
CS-GY 6763: Lecture 9
Dimension Dependent Optimization

NYU Tandon School of Engineering, Prof. Christopher Musco
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ADMINISTRATIVE

• Project proposal due next Wednesday, .ࠈ/ࠀࠀ
• Problem set ࠂ will be released shortly.
• We are working grading pset ࠁ and midterms.
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FIRST ORDER CONVEX OPTIMIZATION

First Order Optimization: Given a convex function f and a
convex set S ,

Goal: Find x̂ ∈ S such that f(x̂) ≤ minx∈S f(x) + ε.

Assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.
• Projection oracle: Evaluate PS(x) for any x.

Gradient descent requires O
(
RࠁGࠁ

εࠁ

)
calls to each oracle to

solve the problem.

We were only able to improve the ε dependence by making
stronger assumptions on f (strong convexity, smoothness).
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DIMENSION DEPENDENT BOUND

Alternatively, we can get much better bounds if we are willing
to depend on the problem dimension. I.e. on d if f(x) is a
function mapping d-dimensional vectors to scalars.

We already know how to do this for a few special functions:

f(x) = ‖Ax− b‖ࠁࠁ where A ∈ Rn×d.
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DIMENSION DEPENDENT BOUND

Let f(x) be bounded between [−B,B] on S .

Theorem (Dimension Dependent Convex Optimization)
There is an algorithm (the Center-of-Gravity Method) which
finds x̂ satisfying f(x̂) ≤ minx∈S f(x) + ε using O(d log(B/ε))
calls to a function and gradient oracle for f.

Caveat: Assumes we have some representation of S , not just a
projection oracle. We will discuss this more later.

Note: For an unconstrained problem with known starting
radius R, can take S to be the ball of radius R around x(ࠀ). If
maxx ‖∇f(x)‖ࠁ = G, we always have B = O(RG).
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CENTER OF GRAVITY METHOD

A few basic ingredients:

.ࠀ The center-of-gravity of a convex set S is defined as:

c =
∫
x∈S x dx
vol(S) =

∫
x∈S x dx∫
x∈S dxࠀ

.ࠁ For two convex sets A and B, A ∩ B is convex. Proof by
picture:
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CENTER OF GRAVITY METHOD

Natural “cutting plane” method. Developed simultaneous on
opposite sides of iron curtain.

Not used in practice (we will discuss why) but the basic idea
underlies many algorithms that are. ࠆ



CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

• Sࠀ = S
• For t = ,ࠀ . . . , T :

• ct = center of gravity of St.
• Compute ∇f(ct).
• H = {x

∣∣〈∇f(ct), x− ct〉 ≤ .{߿
• St+ࠀ = St ∩ H

• Return x̂ = argmint f(ct)
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CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

• Sࠀ = S
• For t = ,ࠀ . . . , T :

• ct = center of gravity of St.
• Compute ∇f(ct).
• H = {x

∣∣〈∇f(ct), x− ct〉 ≤ .{߿
• St+ࠀ = St ∩ H

• Return x̂ = argmint f(ct)
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CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

• Sࠀ = S
• For t = ,ࠀ . . . , T :

• ct = center of gravity of St.
• Compute ∇f(ct).
• H = {x

∣∣〈∇f(ct), x− ct〉 ≤ .{߿
• St+ࠀ = St ∩ H

• Return x̂ = argmint f(ct)
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CENTER OF GRAVITY METHOD

Intuitively, why does it make sense to search in St ∩H where:

H = {x
∣∣〈∇f(ct), x− ct〉 ≤ ?{߿
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CENTER OF GRAVITY METHOD

Intuitively, why does it make sense to search in St ∩H where:

H = {x
∣∣〈∇f(ct), x− ct〉 ≤ ?{߿

By convexity, if y /∈ {St ∩H}
then:

f(y) ≥ f(ct) + 〈∇f(ct), y− ct〉
> f(ct)
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CONVERGENCE THEOREM

Theorem (Center-of-Gravity Convergence)
Let f be a convex function with values in [−B,B]. Let x̂ be the
output of the center-of-gravity method run for T iterations.
Then:

f(x̂)− f(x∗) ≤ Bࠁ
(
−ࠀ ࠀ

e

)T/d
≤ .dࠂ/Be−Tࠁ

If we set T = dࠂ log(ࠁB/ε), then f(x̂)− f(x∗) ≤ ε.

ࠂࠀ
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KEY GEOMETRIC TOOL

Want to argue that, at every step of the algorithm, we “cut off”
a large portion of the convex set we are searching over:

ࠃࠀ



KEY GEOMETRIC TOOL

Theorem (Grünbaum’s Theorem)
For any convex set S with center-of-gravity c, and any
halfspace Z = {x

∣∣〈a, x− c〉 ≤ {߿ then:

vol(S ∩ Z)

vol(S) ≥ ࠀ
e
≈ ࠇࠅࠂ.
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KEY GEOMETRIC TOOL

Want to argue that, at every step of the algorithm, we “cut off”
a large portion of the convex set we are searching over.

Theorem (Grünbaum’s Theorem)
For any convex set S with center-of-gravity c, and any
halfspace Z = {x

∣∣〈a, x− c〉 ≤ {߿ then:

vol(S ∩ Z)

vol(S) ≥ ࠀ
e
≈ ࠇࠅࠂ.

Let Z be the compliment of H from the algorithm. Then we cut
off at least a e/ࠀ fraction of the convex body on every iteration.

Corollary: After t steps, vol(St) ≤
(
−ࠀ ࠀ

e
)t
vol(S).
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CONVERGENCE PROOF

Let δ be a small parameter to be chosen later.

Let Sδ = −ࠀ)} δ)x∗ + δx
∣∣ for x ∈ S}.

Claim: Every point y in Sδ has good function value.
ࠆࠀ
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CONVERGENCE PROOF

For any y ∈ Sδ :

f(y) = f −ࠀ)) δ)x∗ + δx)
≤ −ࠀ) δ)f(x∗) + δf(x)
≤ f(x∗)− δf(x∗) + δf(x)
≤ f(x∗) + .Bδࠁ
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CONVERGENCE PROOF

We also have: vol(Sδ) = δd vol(S).

Set δ =
(
−ࠀ ࠀ

e
)T/d. After T steps,

vol(St) ≤ vol(Sδ).

Either ST exactly equals Sδ , in which
case our current centroid gives error
≤ .Bδࠁ

Or we must have “chopped off” at
least one point y in Sδ by the time we
reach step T.

ࠈࠀ
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CONVERGENCE PROOF

Claim: If we “chopped off” at least

one point y in Sδ by the time we
reach step T then for some centroid
cࠀ, . . . , ct, f(ct) < .Bδࠁ

Proof:

Bδࠁ ≥ f(y) ≥ f(ct) + 〈∇f(ct), y− ct〉
> f(ct).

Algorithm returns argminci f(ci).

߿ࠁ

I
• E - ⑦

①



CONVERGENCE THEOREM

Theorem (Center-of-Gravity Convergence)
Let f be a convex function with values in [−B,B]. Let x̂ be the
output of the center-of-gravity method run for T iterations.
Then:

f(x̂)− f(x∗) ≤ Bࠁ
(
−ࠀ ࠀ

e

)T/d
≤ .dࠂ/Be−Tࠁ

If we set T = O (d log(B/ε)), then f(x̂)− f(x∗) ≤ ε.

In terms of gradient-oracle complexity, this is essentially
optimal. So why isn’t the algorithm used?

ࠀࠁ
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CENTROID COMPUTATION

In general computing the centroid is hard. #P-hard even when
when S is an intersection of half-spaces (a polytope).

Even if the problem isn’t hard for your starting convex body S ,
it likely will become hard for S ∩Hࠀ ∩Hࠁ ∩Hࠂ . . ..

So while the oracle complexity of dimension-dependent
optimization was settled, in the s߿ࠆ a number of basic
questions in terms of computational complexity.

ࠁࠁ
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LINEAR PROGRAMMING

Linear programs (LPs) are one of the most basic convex
constrained, convex optimization problems:

Let c ∈ Rd,b ∈ Rn,A ∈ Rn×d be fixed vectors that define the
problem, and let x be our variable parameter.

min f(x) = cTx
subject to Ax ≥ b.

Think about Ax ≥ b as a union of half-space constraints:

{x : aTࠀx ≥ bࠀ}
{x : aTࠁx ≥ bࠁ}

...
{x : aTnx ≥ bn}

ࠂࠁ
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LINEAR PROGRAMMING

min f(x) = cTx
subject to Ax ≥ b.

ࠃࠁ
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LINEAR PROGRAMMING APPLICATIONS

• Classic optimization applications: industrial resource
optimization problems were killer app in the .s߿ࠆ

• Robust regression: minx ‖Ax− b‖ࠀ.
• Lࠀ constrained regression: minx ‖x‖ࠀ subject to Ax = b. Lots
of applications in sparse recovery/compressed sensing.

• Solve minx ‖Ax− b‖∞.
• Polynomial time algorithms for Markov Decision Processes.
• Many combinatorial optimization problems can be solved
via LP relaxations.

ࠄࠁ
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LINEAR PROGRAMMING

Theorem (Khachiyan, 1979)
Assume n = d. The ellipsoid method solves any linear
program with L-bit integer valued constraints in O(nࠃL) time.
I.e. linear programming is in (weakly) polynomial time!

Using a relatively simple center-of-gravity like method!

Front page of New York Times, November ,ࠈ .ࠈࠆࠈࠀ ࠅࠁ



PROBLEM SIMPLIFICATION

Simplifying the problem: Given a convex set K via access to
separation oracle SK for the set, determine if K is empty, or
otherwise return any point x ∈ K.

Sk(y) =
{
∅ if y ∈ K.

seperating hyperplane (a, c) if y /∈ K.

Let H = {x : aTx = c}.

ࠆࠁ
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SEPARATION ORACLE

Example: How would you implement a seperation oracle for a
polytope {x : Ax ≥ b}.
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FROM MEMBERSHIP TO OPTIMIZATION

Original problem:

min
x

f(x) subject to x ∈ S

How can we reduce to determining if a convex set K is empty
or not?

Binary search! For a convex function f(x), {x : f(x) ≤ c} is
convex, and you can get a seperation oracle via the gradient.

• Start with upper bound and lower bounds u and l on
optimal solution (can be obtained for many problems).

• Check if the convex set S ∩ {x : f(x) ≤ (u+ l)/ࠁ} contains a
point.

• Update u = (u+ l)/ࠁ if it does, l = (u+ l)/ࠁ if not.
• Continue until |u− l| ≤ ε.

ࠈࠁ

Ax a b

•

XTE⇐ c

- - Q



ELLIPSOID METHOD SKETCH

Goal of ellipsoid algorithm: Solve “Is K empty or not?” given a
seperation oracle for K under the assumptions that:

.ࠀ K ⊂ B(cR,R).
.ࠁ If non-empty, K contains B(cr, r) for some r < R.

߿ࠂ



ELLIPSOID METHOD SKETCH

Iterative method similar to center-of-gravity:

.ࠀ Check if center cR of B(cR,R) is in K.
.ࠁ If it is, we are done.
.ࠂ If not, cut search space in half, using seperating

hyperplane.

ࠀࠂ
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ELLIPSOID METHOD SKETCH

Key insight: Before moving on, approximate new search region
by something that we can easily compute the centroid of.
Specifically an ellipse!!

Produce a sequence of ellipses that always contain K and
decrease in volume: B(cR,R) = Eࠀ, Eࠁ, . . .. Once we get to an
ellipse with volume ≤ B(cr, r), we know that K must be empty. ࠁࠂ
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ELLIPSE

An ellipse is a convex set of the form: {x : ‖A(x− c)‖ࠁࠁ ≤ α} for
some constant c and matrix A. The center-of-mass is c.

Often re-parameterized to say that the ellipse is all x with
{x : (x− c)TQ−ࠀ(x− c) ≤ {ࠀ ࠂࠂ
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ELLIPSOID UPDATE

There is a closed form solution for the equation of the
smallest ellipse containing a given half-ellipse. I.e. let Ei have
parameters Qi, ci and consider the half-ellipse:

Ei ∩ {x : aTi x ≤ aTi ci}.

Then Ei+ࠀ is the ellipse with parameters:

Qi+ࠀ =
dࠁ

dࠁ − ࠀ

(
Qi −

ࠁ
d+ ࠀ

hhT
)

ci+ࠀ = ci −
ࠀ

n+ ࠀ
h,

where h =
√
aTi Qiai · ai.

ࠃࠂ



GEOMETRIC OBSERVATION

Claim: vol(Ei+ࠀ) ≤ −ࠀ) ࠀ
(dࠁ vol(Ei).

Proof: Via reduction to the “isotropic case”. I will post a proof
on the course website if you are interested.

Not as good as the −ࠀ) ࠀ
e) constant-factor volume reduction

we got from center-of-gravity, but still very good! ࠄࠂ
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GEOMETRIC OBSERVATION

Claim: vol(Ei+ࠀ) ≤ −ࠀ) ࠀ
(dࠁ vol(Ei)

After O(d) iterations, we reduce the volume by a constant.

In total require O(dࠁ log(R/r)) iterations to solve the problem.

ࠅࠂ
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ELLIPSOID FOR LPS

Theorem (Khachiyan, 1979)
Assume n = d. The ellipsoid method solves any linear
program with L-bit integer valued constraints in O(nࠃL) time.
I.e. linear programming is in (weakly) polynomial time!

The method works for any convex program.

For LPs, we have an O(nd) time seperation oracle, and ellipsoid
update take O(dࠁ) time.

Careful analysis of the binary search method, how to set Br

and BR, etc. leads to the final runtime bound.
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INTERIOR POINT METHODS

Theorem (Karmarkar, 1984)
Assume n = d. The interior point method solves any linear
program with L-bit integer valued constraints in O(nࠄ.ࠂL) time.

Front page of New York Times, November ,ࠈࠀ .ࠃࠇࠈࠀ
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INTERIOR POINT METHODS

Will post lecture notes on the website (optional reading).

Projected Gradient Descent Optimization Path

ࠈࠂ
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INTERIOR POINT METHODS

Will post lecture notes on the website (optional reading).

Ideal Interior Point Optimization Path
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POLYNOMIAL TIME LINEAR PROGRAMMING

Both results had a huge impact on the theory of optimization,
although at the time neither the ellipsoid method or interior
point method were faster than a heuristic known at the
Simplex Method.

These days, improved interior point methods compete with
and often outperform simplex.
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LP RELAXATION
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SET COVER PROBLEM

Given:

• n ground elements ,ࠀ} . . . ,n}
• m sets Sࠀ, Sࠁ, . . . , Sm where Sj ⊆ ,ࠀ} . . . ,n}
• non-negative weights cࠀ, . . . ,wm ≥ ߿

Find:

min
Z⊆{ࠀ,...,m}

∑

j∈Z

cj subject to ∪j∈Z Sj = ,ࠀ} . . . ,n}.

This is an NP-Complete combinatorial optimization problem!
Likely impossible to find an efficient exact algorithm.

ࠁࠃ



APPLICATIONS

• Finding efficient sets of test cases for code testing and
verification.

• Complex employee shift scheduling problems (e.g. in the
airline industry).

• Motif selection in computational biology.

ࠂࠃ



APPLICATION: VERTEX COVER

Given:

• ground elements are edges
• sets are nodes so

Sj = {edges adjacent to jth node}

• Could have cj = ࠀ for all j ∈ ,ࠀ . . . ,m or could have
different costs per node.

What vertices should we choose so that all edges are
connected to at least one chosen vertex?

ࠃࠃ



LINEAR PROGRAMMING

Let x ∈ Rm be a vector of decision variables, c be a cost vector,
and b ∈ Rn be a vector of constraints. As before a linear
program has the form the linear programs is:

Minimize cTx subject to Ax ≥ b,

Goal: Show that set cover can be written as a linear program,
except with the additional constraint that x is a binary random
vector. This is called an integer linear program.

ࠄࠃ



LP FOR SET COVER: OBJECTIVE

Let xj = ࠀ iff j ∈ Z. ߿ otherwise

The objective is to minimize the sum of weights in Z:

min
Z⊆{ࠀ,...,m}

∑

j∈Z

cj ⇔ min
x

m∑

j=ࠀ

cjxj ⇔ min
x

cTx

ࠅࠃ



LP FOR SET COVER: CONSTRAINT

The constraint is that C covers the ground elements. I.e. for all
i ∈ ,ࠀ . . . ,n, we should have:

i ∈ ∪j∈ZSj ⇔
m∑

j:i∈Sj

xj ≥ ࠀ ⇔ Ax ≥ c

Question: What are A and b?

ࠆࠃ



LP FOR SET COVER: STATEMENT

Minimize cTx subject to Ax ≥ b, x ∈ ,߿} m{ࠀ

Minimize
m∑

j=ࠀ

cjxj subject to
∑

j:i∈Sj

xj ≥ ,ࠀ x ∈ ,߿} m{ࠀ

Without the constraint x ∈ ,߿} ,m{ࠀ we can solve linear program
in polynomial time with e.g. Interior Point, Ellipsoid Method.
But we will get a fractional solution.

ࠇࠃ



LP RELAXATION

Definition (Relaxation)
A linear program (where x ∈ Rm) is a relaxation of an integer
program (where x ∈ ,߿} (m{ࠀ if

• a feasible solution to the ILP is a feasible solution to the
LP and

• the value of the feasible solution in the ILP has the same
value in the LP.

We always have that OPTLP ≤ OPTILP.
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LP ROUNDING

Common approach for approximately solving ILPs:

Find a solution to an LP relaxation for the IP and then “round”
the solution to be binary or integer. E.g round numbers close
to ߿ to ,߿ numbers close to ࠀ to .ࠀ Often randomization is used
in the rounding process.

߿ࠄ



LP TO SET COVER

Theorem
Let x∗ be optimal solution to LP. Define

f = max
i∈ࠀ,...,n

|{j : i ∈ Sj}|.

Rounding procedure: Put j ∈ Z if and only if x∗j ≥ .f/ࠀ

Then Z is feasible and gives an f-approximation to set cover.

Question: What approximation do we get for vertex cover?

ࠀࠄ



LP TO SET COVER: PROOF

Claim: C is feasible.

Fix i. We know
∑

j:i∈Sj

x∗j ≥ .ࠀ

Then

ࠁࠄ



LP TO SET COVER: PROOF

Claim: C gives an f-approximation to set cover.

CostLP =
m∑

j=ࠀ

x∗j cj CostILP =
∑

j∈Z

cj
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