs of vectors.

Theorem (Williams, 2005)

Assume SETH. Then for all ϵ, there is no O(n2−ϵ)-time

algorithm solving OV problem, for d = ω(log n).

21



Landscape of Polynomial Time Problems

22



Reduction

A reduction from problem A to another problem B, is a

transformation f of any instance a of A into an instance f (a) of B,

such that

a is an requested instance for A

⇕

f (a) is an requested instance for B

i.e. Suppose we have an information that problem A cannot be

solved in T (n)-time. Also, suppose construction of f (a) from a

requires sub-T (n) time. What can we say about problem B?

23



Threshold Vectors Product Problem

Threshold Vectors Product Problem (TVPP)

Given two sets: A = {a1, a2, . . . , an} ⊆ {0, 1}d and

B = {b1, b2, . . . , bn} ⊆ {0, 1}d of n binary vectors.

Decide if there exists a pair a ∈ A and b ∈ B such that aTb ≥ t

24



Threshold Vectors Product Problem

Lemma 1. TVPP Hardness (Keles et al. 2023)

TVPP: Given two sets A = {a1, a2, . . . , an} ⊆ {0, 1}d and

B = {b1, b2, . . . , bn} ⊆ {0, 1}d of n binary vectors. Decide if there

exists a pair a ∈ A and b ∈ B such that aTb ≥ t

Assume SETH. Then for all ϵ, there is no O(n2−ϵ)-time algorithm

solving TVPP problem, for d = ω(log n).

Proof.

25



Exponential Dot Product Self-Attention

Definition. Exponential Dot Product Self-Attention

For any i , j = 1, 2, . . . n, let Sij = eQ
T
i Qj and Y=SV be the self-attention

mechanism.

26



Exponential Dot Product Self-Attention

Theorem. Exponential Dot Product Self-Attention Hardness

(Keles et al. 2023)

For any i , j = 1, 2, . . . n, let Sij = eQ
T
i Qj and Y=SV be the self-attention

mechanism. Provided d = ω(log n). For any ϵ, computing Y requires

Ω(n2(1−ϵ))-time.

27



Exponential Dot Product Self-Attention

Proof.

28



Other Applications

Fine-grained complexity is not common in Machine Learning/Deep

Learning Area. Some other works include;

Other Types of Self-Attention

(Window Sliding, Gaussian Kernel)

Inverse Generative Neural Networks

Viterbi Algorithm

Gaussian Kernel Density Estimation

Approximated Nearest Neighbor Search

29


