CS-GY 6763: Lecture 7
Second Order Conditions, Online and
Stochastic Gradient Decent

NYU Tandon School of Engineering, Prof. Christopher Musco



ADMINISTRATIVE

Midterm in class next Wednesday.

- List of topics covered and practice problems will be
posted on the course webpage.

- You are allowed a double sided sheet of paper.

- If you are taking it at the Moses Center, please send me an
email just to make sure | don't forget.

- | will go over Problem Set 2 in office hours on Monday and
record it. Recording of Majid going over Problem Set 1
already posted.



GRADIENT DESCENT RECAP

First Order Optimization: Given a function f and a constraint
set S, assume we have:

- Function oracle: Evaluate f(x) for any x.
- Gradient oracle: Evaluate Vf(x) for any x.

- Projection oracle: Evaluate Ps(x) for any x.

Goal: Find X € S such that f(X) < minkes f(X) + €.



GRADIENT DESCENT RECAP

Projected gradient descent:

- Select starting point x(9, learning rate .
- Fori=0,...,T

-z = x0) — pvAx()

- XU+ = ps(2)

- Return X = arg min; f(x).



GRADIENT DESCENT RECAP

Conditions for convergence:

- Convexity: fis a convex function, S is a convex set.
- Bounded initial distance:

X —x*[l, < R
- Bounded gradients (Lipschitz function):
IVi(x)| < Gforallx e S.

Theorem: Projected Gradient Descent returns X with
f(X) < minges f(X) + € after

2022
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iterations.



OTHER CONVERGENCE GUARANTEES

Convexity:
0 < [fly) — f(¥)] = VAX)"(y — x)
B-smoothness:
7y) — F09] — VAX)T(y — %) < S lix ~ vl
Number of iterations for ¢ error:

‘ G-Lipschitz B-smooth
R bounded start | O (%) 0 (%RQ)
a-strong convex @) (2—1) @) (g |og(R/e))




STRONG CONVEXITY

Definition (a-strongly convex)
A convex function fis a-strongly convex if, for all x, y

b= 13 < [71y) = f0] = V00T (y = %)

For a twice-differentiable scalar function f, equivalent to

f'(x) > .

fly)

L —
f(x) Vi(x)T(y - X)

__________




GD FOR STRONGLY CONVEX FUNCTION

Gradient descent for strongly convex functions:

- Choose number of steps T.

- Fori=1,...,T:

. _ 2
= G

- X = X0 — pwAx)

- Return X = arg min,g) f(X(i)).



CONVERGENCE GUARANTEE

Theorem (GD convergence for a-strongly convex functions.)
Let f be an a-strongly convex function and assume we have

that, for all x, ||Vf(x)|» < G. If we run GD for T steps (with
adaptive step sizes) we have:

2G?
a(T—1)

f%) = f(x*) <

Corollary: If we have f(X) — f(x*) < e



CONVERGENCE GUARANTEE

We could also have that fis both 3-smooth and a-strongly
convex.

2
X = yll2-

N |

S lx =I5 < [Ay) = f0] = VA" (y = %) <

fy)

L
f(x) Vi)T(y - x)

__________

10



CONVERGENCE GUARANTEE

Ix = yli2 < [fty) = fO0)] = VAX)'(y = x) <~ lIx = y]2.

Theorem (GD for 5-smooth, a-strongly convex.)
Let f be a B8-smooth and a-strongly convex function. If we run
GD for T steps (with step size n = %) we have:

XM —x*|13 < e 75 [x(O) — x*|3

is called the “condition number” of f.

Is it better if « is large or small?

n



SMOOTH AND STRONGLY CONVEX

Converting to more familiar form: Using that fact the
Vf(x*) = 0 along with

% ¢~ yI7 < ) — 0] — VA(y — %) < 5 x— yI,

we have:

XD —x*3 > 2 [fxD) - fix")

™

We also assume

X — x5 < R
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CONVERGENCE GUARANTEE

Theorem (GD for 5-smooth, a-strongly convex.)
Let f be a B8-smooth and a-strongly convex function. If we run
GD for T steps (with step size n = %) we have:

)y — fixr) < Be s @) — e

(07

Corollary: If we have:

Only depend on log(1/€) instead of on 1/e or 1/¢!
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ALL CONVERGENCE GUARANTEES

We're going to prove this theorem for the special case of a
quadratic function:

IAx — bl5.

Underwhelming, yes, but the analysis is really helpful
pedagogically! Also if there is one class of algorithms that use
more of the worlds computing power than training neural
networks, it's GD like iterative methods for solving linear
systems.

14



THE HESSIAN

Let f be a twice differentiable function from R? — R. Let the
Hessian H = V?f(x) contain all of its second derivatives at a
point x. So H € R9%4. We have:

62
J/?_[ 2()}//?: J

2 anXk'
For vector X, v:

VA(x + tv) = Vf(x) + t [V*f(x)] v
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THE HESSIAN

Let f be a twice differentiable function from R? — R. Let the
Hessian H = V?f(x) contain all of its second derivatives at a
point x. So H € R9%4. We have:

62
//?—[ 2()Lk_ /

R 8X1Xk ’

Example: f(x) = Z, ( xTal — y0)* = |Ax — y|3

z-%: ooy

]

6><,?8X, Z 2a

H=



ALTERNATIVE DERIVATION

f(x) = ||Ax — b]|3. Recall that Vf(x) = 2AT(Ax — b).



CONVEXITY IN 1-D

A twice-differentiable function f: R — R is:

- convex if and only if f’(x) > 0 for all x.
- B-smooth if f/(x) < S.
- a-strongly convex if f/(x) > a.

How do these statements generalize to the case when f has a
vector in put, so the second derivative is a matrix H?



HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If fis twice differentiable, then it is convex if and only if
the matrix H = Vf(x) is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix H € R9%9 is positive semidefinite
(PSD) for any vector y € RY, y"Hy > 0.

This is a natural notion of “positivity” for symmetric matrices.
To denote that H is PSD we will typically use “Loewner order”
notation (\succeq in LaTex):

H > 0.

We write B = A or equivalently A < B to denote that (B —A) is
positive semidefinite. This gives a partial ordering on matrices.
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HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If fis twice differentiable, then it is convex if and only if
the matrix H = Vf(x) is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix H € R9%9 is positive semidefinite
(PSD) for any vector y € RY, y"Hy > 0.

For the least squares regression loss function: f(x) = ||Ax — b||?,
H = V?f(x) = 2ATA for all x. Is H PSD?

20



THE LINEAR ALGEBRA OF CONDITIONING

If fis B-smooth and a-strongly convex then at any point x,
H = V?f(x) satisfies:

al = H =3I,

where lis a d x d identity matrix.

This is the natural matrix generalization of the statement for
scalar valued functions:

a<f'(x) < B.

21



SMOOTH AND STRONGLY CONVEX HESSIAN

algyg = H X Blyxg.
Equivalently for any z,

allz|l7 < z'Hz < Bl|l3.
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SIMPLE EXAMPLE

Let f(x) = ||Dx — b||3 where D is a diagaonl matrix. For now

imagine we're in two dimensions: X = & ,D= o & )
X2 0 dz
What are «, 3 for this problem?

alZll} < z'Hz < B3
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GEOMETRIC VIEW

@

Level sets of |[Dx — b||3 when d? = 1,d3 = 1.



GEOMETRIC VIEW

Level sets of ||Dx — b||3 when df = 1,d? = 2.

What about non-diagonal D? e



EIGENDECOMPOSITION VIEW

Any symmetric matrix H has an orthogonal, real valued
eigendecomposition.

d eigenvectors eigenvalues eigenvectors
M
A
d H = \'} A TS
A
A

A Vg

Here V is square and orthogonal, so VIV = W' = |. And for
each v;, we have:

Hv; = \v;.

By definition, that's what makes v,. .., v, eigenvectors.
26



EIGENDECOMPOSITION VIEW

Recall W' = VIV = 1I.

d eigenvectors eigenvalues eigenvectors
M
A
d H = \'} A VT
A
A

ViV, Vg

Claim: His PSD < A\q,...,\y > 0.
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EIGENDECOMPOSITION VIEW

Recall W' = VIV = 1I.

d eigenvectors eigenvalues eigenvectors
M
A
d H = \'} A VT
A
A

ViV, Vg

Claimal = H=Blesa< < ... <\ < 8.
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EIGENDECOMPOSITION VIEW

Recall W' = VIV = 1I.

d eigenvectors eigenvalues eigenvectors
A

A

d H = v A A

A
Ay

V,V, Vq

In other words, if we let Amax(H) and Amin(H) be the smallest
and largest eigenvalues of H, then for all z we have:

Z"Hz < Amax(H) - [|Z]|2
z"Hz > Amin(H) - ||2|?
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EIGENDECOMPOSITION VIEW

If the maximum eigenvalue of H = V?f(x) = 8 and the
minimum eigenvalue of H = V2f(x) = a then f(x) is 3-smooth
and a-strongly convex.
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POLYNOMIAL VIEW POINT

Theorem (GD for 5-smooth, a-strongly convex.)
Let f be a B-smooth and a-strongly convex function. If we run
GD for S steps (with step size n = %) we have:

XS = x|l2 < e=57xO - x|

Let Amax = Amax(ATA) and set step size n = . Gradient
descent update is:

XD = x0 — 1 oaT(ax® _p)

2 max
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ALTERNATIVE VIEW OF GRADIENT DESCENT

Richardson Iteration view:

(x(H) — x*) = <I - 1ATA> (x® —x*)
ax

32



UNROLLED GRADIENT DESCENT

(x®) —x*) = (I — 1ATA)S (x(© — x*)

max

33



UNROLLED GRADIENT DESCENT

(X(S) — x*) — <| _ TATA)S (X(O) . X*)

)‘max

Approach: Show that the maximum eigenvalue of
25
(' - ﬁATA) is small - i.e,, bounded by e=5/% = ¢,

Conclusion: ||x() — x*||3 <

So we have ||x®) —x*|, <

34



UNROLLED GRADIENT DESCENT

(x®) —x*) = (I — 1ATA)S (x(© — x*)

)\max

What is the maximum eigenvalue of the symmetric matrix
(I — ﬁaxATA) in terms of the eigenvalues of ATA?
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UNROLLED GRADIENT DESCENT

(x®) —x*) = (I — 1ATA)S (x(© — x*)

)\max

s
What is the maximum eigenvalue of (I — ﬁATA) ?

36



ACCELERATION



ACCELERATED GRADIENT DESCENT

Nesterov's accelerated gradient descent:
- x(O = y() = z(
s fFort=1,...,T
-yt = x(O — %Vf(x(t))

- x(tH) = (1 4 ﬁ:) YD % (y(t+1) — y()

Theorem (AGD for 3-smooth, a-strongly convex.)

Let f be a B3-smooth and a-strongly convex function. If we run
AGD for S steps we have:

FIX) = F0x) < e~V [fx@) - )|

Corollary: If
37



INTUITION BEHIND ACCELERATION

Level sets of ||Ax — bl}3.

Other terms for similar ideas:

+ Momentum
- Heavy-ball methods



BREAK



ONLINE AND STOCHASTIC GRADIENT DESCENT

Second part of class:

- Basics of Online Learning + Optimization.

- Introduction to Regret Analysis.

- Application to analyzing Stochastic Gradient Descent.

39



ONLINE LEARNING

Many machine learning problems are solved in an online
setting with constantly changing data.

- Spam filters are incrementally updated and adapt as they
see more examples of spam over time.

- Image classification systems learn from mistakes over
time (often based on user feedback).

- Content recommendation systems adapt to user behavior
and clicks (which may not be a good thing...)

40



EXAMPLE

Plant identification via iNaturalist app.

(California Academy of Science + National Geographic)

- When the app fails, image

is classified via
crowdsourcing (backed by
huge network of amateurs
and experts).

- Single model that is

updated constantly, not
retrained in batches.

41



EXAMPLE

ML based email spam/scam filtering.
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Markers for spam change overtime, so model might change.
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EXAMPLE

ML based email spam/scam filtering.

Re:SAFTY CORONA VIRUS AWARENESS WHO

[0 T —

{7, World Health
%2 Organization

Markers for spam change overtime, so model might change.
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ONLINE LEARNING FRAMEWORK

Choose some model My parameterized by parameters x and
some loss function £. At time steps 1,...,T, receive data
vectors a(V, ..., a(D,

- At each time step, we pick (“play”) a parameter vector x().
- Make prediction §() = M, (a)).

- Then told true value or label y(.

-+ Goal is to minimize cumulative loss:

n
L= Zg(x(f)’ a)
i=1
For example, for a regression problem we might use the ¢, loss:
. 2
o(x), 2l Yy = ‘<X<r ay — (0

For classification, we could use logistic/cross-entropy loss.
44



ONLINE OPTIMIZATION

Abstraction as optimization problem: Instead of a single
objective function f, we have a single (initially unknown)
function fu,...,fr : RY — R for each time step.

- Fortimestepie1,...,T, select vector x().
- Observe f; and pay cost f;(x())
- Goal is to minimize .1, fi(x®).

We make no assumptions that fy, ..., fr are related to each
other at all!
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REGRET BOUND

In offline optimization, we wanted to find X satisfying
f(X) < miny f(x). Ask for a similar thing here.

Objective: Choose x(, ..., x(N so that:

> i) < [mxian,-(x)

Here ¢ is called the regret of our solution sequence
x(0) x(7.

+ €.

gy

We typically € to be growing sublinearly in T.
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REGRET BOUND

Regret compares to the best fixed solution in hindsight.

+ €.

T T
D fix0) < [mxian,-(x)

It's very possible that 31, fi(x(D) < [minx Z,—Tﬂf,(x)] Could we
hope for something stronger?

Exercise: Argue that the following is impossible to achieve:

T T
S H(x0) < lz min f,(x)
i=1 i=1

+ €.

47



HARD EXAMPLE FOR ONLINE OPTIMIZATION

Convex functions:

Fil) = x—

fa(x) = |x = hrl

where hq,..., hrare i.id. uniform {0,1}.

48



REGRET BOUNDS

T T
> fix) < [mxinZﬁ(x) +e.
=1 i=1
Beautiful balance:
- Either fy,...,fr are similar or changing slowly, so we can

learn predict f; from earlier functions.

- Orfy,...,fr are very different, in which case miny Z,T:m(x)
is large, so regret bound is easy to achieve.

- Or we live somewhere in the middle.

49



FOLLOW-THE-LEADER

Follow-the-leader algorithm:

- Choose x(0),
- Fori=1,...,T:
- Let X(i)l: arg minj':;l fi(x).
- Play x(.
- Observe f; and incur cost f;(x()).

Simple and intuitive, but there are two issues with this
approach. One is computational, one is related to the accuracy.

50



FOLLOW-THE-LEADER

Hard case:

51



ONLINE GRADIENT DESCENT

Online Gradient descent:

- Choose x(" and n = &~

GVT
- Fori=1,...,T
- Play x(.
- Observe f; and incur cost f;(x()).
. x(i+1) — X(i) _ UVJCI(X(’))

If f1,...,fr = f are all the same, this looks a lot like regular
gradient descent. We update parameters using the gradient Vf
at each step.

52



ONLINE GRADIENT DESCENT (OGD)

x* = argmin, 1. fi(x) (the offline optimum)
Assume:

* f1,...,fr are all convex.
- Each is G-Lipschitz: for all x, i, || Vfi(x)[|> < G.
- Starting radius: ||x* — x|, <R.

Online Gradient descent:

- Choose x and n = R~

) GVT
- Fori=1,... T
- Play x(.
- Observe f; and incur cost f;(x()).
- x(+) = X0 — 5 vf(x)
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ONLINE GRADIENT DESCENT ANALYSIS

Let x* = arg min, S, fi(x) (the offline optimum)
Theorem (OGD Regret Bound)
After T steps, ¢ = [2,; f,—(xU))} - [z,; f,-(x*)] < RGVT

RG
Average regret overtime is bounded by £ < i

Goes - 0as T — oo.
All this with no assumptions on how fi, ..., fr relate to each

other! They could have even been chosen adversarially - e.g.
with f; depending on our choice of x; and all previous choices.
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ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)
After T steps, ¢ = [z,; f,(xﬁ))} - [Z,-L f,-(x*)] < RGVT

Claim 1: Foralli=1,...,T,

(D _ y* 12 (15 (i+1) _ %2 2
o I = — x5 x|,

FxD) — £i(x) = S

(Same proof as last class. Only uses convexity of f;.)
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ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)
After T steps, e — [z,; f,»(x<">)} _ [z,; f,-(x*)] < RGVT.

Claim 1: Foralli=1,...,T,

X9 — X3 = x40 — x| G2

F) = (") < ! .

Telescoping Sum:

T
. X(1) —x* 2 X(T) —x* 2 i GZ
Z [fi(x(l)) *f,‘(X*) < ” ||22nH Hz + 772

=1

R? TT]G2
< —+
2n 2
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STOCHASTIC GRADIENT DESCENT (SGD)

Efficient offline optimization method for functions f with finite
sum structure:

f(x) = ZJ‘/(X)-

Goal is to find X such that f(X) < f(x*) + .

- The most widely use optimization algorithm in modern
machine learning.

- Easily analyzed as a special case of online gradient
descent!
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STOCHASTIC GRADIENT DESCENT

Recall the machine learning setup. In empirical risk
minimization, we can typically write:

fx) =Y _fi(x)
=1

where f; is the loss function for a particular data example
(@®, ).

Example: least squares linear regression.
n
f0 = - (a® — Yy’
i=1

Note that by linearity, Vf(x) = >, Vfi(X).
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STOCHASTIC GRADIENT DESCENT

Main idea: Use random approximate gradient in place of
actual gradient.

Pick random j € 1,...,n and update x using Vf;(x).

E [V£()] = - V(4.

nVfi(x) is an unbiased estimate for the true gradient Vf(x),
but can often be computed in a 1/n fraction of the time!

Trade slower convergence for cheaper iterations.
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STOCHASTIC GRADIENT DESCENT

Stochastic first-order oracle for f(x) = >, fi(X).

- Gradient Query: For any chosen j, x, return Vfj(x)
Stochastic Gradient descent:

- Choose starting vector x(, learning rate 7
s Fori=1,...,T

- Pick random j; € 1,...,n.

- X+ = x0) _ v (x0))

A T i
- Return & = 13, x0)
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VISUALIZING SGD

GD's smooth convergence SGD's stochastic convergence

co0 610
500

608

5 606

8

& o0s

602
100

600
0

0 10 o 50 0 10 50

20 20 EY
# GD iterations # 5GD iterations
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STOCHASTIC GRADIENT DESCENT

Assume:
- Finite sum structure: f(x) = Zfﬂf,-(x), with fy,...,f, all convex.

- Lipschitz functions: for all x, j, | Vfi(x)|. < &
- What does this imply about Lipschitz constant of f?
- Starting radius: ||x* —xM|, < R.

Stochastic Gradient descent:
. Q] i _ _D
Choose x*, steps T, learning rate n = ===
- Fori=1,...,T:
- Pick random j; € 1,...,n.
- XD = xO — pvf, (x(0)

A T i
* Return X = 13", x()

Approach: View as online gradient descent run on function
sequence fi,...,fj.

Only use the fact that step equals gradient in expectation. e



JENSEN’S INEQUALITY

For a convex function fand points x(, ..., x(®

1 1

f(t-x“)+...+t-x(t)> S%-f(x(1))+...+%-f(x(t))
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)

After T = B8% jterations:

Claim 1:
0~ f¢) < 737 [fx0) = )

Prove using Jensen’s Inequality:
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)

After T = Rzgz iterations:
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)
After T = E¢”

=1

**Z”E[J, — i (% )}
ij’ offme)‘| ,

‘HB

where x°ne — arg min, Z/T:1 £ (x).
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)
After T = @ iterations:
E[f(X) — f(x")] <e.
E[f(%) - f(x')] < ;ZE [F0e) — fx7)]
*7ZH]E |:f)r ]’-}1( )}

Zf) ofﬂme)‘|

n G’
<z (R~ - +/T (by OGD guarantee.)
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Number of iterations for error e:
0 22
- Gradient Descent; T = &

€ RZG/Z

* Stochastic Gradient Descent: T = “3-.

Always have G < G':
max [[Vf(x)[l2 < max ([[VAX)[l2 + - - - + [Vfa(X)l|2)
< max (|VAM) ) + .- + max (|Vfa(x)]2)

/
<n- o G.
n
So GD converges strictly faster than SGD.
But for a fair comparison:

- SGD cost = (# of iterations) - O(1)
- GD cost = (# of iterations) - O(n) &



STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

We always have G < G’. When it is much smaller then GD will
perform better. When it is closer to this upper bound, SGD will
perform better.

What is an extreme case where G = G'?
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

What if each gradient Vf;(x) looks like random vectors in R9?
E.g. with N(0,1) entries?

E [IVfi(x)l2] =

E [|VAX)|3] =

HZVf, ]
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Takeaway: SGD performs better when there is more structure
or repetition in the data set.
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PRECONDITIONING



PRECONDITIONING

Main idea: Instead of minimizing f(x), find another function
g(x) with the same minimum but which is better suited for first
order optimization (e.g., has a smaller conditioner number).

Claim: Let h(x) : RY — RY be an invertible function. Let
g9(x) = f(h(x)). Then

mxinf(x) = mxin g(x) and argminf(x)=nh <argxmin g(x)> .

X
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PRECONDITIONING

First Goal: We need g(x) to still be convex.

Claim: Let P be an invertible d x d matrix and let g(x) = f(Px).

g(x) is always convex.
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PRECONDITIONING

Second Goal:
g(x) should have better condition number & than f(x).

Example:

T
0 = 1Ax = bl k= Sy

M (PTATAP
-+ g(x) = [APx — b|3. g = REEAT.

T4



DIAGONAL PRECONDITIONER

Third Goal: P should be easy to compute.

Many, many problem specific preconditioners are used in
practice. There design is usually a heuristic process.
Example: Diagonal preconditioner.

- Let D = diag(A'A)
- Intuitively, we roughly have that D ~ ATA.
- LletP =+vD™!

P is often called a Jacobi preconditioner. Often works very well
in practice!
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DIAGONAL PRECONDITIONER

A=
-734 1 33 9111 )
-31 -2 108 5946 -19
232 -1 101 3502 10
426 ) -65 12503 9
-373 ) 26 9298 )
-236 -2 -94 2398 -1
2024 ) -132 -6904 -25
-2258 A 92 -6516 6
2229 ) 0 11921 -22
338 1 -5 -16118 -23
>> cond(A'*A) >> P = sqrt(inv(diag(diag(A'*A))));
>> cond(PxA"'+AxP)
ans =
ans =
8.4145e+07
10.3878

76



ADAPTIVE STEPSIZES

Another view: If g(x) = f(Px) then Vg(x) = PTVf(Px).
Vg(x) = PVf(Px) when P is symmetric.

Gradient descent on g:

s Fort=1,...,T,
. x(t'H) — X(t) — nP [Vf(Px(t))]

Gradient descent on g:
- Fort=1,...,T,
=y = yO — 9P [VAY©O)]

When P is diagonal, this is just gradient descent with a
different step size for each parameter!
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ADAPTIVE STEPSIZES

Algorithms based on this idea:

- AdaGrad
- RMSprop
- Adam optimizer

Vi
% %

LoaS @ AVA
B

. A‘\ ‘ lA A‘ . Output
Input \" .

Hidden Layers
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COORDINATE DESCENT



STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Gradient Descent: When f(x) = Y7, fi(x),
approximate Vf(x) with Vfi(x) for randomly chosen i.
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STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Coordinate Descent: Only compute a single random
entry of Vf(x) on each iteration:

v = | v = |7
2 0

Update: x(tH) « x(®O 4+ nv,f(x®).
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