CS-GY 6763: Lecture 9
Dimension Dependent Optimization

NYU Tandon School of Engineering, Prof. Christopher Musco



ADMINISTRATIVE

- Project proposal due next Wednesday, 11/9.

-+ Problem set 3 will be released shortly.

- We are working grading pset 2 and midterms.



FIRST ORDER CONVEX OPTIMIZATION

First Order Optimization: Given a convex function fand a
convex set S,

Goal: Find X € S such that f(X) < minges f(X) + €.

Assume we have:

- Function oracle: Evaluate f(x) for any x.
- Gradient oracle: Evaluate Vf{(x) for any x.
- Projection oracle: Evaluate Pg(x) for any x.

Gradient descent requires O (%) calls to each oracle to
solve the problem.

We were only able to improve the e dependence by making
stronger assumptions on f (strong convexity, smoothness).



DIMENSION DEPENDENT BOUND

Alternatively, we can get much better bounds if we are willing
to depend on the problem dimension. l.e. on d if f(x) is a
function mapping d-dimensional vectors to scalars.

We already know how to do this for a few special functions:
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DIMENSION DEPENDENT BOUND

_50eF)
Let f(x) b%a bounded between [-B, B] o@
Theorem (Dimension Dependent Convex Optimization)
There is an algorithm (the Center-of-Gravity Methad) which

finds X satisfying f(X) < minxes f(x) +_e using O(d log(B/¢))
calls to a function and gradient oracle for f.

Caveat: Assumes we have some representation of S, n
projection oracle. We will discuss this more later.

Note: For an unconstrained problem with known start
radius R, can take S to be the ball of radius R around x(. If
maXX_H_YI(,X)‘ﬁ/: G, we always have B = O(RG).

fx) =0



CENTER OF GRAVITY METHOD

A few basic ingredients:

2. For two convex sets A and B, AN B is convex. Proof by

picture:




CENTER OF GRAVITY METHOD

Natural “cutting plane” method. Developed simultaneous on
opposite sides of iron curtain.

S AY. Levin -

. 1975

Fptein

Not used in practice (we will discuss why) but the basic idea
underlies many algorithms that are.



CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

—

. S _‘i

s Fort=1,...,T:

c Eompute V(). -
H = {x|(Vf(ct),x — ¢;) < 0}
* Sprj = St NH

- Return X = arg min, f(¢;)



CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

-5 =8
s Fort=1,...,T:
- ¢; = center of gravity of S;.

-« H = {x|{Vf(ct),x — ¢t) < 0}
- Sy =5 H

- Return X = arg min, f(¢;)

———




CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

- &$5=S$

cFort=1,...,T:
- ¢; = center of gravity of S;.
- Compute Vf(cy).

- Return X = arg min, f(c;)

- —




CENTER OF GRAVITY METHOD

Intuitively, why does it make sense to search in St N H where:

H = {x|(Vf(ct),x — ct) < 0}7?

co straint set S

level sets of f(x) y



CENTER OF GRAVITY METHOD

Intuitively, why does it make sense to search in &t N H where:
H = {x|(Vf(ct),x — ct) < 0}7?

constraint set S

By convexity, if y ¢ {St NH} 7%
then:

fly) > flee) + (Vf(cr),y — )

level sets of f(x)



CONVERGENCE THEOREM

Theorem (Center-of-Gravity Convergence)
Let f be a convex function with values in [—B, B]. Let X be the

output of the center-of-gravity method run for T iterations.
Then:

T/d
fR) — fx*) < 2B (1 _ ;) < 2Be /%,

If we sewthen f(X) — f(x*) <e.

e 0(4(93(6/6\)) 23
\92(‘3/5> s ¢,
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KEY GEOMETRIC TOOL

Want to argue that, at every step of the algorithm, we “cut off”
a large portion of the convex set we are searching over:

14



KEY GEOMETRIC TOOL

Theorem (Griinbaum’s Theorem)
For any convex set S with center-of-gravity ¢, and any
halfspace Z = {x|(a,x — ¢) < 0} then:

15



KEY GEOMETRIC TOOL

Want to argue that, at every step of the algorithm, we “cut off”
a large portion of the convex set we are searching over.

Theorem (Grinbaum’s Theorem)
For any convex set S with center-of-gravity ¢, and any
halfspace Z = {x|(a,x — ¢) < 0} then:

vol(SN Z) 1

vol(S) E ~ 308

Let Z be the compliment of H from the algorithm. Then we cut
off at least a 1/e fraction of the convex body on every iteration.

Corollary: After t steps, vol(S;) < (1-— —) vol(S).

e
—
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CONVERGENCE PROOF

Let 6 be a small parameter to be chosen later.

Let 8¢ = {(1—&)x* f :
et S {(1=8)x* +0x | for x € S}

(s

Claim: Every pointy in 8% has good function value.



CONVERGENCE PROOF

g = (1-5)x" 5%

5.
Foranyy e}

FOD=F((1 = )" + o
< (1= 0)f(X7) + of(x)
= Zf(x*) — of(x") + of(x)
<f(x*)+885. T EGR)
8- 00
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CONVERGENCE PROOF

We also have: vol(S%) = 5% vol(S).

Setd=(1- }/ After T steps,
vol(St) < vol(S°).

Either Sy exactly equals S%, in which
case our current centroid gives error
< 2B6.

Or we must have “chopped off” at
least one pointy in 8% by the time we
reach step T.

(s> - 04 Vo) = vel(s)

19



CONVERGENCE PROOF

Claim: If we “chopped off” at least
one pointy in 89 by the time we
reach step T+thenfqr some centroid
G, celflcy) < £Bs.

Proof:

485 > fly) > flce) + (Vf(ce),y — o)

Algorithm returns arg min.. f(¢;J-

—_—
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CONVERGENCE THEOREM

Theorem (Center-of-Gravity Convergence)
Let f be a convex function with values in [—B, B]. Let X be the

output of the center-of-gravity method run for T iterations.
Then:

T/d
fR) — fx*) < 2B (1 _ ;) < 2Be /%,

If we set T = O (dlog(B/¢)), then f(X) — f(x*) < e.

In terms offgradient-oracle complexity, this is essentially
optimal. So why isn’t the algorithm used?

21



CENTROID COMPUTATION

In general computing the centroid is hard. #P-hard even when
when S is an intersection of half-spaces (a polztope).

Even if the problem isn't hard for your starting convex body S,
it likely will become hard forSNH N H, N Hs .. ..

So while the oracle complexity of dimension-dependent
optimization was settled, in the 70s a number of basic
questions in terms of computational complexity.

22



LINEAR PROGRAMMING

Linear programs (LPs) are one of the most basic convex
constrained, convex optimization problems:

Letc e RY b € R", A € R"*? be fixed vectors that definethe

problem, and let x be our variable parameter. B
min f(X) = c’x " =

subject to Ax > b.
——

Think about Ax > b as a union of half-space constraints:
{x:ajx> b}

{x:alx> by}

;
X:a,X>b
{ n™ — ﬂ} 23






LINEAR PROGRAMMING APPLICATIONS

- Classic optimization applications: industrial resource

optimization problems were killer app in the 70s.

- Robust regression: miny [|Ax — bs.

- L1 constrained regression: miny ||x||; subject to Ax = b. Lots

of applications in sparse recovery/cgm_gteased_smsillg.

- Solve miny ||AX — b||c-

- Polynomial time algorithms for Markov Decision Processes.

(

Many combinatorial optimization problems can be solved
via LP relaxations.

25



LINEAR PROGRAMMING

Theorem (Khachiyan, 1979)
Assume n = d. The ellipsoid method solves any linear

program with L-bit integer valued constraints in O(n“L) time.
l.e. linear programming is in (weakly) polynomial time!

Using a relatively simple center-of-gravity like method!

A Soviet Discovery Rocks World of Mathematics

By MALCOLM W. BROWNE

A surprise discovery by an obscure
Soviet mathematician has rocked the
world of mathematics and computer
analysis, and experts have begun explor-
ing its practical applications.

Mathematicians describe the discov-
ery by L.G. Khachian as a method by
which computers can find guaranteed
solutions to a class of very difficuit prob-
lems that have hitherto been tackled on a
kind of hit-or-miss basis.

Apart from its profound theoretical in-

in weather prediction, complicated indus-
trial processes, petroleum refining, the
scheduling of workers at large factories,
secret codes and many other things.

‘I have been deluged with calls from
virtually every department of govern-
ment for an interpretation of the signifi-
cance of this,” a leading expert on com-
puter methods, Dr. George B. Dantzig of
Stanford University, said in an interview.

The solution of mathematical problems
by computer must be broken down into a
serles of steps. One class of problem

terest, the y may be

S0 many steps that it

could take billions of years to compute,

The Russian discovery offers a way by
which the number of steps in a solution
can be dramatically reduced. It also of-
fers the mathematician a way of learning
quickly ap has a soluti
or not, without having to complete the en-
tire immense computation that may be
required.

According to the American journal Sci-

Continued on Page A20, Column 3

ONLY $1000 A MONTH!!! 24 Hr. Phone Anawering
Service. Totally New Concept™ Increfible®” 279-3870—ADV

Front page of New York Times, November 9, 1979.
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PROBLEM SIMPLIFICATION

Simplifying the problem: Given a convex set K via access to
separation oracle Si for the set, determine if K is empty, or
otherwise return any point x € K.

_ ‘@ ify e K.
- seperating hyperplane (a,c) ify ¢ K.

Let H = {x:a’x = c}.

27



SEPARATION ORACLE

Example: How would you implement a seperation oracle for a

poiope (& 2b) 0o, o
t / /

4 x 7b, 0, % 2 b,
Lok foc Ll

: K’ ' g/

Wixor \/L_, O‘VT X7 \4u



FROM MEMBERSHIP TO OPTIMIZATION

Original problem: AX z o

min (x) subject to x 69

How can we reduce to determining if a convex set K is empty
or not? XxT¢ <

Binary search! For a convex function f(x) g@ S
convex, and you can get a seperation oracle via the gradient.

- Start with upper bound and lower bounds u and [ on
optimal solution (can be obtained for many problems).
- Check if the convex set SN {x: f(x) < (u+)/2} contains a
point.
- Update u = (u+ l)/2 if it does, [ = (u+1)/2 if not.
- Continue until ju —[| <e.
29



ELLIPSOID METHOD SKETCH

Goal of ellipsoid algorithm: Solve “Is K empty or not?” given a
seperation oracle for I under the assumptions that:

1. KC B(CR, R).
2. If non-empty, K contains B(cy, r) for some r < R.

B(cg,R)



ELLIPSOID METHOD SKETCH

Iterative method similar to center-of-gravity:

1. Check if center cg of B(cgr,R) is in K.
2. Ifitis, we are done.

3. If not, cut search space in half, using seperating
hyperplane.

31



ELLIPSOID METHOD SKETCH

Key insight: Before moving on, approximate new search region
by something that we can easily compute the centroid of.
Specifically an ellipse!!

Produce a sequence of ellipses that always contain K and
decrease in volume: B(cg,R) = Eq, E,,.... Once we get to an
ellipse with volume < B(c,, r), we know that KL must be empty. 3,



ELLIPSE

An ellipse is a convex set of the form: {x: HA(xﬁ c?)rH% < a} for
some constant ¢ and matrix A. The centér-of-mass Is C.

{x: Mx=c)ll < a} {x: ID(x-C)ll < @} {x: NA(x-C)Il < o}

Often re-parameterized to say that the ellipse is all x with
{x:(x—c)Q"(x—¢c) <1} 33



ELLIPSOID UPDATE

There is a closed form solution for the equation of the
smallest ellipse containing a given half-ellipse. l.e. let E; have
parameters Q;, ¢; and consider the half-ellipse:

Ein{x:a/x<alc}.

Then Ejyq is the ellipse with parameters:

d2 1

where h = ,/alQ;a; - a;.

34



GEOMETRIC OBSERVATION

Claim: vol(Ej ) oI(E,-), 52

Proof: Via reduction to the “isotropic case”. | will post a proof
on the course website if you are interested. | 2 d
(1-74 )
ne |

—

!

Not as good as the (1 — 1) constant-factor volume reduction
we got from center-of-gravity, but still very good! 35



GEOMETRIC OBSERVATION

Claim: vol(Ej;1) < (1— 55) vol(E;)

V2

After O(d) iterations, we reduce the volume by a constant.

In total require O(d? IoggRér)) iterations to solve the problem.

36



ELLIPSOID FOR LPs

Theorem (Khachiyan, 1979)

Assume n = d. The ellipsoid method solves any linear
program with L-bit integer valued constraints in O(n“L) time.
l.e. linear programming is in (weakly) polynomial time!

The method works for any convex program.

For LPs, we have an O(nd) time seperation oracle, and ellipsoid
update take O(d?) time.

Careful analysis of the binary search method, how to set B,
and Bg, etc. leads to the final runtime bound.

37



Theorem (Karmarkar, 1984)
Assume n = d. The interior point method solves any linear

program with L-bit integer valued constraints in O(n3>L) time.

Breakthrough in Problem Solving

By JAMES GLEICK

- A 28year-old mathematician at
A.T.&T. Bell Laboratories has made a

ments of great progress, and this may
well be one of them.”

startling theoretical gh in
the solving of sy of that
often grow Loo vast and for the

in linear pro-

g can have billions or more

most powerful computers.

The discovery, which is to be for-
mally published next month, is already
circulating rapidly through the mathe-
matical world. It has also set off a del-
uge of inquiries from brokerage
houses, oil companies and airlines, in-
dustries with millions of dollars at
stake in problems known as linear pro-
gramming. .

, even hij
computers cannot check every one. So
computers must use a special proce-
dure, an algorithm, to examine as few
answers as possible before finding the
best one — typically the one that mini-
mizes cost or maximizes efficiency.
A procedure devised in 1947, the sim-
plex method, is now used for such prob-

Continued on Page Al9, Column 1

Front page of New York Times, November 19, 1984.

INTERIOR POINT METHODS

38



INTERIOR POINT METHODS

Will post lecture notes on the website (optional reading).

*

Projected Gradient Descent Optimization Path

39



INTERIOR POINT METHODS

Will post lecture notes on the website (optional reading).

Ideal Interior Point Optimization Path

40



POLYNOMIAL TIME LINEAR PROGRAMMING

Both results had a huge impact on the theory of optimization,
although at the time neither the ellipsoid method or interior
point method were faster than a heuristic known at the

Simplex Method. \4/4—%;7’!:&) o
These days, improved interior point methods cgmpete with

and often outperform simplex. %




LP RELAXATION



SET COVER PROBLEM

Given:
- n ground elements {1,...,n}
© msets $1,5,...,5n where S; C {1,...,n}
- non-negative weights ¢1,...,wyn >0
Find:

C subject to UezSi=1{1,...,n}.
ZC{T,m,m}ZJ J ez 9j { }

This is an NP-Complete combinatorial optimization problem!
Likely impossible to find an efficient exact algorithm.

42



APPLICATIONS

- Finding efficient sets of test cases for code testing and
verification.

- Complex employee shift scheduling problems (e.g. in the
airline industry).

- Motif selection in computational biology.

43



APPLICATION: VERTEX COVER

Given:

- ground elements are edges

- sets are nodes so
S; = {edges adjacent to jth node}

- Could have ¢; =1forallje1,...,m or could have
different costs per node.

What vertices should we choose so that all edges are
connected to at least one chosen vertex?

4



LINEAR PROGRAMMING

Let x € R™ be a vector of decision variables, ¢ be a cost vector,
and b € R" be a vector of constraints. As before a linear
program has the form the linear programs is:

Minimize c'x subjectto Ax > b,

Goal: Show that set cover can be written as a linear program,
except with the additional constraint that x is a binary random
vector. This is called an integer linear program.

45



LP FOR SET COVER: OBJECTIVE

Letx; = 1iff j € Z. 0 otherwise

The objective is to minimize the sum of weights in Z:

m
min ZC} minZCij & minc'x
7c{1,.. ,m} X 3 8

46



LP FOR SET COVER: CONSTRAINT

The constraint is that C covers the ground elements. l.e. for all
1€1,...,n, we should have:

m
i €VUiesS; & ij21 & AX>cC
j:iESj

Question: What are A and b?

47



LP FOR SET COVER: STATEMENT

Minimize c'x subjectto Ax>b, xe{0,1}"

m
Minimize > ¢x; subjectto > x>1, x€{0,1}"

Without the constraint x € {0,1}™, we can solve linear program
in polynomial time with e.g. Interior Point, Ellipsoid Method.
But we will get a fractional solution.

48



LP RELAXATION

Definition (Relaxation)
A linear program (where x € R™) is a relaxation of an integer
program (where x € {0,1}™) if

- a feasible solution to the ILP is a feasible solution to the
LP and

- the value of the feasible solution in the ILP has the same
value in the LP.

We always have that OPT;p < OPTy.p.

49



LP ROUNDING

Common approach for approximately solving ILPs:

Find a solution to an LP relaxation for the IP and then “round”
the solution to be binary or integer. E.g round numbers close
to 0 to 0, numbers close to 1to 1. Often randomization is used
in the rounding process.

50



LP TO SET COVER

Theorem
Let x* be optimal solution to LP. Define

f= max |{j:ieSj}
i€l,...,n

Rounding procedure: Put j € Z if and only iij‘ > 1/f.

Then Z is feasible and gives an f-approximation to set cover.

Question: What approximation do we get for vertex cover?

51



LP TO SET COVER: PROOF

Claim: Cis feasible.

Fix i. We know

ij‘21.

j:iESj

Then

52



LP TO SET COVER: PROOF

Claim: C gives an f-approximation to set cover.

m
Costp = ZX;‘CI' Costyp = Z G
j=1 jez

53



