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lecture road map

Congrats on finishing your midterm!

As a reward (haha), you get to hear from me about a new topic:
Differential Privacy or DP.

In this short lecture, we’ll:

• Motivate the problem of data privacy
• Introduce basic DP
• Demonstrate that we can use it to protect Kanye’s∗ house
in Wyoming from robbers

∗(Note: I made these slides before Kanye went off the deeper deep end.)
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informal privacy problem statement

Data privacy problem (informal):

Data utility will eventually be consumed!

As the “Fundamental Law of Information Recovery” states:

...overly accurate answers to too many questions will destroy
privacy in a spectacular way... [Dwork et. al 2014]

Goal: postpone this inevitability as long as possible
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famous example: governor weld’s privacy breach

Mid-1990s: Massachusetts Group Insurance Commission (GIC)
releases data w/ every single hospital visit of state employees.

William Weld, then Governor of Massachusetts, says data
protected by deleting patient identifiers. (name and SSN)

Graduate student Latanya Sweeney (now Dr. Sweeney and
famous Prof): “You’re full of it!”

Figure 1: As it happened. 4



famous example: governor weld’s privacy breach

To prove him wrong: uses info on Governor Weld’s city of
residence (Cambridge) which has seven ZIP codes, 54,000
residents.

For 20 bucks, Sweeney buys voter rolls from the city. This
database contains the name, address, ZIP code, birth date, and
sex of every voter.

In GIC data: only six people in Cambridge shared Weld’s birth
date, and only three of them men, and of them, only he lived in
his ZIP code.

In baller move, Sweeney sends the Governor’s health records
(which included diagnoses and prescriptions) to his office.
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approaches to data privacy

There are many more examples of data privacy breaches.

Solving this problem has generated lots of work over the past two
decades, and spawned a “data privacy community”

Examples of influential approaches:

• PII scrubbing (BROKEN)

• k-anonymity [Sweeney 2002]

• l-diversity [Machanavajjhala 2007]

• Differential Privacy [Dwork 2006]

In many ways, differential privacy has “won,” with widest adoption
(and almost always the strongest guarantees). But there are many
open questions even still...
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formalisms

Differentially Private Formalism
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neighboring datasets

Consider datasets x and x′ as being from the data universe X

We will refer to two datasets as adjacent or neighboring if they
“differ by at most one element.”

Figure 2: Intuitively, consider two identical datasets where a single
row has been removed or added.

(Note: we could be more formal with this definition, but for our
purposes this will be fine.) 8



differential privacy

Differential Privacy [Dwork et. al 2006]
A randomized algorithm M : N|X| → Y (mapping domain N|X| to Y) is
ε-differentially private if for all S ∈ Y and every pair of adjacent
databases x and x′ (||x − x′||1 ≤ 1) in N|X|, the following holds:

Pr[M(x) ∈ S] ≤ eε × Pr[M(x′) ∈ S]

Note: Equivalently, we can have this hold over individual output
y ∈ Y , and not over sets S ∈ Y :

Pr[M(x) = y] ≤ eε × Pr[M(x′) = y]
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notes on the definition

Differential Privacy [Dwork et. al 2006]

Pr[M(x) ∈ S] ≤ eε × Pr[M(x′) ∈ S]

The multiplicative error approximation eε here is a really strong
guarantee

We might have first tried additive error!

If you thought this, that’s great - you’re halfway to conceptualizing
(ε, δ)− DP.

If you’re confused as to why we want multiplicative, I’d be happy to
discuss after lecture, and I can point you to resources that present
more formal motivation.
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mechanisms

Our first DP mechanism
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counting queries

Let’s consider one of the simplest statistics over a database we
might want to answer in a private manner: a counting query.

Counting Query
Consider row xi in database X, and predicate function
pred(xi) : xi → {0, 1} (think, abusing notation, of
pred(xi) = 1[condition over xi]).

We define a counting query Qpred : X → {0,n} as:

Qpred =
∑
xi∈X

pred(xi)

Example predicates?
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sensitivity

What’s so interesting about counting queries?

They have low sensitivity!

(Global) Sensitivity
Consider any two neighboring datasets x and x′ in X.

The sensitivity ∆Q of a query Q is then,

∆Q = max
x,x′

|Q(x)− Q(x′)|

This can be stated more generally: for some function f : x → R
which maps dataset x to a real number,

∆f = max
x,x′

|f (x)− f (x′)|

Question for you: What’s the sensitivity of a counting query?
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sketch for counting queries

Now that we’ve established a counting query Q, let’s consider a
method of answering Q in an ε-differentially private manner.

Here’s a sketch of the algorithm for answering Q privately on
dataset x:

• Calculate Q(x).
• Return Q(x) + noise

...Is that it?

14



sketch for counting queries

DP Procedure for Counting Queries

• Calculate Q(x).
• Return Q(x) + noise

It’s not quite it!

We need to add just enough noise to get the guarantee from
our ε-DP definition.
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algorithm for counting queries

Turns out, the procedure as stated is ε-differentially private if
“noise” is drawn from the Laplace distribution.

Algorithm 1: The Laplace Mechanism for Counting Queries

• Calculate Q(x).
• Return Q(x) + s ∼ Lap(∆Qε )

We will prove this, but first we’ll need a couple tools.
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laplace distribution

Laplace distribution
The Laplace distribution, centered at 0 with parameter b has
variance 2b2 and the density function

f (x|b) = e
−|x|
b

2b
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laplace distribution

The density of the Laplace vs. Normal.
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laplace concentration bound

Laplace concentration bound

Pr
x∼Lap(b)

[|x| > αb] ≤ e−α
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proof laplace mechanism

Useful note: ε-DP is: Pr[M(x)=y]
Pr[M(x′)=y] ≤ eε

Algorithm 1: The Laplace DP Mechanism (ML)

• Calculate Q(x).
• Return Q(x) + s ∼ Lap(∆Qε )

Proof. Algorithm 1, ML, is ε-DP:

Let x and x′ be neighboring datasets in Xn, and let y ∈ R

Note b = ∆Q
ε .

Pr[ML(x,Q) = y] =
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proof laplace mechanism

Proof.
(cont):

Similarly, Pr[ML(x′,Q) = y] = 1
2be

−|y−Q(x′)|
b

Plugging into the definition of DP, we have:
Pr[ML(x,Q)=y]
Pr[ML(x′,Q)=y] =
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accuracy laplace mechanism

Recall that the Laplace distribution has variance 2b2.
Proposition. ML has the following bound on its accuracy
(directly from the Laplace concentration bound):

Pr
[
|ML(x,Q)− Q(x)| > ∆Q

ε
× ln

(
1
ρ

)]
≤ ρ

I won’t prove, but convince yourself of this!
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note laplace mechanism

The “Laplace Mechanism,” or ML, is one of the most
fundamental tools of DP.

We framed it for answering counting queries Q in a DP manner,
but it’s incredibly versatile.

I’ll briefly demonstrate that it can be used to privatize a mean
over a dataset.

23



mean estimation problem

Problem statement: We want to privately estimate the mean of
a binary dataset z1, ..., zn, where zi ∈ {0, 1}.

The true empirical mean of the dataset is:

p̃ =
1
n

n∑
zi

How might we get an ε-differentially private mean estimate, p̂?

Question 1: what is the sensitivity of the mean, ∆p̃?

Question 2: what would be the sensitivity of a mean taken over
z1, ..., zn ∈ R?
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mean estimation problem

Claim: ε-DP Mean Estimator for binary data (p̂): Given a binary
dataset z1, ..., zn, where zi ∈ {0, 1}, an ε-DP mean estimator p̂ is
given by:

p̂ =
1
n

n∑
zi + Lap

(
1
εn

)
Exercise for you: using Chebyshev’s inequality, show that, with
enough data and for reasonably small values of ε and w.h.p:

|p̂− p̃| ≤ O
(
1
εn

)
In other words, our ε-DP mean estimator is accurate, and gets
better as n gets bigger!
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demo: finding kanye’s house

Let’s take a look at a real life potential application of DP:
protecting Kanye from robbers!

Figure 3: Please don’t have said anything crazy today, Kanye.
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demo: finding kanye’s house

Note: this is real Census data, but the 2020 U.S. Census actually
used DP to privatize results. So we are forced to reinsert Kanye
into the zipcodes.

Figure 4: If it were the year 2000, we could find Kanye for sure. 27


