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CS-GY 6763: Midterm Practice.

Logistics
• Exam will be held in class on Wednesday, 10/26 starting at 11:05pm. Please arrive on time!

• Lucas will give a lecture for the second half of class after a short break.

• You will have 1 hour, 15 minutes to answer a variety of short answer and longer form questions.

• You can bring a one page sheet of paper (two-sided if you want) with notes, theorems, etc. written
down for reference.

• I will be in the room to answer any questions.

Concepts to Know
Random variables and concentration.

• Linearity of expectation and variance.

• Indicator random variables and how to use them.

• Markov’s inequality, Chebyshev’s inequality (ideally should know from memory so you can apply
quickly).

• Union bound (should know from memory).

• Chernoff and Bernstein bounds (don’t need to memorize the exact bounds, but can apply if given).

• General idea of law of large numbers and central limit theorem.

• The probability that a normal random variables N (0, σ2) falls further than kσ away from its expectation
is ≤ O(e−k2/2).

Hashing, Dimensionality Reduction, High Dimensional Vectors
• Random hash functions.

• Random hashing for frequency estimation.

• Random hashing for distinct elements estimation.

• MinHash for Jaccard similarity estimation.

• Locality sensitive hash functions.

• MinHash and SimHash for Jaccard Similarity and Cosine Similarity.

• Adjusting false positive rate and false negative rate in an LSH scheme.

• Statement of Johnson-Lindenstrauss lemma (know from memory).

• Statement of distributional JL lemma and how it can be used to prove JL.



High dimensional geometry
• How to draw a random unit vector from the sphere in d dimensions (draw x with all entries i.i.d.

N (0, 1) and normalize it).

• How does ∥x− y∥22 relate to ⟨x, y⟩ if x and y are unit vectors?

• How many mutually orthogonal unit vectors are there in d dimensions?

• There are 2θ(ϵ
2d) nearly orthogonal unit vectors in d dimensions (with ⟨x, y⟩ ≤ ϵ). Know roughly how

prove this fact using the probabilistic method, which required a an exponential concentration inequality
+ union bound.

• Know how to prove that all but an 2θ(−ϵd) fraction of a balls volume in d dimensions lies in a spherical
shell of width ϵ near its surface.

• The surface area/volume ratio increases in high dimensions.

• The cube volume/ball volume ratio increases in high dimensions.

Convex optimization
• Definition(s) of convex function.

• Definition of convex set.

• Gradient descent basic update rule.

• Definitions of G-Lipschitz, β-smooth, α-strongly convex. Know the first order definition for high-
dimensional functions. The second order definition you only need to know for low-dimensional func-
tions. I.e. a twice differentiable function f : R → R is β-smooth, α-strongly convex if for all x,
α ≤ f ′′(x) ≤ β. I won’t test on Hessians.

• Definition of condition number.

• How much time does it take to multiply an n× d matrix by a d×m matrix?

• Be able to compute gradients of basic functions from Rd → R.

• Definition(s) of convex function.

Practice Problems
Random variables and concentration.

1. Show that for any random variable X, E[X2] ≥ E[X]2.

2. Show that for independent X and Y with E[X] = E[Y ] = 0, var[X · Y ] = var[X] · var[Y ].

3. Given a random variable X, can we conclude that E[1/X] = 1/E[X]? If so, prove this. If not, give an
example where the equality does not hold.

4. Indicate whether each of the following statements is always true, sometimes true, or never true.
Provide a short justification for your choice.

(a) Pr[X = s and Y = t] > Pr[X = s]. ALWAYS SOMETIMES NEVER
(b) Pr[X = s or Y = t] ≤ Pr[X = s] + Pr[Y = t]. ALWAYS SOMETIMES NEVER
(c) Pr[X = s and Y = t] = Pr[X = s] · Pr[Y = t]. ALWAYS SOMETIMES NEVER

5. Assume there are 1000 registered users on your site u1, . . . , u1000, and in a given day, each user visits
the site with some probability pi. The event that any user visits the site is independent of what the
other users do. Assume that

∑1000
i=1 pi = 500.



(a) Let X be the number of users that visit the site on the given day. What is E[X]?
(b) Apply a Chernoff bound to show that Pr[X ≥ 600] ≤ .01.
(c) Apply Markov’s inequality and Chebyshev’s inequality to bound the same probability. How do

they compare?

6. Give an example of a random variable and a deviation t where Markov’s inequality gives a tighter
upper bound than Chebyshev’s inequality.

Hashing, Dimensionality Reduction, High Dimensional Vectors
1. Suppose there is some unknown vector µ ∈ Rd. We receive noise perturbed random samples of the form

Y1 = µ+X1, . . . ,Yk = µ+Xk where each Xi is a random vector with each of its entries distributed
as an independent random normal N (0, 1). From our samples Y1, . . . ,Yk we hope to estimate µ by
µ̃ = 1

k

∑k
i=1 Yi.

(a) How many samples k do we require so that maxi=1,...,d |µi − µ̃i| ≤ ϵ with probability 9/10?
(b) How many samples k do we require so that ∥µ− µ̃∥2 ≤ ϵ with probability 9/10?

2. Let Π be a random Johnson-Lindenstrauss matrix (e.g. scaled random Gaussians) with O(log(1/δ)/ϵ2)
rows. Prove that with probability (1− δ),

min
x

∥ΠAx−Πb∥22 ≤ (1 + ϵ)min
x

∥Ax− b∥22

Convex optimization
From Convex Optimization book (https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf):

• Exercises: 3.7, 3.10, 3.11 (first part), 3.21 (lots of other problems if you want more practice, but
many are on the harder side)

1. Let f1(x), . . . , fn(x) be β-smooth convex functions and let g(x) = 1
n

∑n
i=1 fi(x) be their average. Show

that g is β-smooth.

2. Let f : R → R be a β-smooth, α-strongly convex function. Let g(x) = f(c · x) for some constant
0 < c < 1. How does g’s smoothness and strong convexity compare to that of f? How about g’s
condition number?

3. Let f(x) = x4. Is f G-Lipschitz for finite G? Is f β-smooth for finite B?

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
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