
CS-GY :ࠂ676 Lecture 6
Gradient Descent and Projected Gradient
Descent

NYU Tandon School of Engineering, Prof. Christopher Musco

ࠀ

CONTINUOUS OPTIMIZATION

Given function f : Rd → Rn. Find x̂ such that:

f(x̂) ≤ min
x

f(x) + ε.

ࠁ

• g
Nd

EXAMPLE: LEAST SQUARES REGRESSION

Let a(ࠀ), . . . , a(n) ∈ Rd be a collection of data points and
y(ࠀ), . . . , y(n) be a collection of target values.

• Model: Mx(a) = xTa. x contains the regression coefficients.
• Loss function: L(z, y) = |z− y|ࠁ.
• Function to minimize: f(x) =

∑n
i=ࠀ |xTa(i) − y(i)|ࠁ

f(x) = ‖Ax− y‖ࠁࠁ

where A is a matrix with a(i) as its ith row and y is a vector with
y(i) as its ith entry.

ࠂ

- t o
= - 0n/]

¥a"' -

pix.-A-B.

ALGORITHMS FOR CONTINUOUS OPTIMIZATION

The choice of algorithm to minimize f(x) will depend on:

• The form of f(x) (is it linear, is it quadratic, does it have
finite sum structure, etc.)

• If there are any additional constraints imposed on x. E.g.
‖x‖ࠁ ≤ c.

ࠃ

FIRST TOPIC: GRADIENT DESCENT + VARIANTS

Gradient descent: A greedy algorithm for minimizing functions
of multiple variables that often works amazingly well.

ࠄ

xd)

CALCULUS REVIEW

For i = ,ࠀ . . . ,d, let xi be the ith entry of x. Let e(i) be the ith

standard basis vector.

Partial derivative:

∂f
∂xi

(x) = lim
t→߿

f(x+ te(i))− f(x)
t

Directional derivative:

Dvf(x) = lim
t→߿

f(x+ tv)− f(x)
t

ࠅ

I ,
r':$

%.....

x.?÷q
±

CALCULUS REVIEW

Gradient:

∇f(x) =





∂f
∂xࠀ (x)
∂f
∂xࠁ (x)...
∂f
∂xd (x)





Directional derivative:

Dvf(x) = lim
t→߿

f(x+ tv)− f(x)
t

= ∇f(x)Tv.

ࠆ

fly)¥x)= V ,¥ ,

HE¥E) = VI I x .µ

, g

o:#

* tu--11¥11flE)¥×)--4¥.' "Ex.

" "I.lt#IIEIxIIii:)

FIRST ORDER OPTIMIZATION

Given a function f to minimize, assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.

We view the implementation of these oracles as black-boxes,
but they can often require a fair bit of computation.

ࠇ

f

→ u¥.
=

EXAMPLE GRADIENT EVALUATION

Linear least-squares regression:

• Given a(ࠀ), . . . a(n) ∈ Rd, y(ࠀ), . . . y(n) ∈ R.
• Want to minimize:

f(x) =
n∑

i=ࠀ

(
xTa(i) − y(i)

ࠁ(
= ‖Ax− y‖ࠁࠁ.

What is the time complexity to implement a function oracle
for f(x)?

ࠈ

OCnd)

o n -

= a#fly o u t t o o ,
0 1 ¥

EXAMPLE GRADIENT EVALUATION

Linear least-squares regression:

• Given a(ࠀ), . . . a(n) ∈ Rd, y(ࠀ), . . . y(n) ∈ R.
• Want to minimize:

f(x) =
n∑

i=ࠀ

(
xTa(i) − y(i)

ࠁ(
= ‖Ax− y‖ࠁࠁ.

∂f
∂xj

=
n∑

i=ࠀ

ࠁ
(
xTa(i) − y(i)

)
· a(i)j = −α(j)T(Axࠁ y)

where α(j) is the jth column of A.

∇f(x) = ATࠁ (Ax− y)

What is the time complexity of a gradient oracle for ∇f(x)?

߿ࠀ

i:÷±.n x t /
§§€I⇐*⇒.."

04'd)

2.01hL) O (nd) Obed)

DECENT METHODS

Greedy approach: Given a starting point x, make a small
adjustment that decreases f(x). In particular, x← x+ ηv.

What property do I want in v?

Leading question: When η is small, what’s an approximation
for f(x+ ηv)− f(x)?

f(x+ ηv)− f(x) ≈

ࠀࠀ

=

a

[ste
p

s i z e

i? - '
" ' " ±

- D
✓
f (x) a n

= of(e)t r o n

= - o f61To f(x) .m =-hefa l lI n

DIRECTIONAL DERIVATIVES

Dvf(x) = lim
t→߿

f(x+ tv)− f(x)
t

= ∇f(x)Tv.

So:

f(x+ ηv)− f(x) ≈

How should we choose v so that f(x+ ηv) < f(x)?

ࠁࠀ

GRADIENT DESCENT

Prototype algorithm:

• Choose starting point x(߿).
• For i = ,߿ . . . , T:

• x(i+ࠀ) = x(i) − η∇f(x(i))
• Return x(T).

η is a step-size parameter, which is often adapted on the go.
For now, assume it is fixed ahead of time.

ࠂࠀ

fH://lto.sk.' --116119

M

=
s o

- . -

GRADIENT DESCENT INTUITION

ࠀ dimensional example:

ࠃࠀ

- In

"h÷÷÷÷
÷÷i÷⇐
- . Ol

GRADIENT DESCENT INTUITION

ࠁ dimensional example:

ࠄࠀ

-

."'"-A
•

I f
u µ ,

O

-

KEY RESULTS

For a convex function f(x): For sufficiently small η and a
sufficiently large number of iterations T, gradient descent will
converge to a near global minimum:

f(x(T)) ≤ f(x∗) + ε.

Examples: least squares regression, logistic regression, kernel
regression, SVMs.

For a non-convex function f(x): For sufficiently small η and a
sufficiently large number of iterations T, gradient descent will
converge to a near stationary point:

‖∇f(x(T))‖ࠁ ≤ ε.

Examples: neural networks, matrix completion problems,
mixture models.

ࠅࠀ

U

V .ensignflx)

o f(x)= 8

more

CONVEX VS. NON-CONVEX

One issue with non-convex functions is that they can have
local minima. Even when they don’t, convergence analysis
requires different assumptions than convex functions.

ࠆࠀ

✓ - *
i ?

APPROACH FOR THIS UNIT

We care about how fast gradient descent and related methods
converge, not just that they do converge.

• Bounding iteration complexity requires placing some
assumptions on f(x).

• Stronger assumptions lead to better bounds on the
convergence.

Understanding these assumptions can help us design faster
variants of gradient descent (there are many!).

Today, we will start with convex functions.

ࠇࠀ

CONVEXITY

Definition (Convex)
A function f is convex iff for any x, y,λ ∈ ,߿] :[ࠀ

−ࠀ) λ) · f(x) + λ · f(y) ≥ f −ࠀ)) λ) · x+ λ · y)

ࠈࠀ

- -

f-"(x)>o ' -
- -

•b%µl-d)fCx)tdfgj

GRADIENT DESCENT

Definition (Convex)
A function f is convex if and only if for any x, y:

f(x+ z) ≥ f(x) +∇f(x)Tz

Equivalently:
f(x)− f(y) ≤ ∇f(x)T(x− y)

߿ࠁ

, 2 2

. .

.⇒"" ¥

f (xty-(0×95)T(j-x)
ftp.#CxlHx-o)

o

← ⇐

DEFINITIONS OF CONVEXITY

It is easy but not obvious how to prove the equivalence
between these definitions. A short proof can be found in
Karthik Sridharan’s lecture notes here:

http://www.cs.cornell.edu/courses/csࠇࠀ߿ࠁ/ࠂࠇࠆࠅfa/lecࠅࠀ-
supplement.pdf

ࠀࠁ

p

http://www.cs.cornell.edu/courses/cs6783/2018fa/lec16-supplement.pdf
http://www.cs.cornell.edu/courses/cs6783/2018fa/lec16-supplement.pdf

GRADIENT DESCENT ANALYSIS

Assume:

• f is convex.
• Lipschitz function: for all x, ‖∇f(x)‖ࠁ ≤ G.
• Starting radius: ‖x∗ − x(߿)‖ࠁ ≤ R.

Gradient descent:

• Choose number of steps T.
• Starting point x(߿). E.g. x(߿) = .߿%
• η = R

G
√
T

• For i = ,߿ . . . , T:
• x(i+ࠀ) = x(i) − η∇f(x(i))

• Return x̂ = argminx(i) f(x(i)).

ࠁࠁ

E - o
o

f o
. -

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)

If we run GD for T ≥ RࠁGࠁ

εࠁ
iterations then f(x̂) ≤ f(x∗) + ε.

Proof is made tricky by the fact that f(x(i)) does not improve
monotonically. We can “overshoot” the minimum.

ࠂࠁ

O -

t . i r#
" '" '" ' " '"

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)

If we run GD for T ≥ RࠁGࠁ

εࠁ
iterations with step-size η = R

G
√
T ,

then f(x̂) ≤ f(x∗) + ε.

Proof is made tricky by the fact that f(x(i)) does not improve
monotonically. We can “overshoot” the minimum.

We will prove that the average solution value is low after
T = RࠁGࠁ

εࠁ
iterations. I.e. that:

ࠀ
T

T−ࠀ∑

i=߿

[
f(x(i))− f(x∗)

]
≤ ε.

Of course the best solution found, x̂ is only better than the
average.

ࠃࠁ

I

- -

Ace)-fv) = E

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If we run GD for T ≥ RࠁGࠁ

εࠁ iterations with step-size η = R
G
√
T , then

f(x̂) ≤ f(x∗) + ε.

Claim :ࠀ For all i = ,߿ . . . , T,

f(x(i))− f(x∗) ≤ ‖x
(i) − x∗‖ࠁࠁ − ‖x(i+ࠀ) − x∗‖ࠁࠁ

ηࠁ
+

ηGࠁ

ࠁ

Claim :(a)ࠀ For all i = ,߿ . . . , T,

∇f(x(i))T(x(i) − x∗) ≤ ‖x
(i) − x∗‖ࠁࠁ − ‖x(i+ࠀ) − x∗‖ࠁࠁ

ηࠁ
+

ηGࠁ

ࠁ

Claim ࠀ follows from Claim (a)ࠀ by definition of convexity.

ࠄࠁ

⇐
f (x ' 'J-f(xx)± p f (xiii)'t(xiii-ne)

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If we run GD for T ≥ RࠁGࠁ

εࠁ iterations with step size η = R
G
√
T , then

f(x̂) ≤ f(x∗) + ε.

Claim :(a)ࠀ For all i = ,߿ . . . , T,

∇f(x(i))T(x(i) − x∗) ≤ ‖x
(i) − x∗‖ࠁࠁ − ‖x(i+ࠀ) − x∗‖ࠁࠁ

ηࠁ
+

ηGࠁ

ࠁ

ࠅࠁ

11a - b1122=11all?t 11311?-2a T b

(T)

11x' i l .n p f (vis)- Xtells= 11x "t ×-11,2t n 'I lP t(xiii)115.
znoflxcijlxiii.ro)

- a n -

• m ↳ 1×0=41,2tm¥¥X"¥¥

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ RࠁGࠁ

εࠁ and η = R
G
√

T , then f(x̂) ≤ f(x∗) + ε.

Claim :ࠀ For all i = ,߿ . . . , T,

f(x(i))− f(x∗) ≤ ‖x(i) − x∗‖ࠁࠁ − ‖x(i+ࠀ) − x∗‖ࠁࠁ
ηࠁ +

ηGࠁ

ࠁ
Telescoping sum:

T−ࠀ∑

i=߿

[
f(x(i))− f(x∗)

]
≤ ‖x(߿) − x∗‖ࠁࠁ − ‖x(ࠀ) − x∗‖ࠁࠁ

ηࠁ +
ηGࠁ

ࠁ

+
‖x(ࠀ) − x∗‖ࠁࠁ − ‖x(ࠁ) − x∗‖ࠁࠁ

ηࠁ +
ηGࠁ

ࠁ

+
‖x(ࠁ) − x∗‖ࠁࠁ − ‖x(ࠂ) − x∗‖ࠁࠁ

ηࠁ +
ηGࠁ

ࠁ
...

+
‖x(T−ࠀ) − x∗‖ࠁࠁ − ‖x(T) − x∗‖ࠁࠁ

ηࠁ +
ηGࠁ

ࠁ

T−ࠀ∑

i=߿

[
f(x(i))− f(x∗)

]
≤ ‖x(߿) − x∗‖ࠁࠁ − ‖x(T) − x∗‖ࠁࠁ

ηࠁ +
TηGࠁ

ࠁ

ࠀ
T

T−ࠀ∑

i=߿

[
f(x(i))− f(x∗)

]
≤ Rࠁ

Tηࠁ +
ηGࠁ

ࠁ

ࠆࠁ

E -

÷:&

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ RࠁGࠁ

εࠁ and η = R
G
√
T , then f(x̂) ≤ f(x∗) + ε.

Telescoping sum:

T−ࠀ∑

i=߿

[
f(x(i))− f(x∗)

]
≤ ‖x

(߿) − x∗‖ࠁࠁ − ‖x(T) − x∗‖ࠁࠁ
ηࠁ

+
TηGࠁ

ࠁ

ࠀ
T

T−ࠀ∑

i=߿

[
f(x(i))− f(x∗)

]
≤ Rࠁ

Tηࠁ
+

ηGࠁ

ࠁ

ࠇࠁ

O

= ,

'"' " ' " '"

G E O
"E r r

a -I I I .t . IE . I E t '¥.
L BET E E

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)

If T ≥ RࠁGࠁ

εࠁ
and η = R

G
√
T , then f(x̂) ≤ f(x∗) + ε.

Final step:

ࠀ
T

T−ࠀ∑

i=߿

[
f(x(i))− f(x∗)

]
≤ ε

[
ࠀ
T

T−ࠀ∑

i=߿

f(x(i))
]
− f(x∗) ≤ ε

We always have that f(x̂) = mini f(x(i)) ≤ ࠀ
T
∑T−ࠀ

i=߿ f(x(i)), which
gives the final bound:

f(x̂) ≤ f(x∗) + ε.

ࠈࠁ

CONSTRAINED CONVEX OPTIMIZATION

Typical goal: Solve a convex minimization problem with
additional convex constraints.

min
x∈S

f(x)

where S is a convex set.

Which of these is convex?

߿ࠂ

0 0
i t

. -

CONSTRAINED CONVEX OPTIMIZATION

Definition (Convex set)
A set S is convex if for any x, y ∈ S,λ ∈ ,߿] :[ࠀ

−ࠀ) λ)x+ λy ∈ S.

ࠀࠂ

p.i.no#

- - - -

- -

CONSTRAINED CONVEX OPTIMIZATION

Examples:

• Norm constraint: minimize ‖Ax− b‖ࠁ subject to ‖x‖ࠁ ≤ λ.
Used e.g. for regularization, finding a sparse solution, etc.

• Positivity constraint: minimize f(x) subject to x ≥ .߿ Used
e.g. in finding an optimal allocation for a portfolio into
different assets.

• Linear constraint: minimize cTx subject to Ax ≤ b. Linear
program used in training support vector machines,
industrial optimization, subroutine in integer
programming, etc.

ࠁࠂ

_ _ @
O

t e n
O

a s

PROBLEM WITH GRADIENT DESCENT

Gradient descent:

• For i = ,߿ . . . , T:
• x(i+ࠀ) = x(i) − η∇f(x(i))

• Return x̂ = argmini f(x(i)).

Even if we start with x(߿) ∈ S , there is no guarantee that
x(߿) − η∇f(x(߿)) will remain in our set.

Extremely simple modification: Force x(i) to be in S by
projecting onto the set.

ࠂࠂ

" I
=

CONSTRAINED FIRST ORDER OPTIMIZATION

Given a function f to minimize and a convex constraint set S ,
assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.
• Projection oracle: Evaluate PS(x) for any x.

PS(x) = argmin
y∈S

‖x− y‖ࠁ

ࠃࠂ

0.80'

PROJECTION ORACLES

• How would you implement PS for S = {y : ‖y‖ࠁ ≤ .{ࠀ
• How would you implement PS for S = {y : y = Qz}.

ࠄࠂ

o÷÷÷÷.
eagmzinkQ.az
#

PROJECTED GRADIENT DESCENT

Given function f(x) and set S , such that ‖∇f(x)‖ࠁ ≤ G for all
x ∈ S and starting point x(߿) with ‖x(߿) − x∗‖ࠁ ≤ R.

Projected gradient descent:

• Select starting point x(߿), η = R
G
√
T .

• For i = ,߿ . . . , T:
• z = x(i) − η∇f(x(i))
• x(i+ࠀ) = PS(z)

• Return x̂ = argmini f(x(i)).

Claim (PGD Convergence Bound)

If f,S are convex and T ≥ RࠁGࠁ

εࠁ
, then f(x̂) ≤ f(x∗) + ε.

ࠅࠂ

a s

=

E .

PROJECTED GRADIENT DESCENT ANALYSIS

Analysis is almost identical to standard gradient descent! We
just need one additional claim:

Claim (Contraction Property of Convex Projection)
If S is convex, then for any y ∈ S ,

‖y− PS(x)‖ࠁ ≤ ‖y− x‖ࠁ.

ࠆࠂ

x

y o - n o÷¥÷i¥..

GRADIENT DESCENT ANALYSIS

Claim (PGD Convergence Bound)
If f,S are convex and T ≥ RࠁGࠁ

εࠁ , then f(x̂) ≤ f(x∗) + ε.

Claim :ࠀ For all i = ,߿ . . . , T,

f(x(i))− f(x∗) ≤ ‖x
(i) − x∗‖ࠁࠁ − ‖z− x∗‖ࠁࠁ

ηࠁ
+

ηGࠁ

ࠁ

≤ ‖x
(i) − x∗‖ࠁࠁ − ‖x(i+ࠀ) − x∗‖ࠁࠁ

ηࠁ
+

ηGࠁ

ࠁ

Same telescoping sum argument:[
ࠀ
T

T−ࠀ∑

i=߿

f(x(i))
]
− f(x∗) ≤ Rࠁ

Tηࠁ
+

ηGࠁ

ࠁ
.

ࠇࠂ

(xcil.no#iy-
xcitD=PsCz,×*§#

GRADIENT DESCENT

Conditions:

• Convexity: f is a convex function, S is a convex set.
• Bounded initial distant:

‖x(߿) − x∗‖ࠁ ≤ R

• Bounded gradients (Lipschitz function):

‖∇f(x)‖ࠁ ≤ G for all x ∈ S.

Theorem (GD Convergence Bound)
(Projected) Gradient Descent returns x̂ with
f(x̂) ≤ minx∈S f(x) + ε after

T =
RࠁGࠁ

εࠁ
iterations.

ࠈࠂ

08

BEYOND THE BASIC BOUND

Can our convergence bound be tightened for certain
functions? Can it guide us towards faster algorithms?

Goals:

• Improve ε dependence below .ࠁε/ࠀ
• Ideally ε/ࠀ or log(ࠀ/ε).

• Reduce or eliminate dependence on G and R.
• Next class: Take advantage of additional problem
structure (e.g. repetition in features and data points in ML
problems).

߿ࠃ

O -

- -

SMOOTHNESS

Definition (β-smoothness)
A function f is β smooth if, for all x, y

‖∇f(x)−∇f(y)‖ࠁ ≤ β‖x− y‖ࠁ

For a scalar valued function f, equivalent to f′′(x) ≤ β. After

some calculus (see Lem. ࠃ.ࠂ in Bubeck’s book), this implies:

[f(y)− f(x)]−∇f(x)T(y− x) ≤ β

ࠁ
‖x− y‖ࠁࠁ

ࠀࠃ

-
1104M¥

- - -

a s

f (X I - X - f 4×1=2x f "(x) - - 2

↳

https://arxiv.org/pdf/1405.4980.pdf

SMOOTHNESS

Recall from convexity that f(y)− f(x) ≥ ∇f(x)T(y− x).

So now we have an upper and lower bound.

߿ ≤ [f(y)− f(x)]−∇f(x)T(y− x) ≤ β

ࠁ
‖x− y‖ࠁࠁ

ࠁࠃ

⇒÷

CONVERGENCE GUARANTEE

Theorem (GD convergence for β-smooth functions.)
Let f be a β smooth convex function and assume we have
‖x∗ − x(ࠀ)‖ࠁ ≤ R. If we run GD for T steps, we have:

f(x(T))− f(x∗) ≤ ࠁβRࠁ

T

Corollary: If T = O
(
βRࠁ

ε

)
we have f(x(T))− f(x∗) ≤ ε.

Compare this to T = O
(

GࠁRࠁ

εࠁ

)
without a smoothness

assumption.

ࠂࠃ

↳ -

- -

- - O

O

GUARANTEED PROGRESS

Why do you think gradient descent might be faster when a
function is β-smooth? Think about scalar case, in which case

smoothness means f′′(x) ≤ β.

ࠃࠃ

n n'T

r. ±

GUARANTEED PROGRESS

Previously learning rate/step size η depended on G. Now
choose it based on β:

x(t+ࠀ) ← x(t) − ࠀ
β
∇f(x(t))

Progress per step of gradient descent:

.ࠀ
[
f(x(t+ࠀ))− f(x(t))

]
−∇f(x(t))T(x(t+ࠀ)−x(t)) ≤ β

ࠁ ‖x
(t)−x(t+ࠀ)‖ࠁࠁ.

.ࠁ
[
f(x(t+ࠀ))− f(x(t))

]
+ ࠀ

β‖∇f(x
(t))‖ࠁࠁ ≤

β
ࠁ ‖

ࠀ
β∇f(x

(t))‖ࠁࠁ.

.ࠂ f(x(t))− f(x(t+ࠀ)) ≥ ࠀ
β‖∇f(xࠁ

(t))‖ࠁࠁ.

ࠄࠃ

M-tfflxu.tt/)Etlx"')

- y . G

-
i-i:÷i÷,
I

-I@¥÷.sn#i.............

CONVERGENCE GUARANTEE

Theorem (GD convergence for β-smooth functions.)
Let f be a β smooth convex function and assume we have
‖x∗ − x(ࠀ)‖ࠁ ≤ R. If we run GD for T steps with η = ࠀ

β we have:

f(x(T))− f(x∗) ≤ ࠁβRࠁ

T

Corollary: If T = O
(
βRࠁ

ε

)
we have f(x(T))− f(x∗) ≤ ε.

Again getting this result from the previous page is not hard,
but also not obvious/direct. A concise proof can be found in
Robert Gower’s notes.

ࠅࠃ

±

https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf

GUARANTEED PROGRESS

Where did we use convexity in this proof?

Progress per step of gradient descent:

.ࠀ
[
f(x(t+ࠀ))− f(x(t))

]
−∇f(x(t))T(x(t+ࠀ)−x(t)) ≤ β

ࠁ ‖x
(t)−x(t+ࠀ)‖ࠁࠁ.

.ࠁ
[
f(x(t+ࠀ))− f(x(t))

]
+ ࠀ

β‖∇f(x
(t))‖ࠁࠁ ≤

β
ࠁ ‖

ࠀ
β∇f(x

(t))‖ࠁࠁ.

.ࠂ f(x(t))− f(x(t+ࠀ)) ≥ ࠀ
β‖∇f(xࠁ

(t))‖ࠁࠁ.

ࠆࠃ

STATIONARY POINTS

Definition (Stationary point)
For a differentiable function f, a stationary point is any x with:

∇f(x) = ߿

local/global minima - local/global maxima - saddle points

ࠇࠃ

0

CONVERGENCE TO STATIONARY POINT

Theorem (Convergence to Stationary Point)
For any β-smooth differentiable function f (convex or not), if
we run GD for T steps, we can find a point x̂ such that:

‖∇f(x̂)‖ࠁࠁ ≤
βࠁ
T

(
f(x(߿))− f(x∗)

)

Corollary: If T ≥ βࠁ
ε , then ‖∇f(x̂)‖

ࠁ
ࠁ ≤ ε

(
f(x(߿))− f(x∗)

)
.

ࠈࠃ

I F
-

TELESCOPING SUM PROOF

Theorem (Convergence to Stationary Point)
For any β-smooth differentiable function f (convex or not), if
we run GD for T steps, we can find a point x̂ such that:

‖∇f(x̂)‖ࠁࠁ ≤
βࠁ
T

(
f(x(߿))− f(x∗)

)

We have that f(x(t))− f(x(t+ࠀ)) ≥ ࠀ
β‖∇f(xࠁ

(t))‖ࠁࠁ. So:
T−ࠀ∑

t=߿

ࠀ
βࠁ
‖∇f(x(t))‖ࠁࠁ ≤ f(x(߿))− f(x(t))

ࠀ
T

T−ࠀ∑

t=߿
‖∇f(x(t))‖ࠁࠁ ≤

βࠁ
T

(
f(x(߿))− f(x∗)

)

min
t
‖∇f(x(t))‖ࠁࠁ ≤

βࠁ
T

(
f(x(߿))− f(x∗)

)
߿ࠄ

± €
(1 -

QUESTIONS IN NON-CONVEX OPTIMIZATION

If GD can find a stationary point, are there algorithms which
find a stationary point faster using preconditioning,
acceleration, stochastic methods, etc.?

ࠀࠄ

QUESTIONS IN NON-CONVEX OPTIMIZATION

What if my function only has global minima and saddle
points? Randomized methods (SGD, perturbed gradient
methods, etc.) can provably “escape” saddle points.

Example: minx
−xTATAx

xTx

• Global minimum: Top eigenvector of ATA (i.e., top principal
component of A).

• Saddle points: All other eigenvectors of A.

Useful for lots of other matrix factorization problems beyond
vanilla PCA.

ࠁࠄ

f .)

BACK TO CONVEX FUNCTIONS

I said it was a bit tricky to prove that f(x̂)− f(x∗) ≤ ࠁβRࠁ

T for
convex functions. But we just easily proved that ‖∇f(x̂)‖ࠁࠁ is
small. Why doesn’t this show we are close to the minimum?

ࠂࠄ

STRONG CONVEXITY

Definition (α-strongly convex)
A convex function f is α-strongly convex if, for all x, y

[f(y)− f(x)]−∇f(x)T(y− x) ≥ α

ࠁ
‖x− y‖ࠁࠁ

α is a parameter that will depend on our function. For a
twice-differentiable scalar function f, equivalent to f′′(x) ≥ α.

When f is convex, we always have that f′′(x) ≥ ,߿ so larger
values of α correspond to a “stronger” condition. ࠃࠄ

GD FOR STRONGLY CONVEX FUNCTION

Gradient descent for strongly convex functions:

• Choose number of steps T.
• For i = ,ࠀ . . . , T:

• η = ࠁ
α·(i+ࠀ)

• x(i+ࠀ) = x(i) − η∇f(x(i))
• Return x̂ = argminx(i) f(x(i)).

ࠄࠄ

CONVERGENCE GUARANTEE

Theorem (GD convergence for α-strongly convex functions.)
Let f be an α-strongly convex function and assume we have
that, for all x, ‖∇f(x)‖ࠁ ≤ G. If we run GD for T steps (with
adaptive step sizes) we have:

f(x̂)− f(x∗) ≤ ࠁGࠁ

α(T− (ࠀ

Corollary: If T = O
(

Gࠁ

αε

)
we have f(x̂)− f(x∗) ≤ ε

ࠅࠄ

CONVERGENCE GUARANTEE

We could also have that f is both β-smooth and α-strongly
convex.

α

ࠁ
‖x− y‖ࠁࠁ ≤ [f(y)− f(x)]−∇f(x)T(y− x) ≤ β

ࠁ
‖x− y‖ࠁࠁ.

ࠆࠄ

CONVERGENCE GUARANTEE

α

ࠁ
‖x− y‖ࠁࠁ ≤ [f(y)− f(x)]−∇f(x)T(y− x) ≤ β

ࠁ
‖x− y‖ࠁࠁ.

Theorem (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = ࠀ

β) we have:

‖x(T) − x∗‖ࠁࠁ ≤ e−Tα
β ‖x(߿) − x∗‖ࠁࠁ

κ = β
α is called the “condition number” of f.

Is it better if κ is large or small?

ࠇࠄ

SMOOTH AND STRONGLY CONVEX

Converting to more familiar form: Using that fact the
∇f(x∗) = ߿ along with

α

ࠁ
‖x− y‖ࠁࠁ ≤ [f(y)− f(x)]−∇f(x)T(y− x) ≤ β

ࠁ
‖x− y‖ࠁࠁ,

we have:

‖x(ࠀ) − x∗‖ࠁࠁ ≤
ࠁ
α

[
f(x(߿))− f(x∗)

]

‖x(T) − x∗‖ࠁࠁ ≥
ࠁ
β

[
f(x(T))− f(x∗)

]

ࠈࠄ

CONVERGENCE GUARANTEE

Corollary (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = ࠀ

β) we have:

f(x(T))− f(x∗) ≤ β

α
e−Tα

β ·
[
f(x(߿))− f(x∗)

]

Corollary: If T = O
(
β
α log(β/αε)

)
= O(κ log(κ/ε)) we have:

f(x(T))− f(x∗) ≤ ε
[
f(x(߿))− f(x∗)

]

Alternative Corollary: If T = O
(
β
α log(Rβ/ε)

)
we have:

f(x(T))− f(x∗) ≤ ε

Only depend on log(ࠀ/ε) instead of on ε/ࠀ or !ࠁε/ࠀ ߿ࠅ

ALL CONVERGENCE GUARANTEES

Convexity:

߿ ≤ [f(y)− f(x)]−∇f(x)T(y− x)

α-strong-convexity and β-smoothness:

α

ࠁ
‖x− y‖ࠁࠁ ≤ [f(y)− f(x)]−∇f(x)T(y− x) ≤ β

ࠁ
‖x− y‖ࠁࠁ.

Number of iterations for ε error:

G-Lipschitz β-smooth
R bounded start O

(
GࠁRࠁ

εࠁ

)
O
(
βRࠁ

ε

)

α-strong convex O
(

Gࠁ

αε

)
O
(
β
α log(ࠀ/ε)

)

ࠀࠅ

THE HESSIAN

Let f be a twice differentiable function from Rd → R. Let the
Hessian H = f(x)ࠁ∇ contain all of its second derivatives at a
point x. So H ∈ Rd×d. We have:

Hj,k =
[
f(x)ࠁ∇

]
j,k =

fࠁ∂
∂xjxk

.

For vector x, v:

∇f(x+ tv) ≈ ∇f(x) + t
[
f(x)ࠁ∇

]
v.

ࠁࠅ

THE HESSIAN

Let f be a twice differentiable function from Rd → R. Let the
Hessian H = f(x)ࠁ∇ contain all of its second derivatives at a
point x. So H ∈ Rd×d. We have:

Hj,k =
[
f(x)ࠁ∇

]
j,k =

fࠁ∂
∂xjxk

.

Example: f(x) =
∑n

i=ࠀ
(
xTa(i) − y(i)

ࠁ(
= ‖Ax− y‖ࠁࠁ

∂f
∂xj

=
n∑

i=ࠀ

ࠁ
(
xTa(i) − y(i)

)
· a(i)j

fࠁ∂
∂xk∂xj

=
n∑

i=ࠀ

a(i)kࠁ a(i)j

H =

ࠂࠅ

ALTERNATIVE DERIVATION

f(x) = ‖Ax− b‖ࠁࠁ. Recall that ∇f(x) = −AT(Axࠁ b).

ࠃࠅ

HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if
the matrix H = f(x)ࠁ∇ is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))
A square, symmetric matrix H ∈ Rd×d is positive semidefinite
(PSD) for any vector y ∈ Rd, yTHy ≥ .߿

This is a natural notion of “positivity” for symmetric matrices.
To denote that H is PSD we will typically use “Loewner order”
notation (\succeq in LaTex):

H * .߿

We write B * A or equivalently A + B to denote that (B− A) is
positive semidefinite. This gives a partial ordering on matrices.

ࠄࠅ

HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if
the matrix H = f(x)ࠁ∇ is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))
A square, symmetric matrix H ∈ Rd×d is positive semidefinite
(PSD) for any vector y ∈ Rd, yTHy ≥ .߿

For the least squares regression loss function: f(x) = ‖Ax− b‖ࠁࠁ,
H = f(x)ࠁ∇ = ATAࠁ for all x. Is H PSD?

ࠅࠅ

THE LINEAR ALGEBRA OF CONDITIONING

If f is β-smooth and α-strongly convex then at any point x,
H = f(x)ࠁ∇ satisfies:

αI + H + βI,

where I is a d× d identity matrix.

This is the natural matrix generalization of the statement for
scalar valued functions:

α ≤ f′′(x) ≤ β.

ࠆࠅ

SMOOTH AND STRONGLY CONVEX HESSIAN

αId×d + H + βId×d.

Equivalently for any z,

α‖z‖ࠁࠁ ≤ zTHz ≤ β‖z‖ࠁࠁ.

ࠇࠅ

SIMPLE EXAMPLE

Let f(x) = ‖Dx− b‖ࠁࠁ where D is a diagaonl matrix. For now

imagine we’re in two dimensions: x =

[
xࠀ
xࠁ

]
, D =

[
dࠀ ߿
߿ dࠁ

]
.

What are α,β for this problem?

α‖z‖ࠁࠁ ≤ zTHz ≤ β‖z‖ࠁࠁ

ࠈࠅ

GEOMETRIC VIEW

Level sets of ‖Dx− b‖ࠁࠁ when dࠁ
ࠀ = ࠁd,ࠀ

ࠁ = .ࠀ

߿ࠆ

GEOMETRIC VIEW

Level sets of ‖Dx− b‖ࠁࠁ when dࠁ
ࠀ =

ࠀ
ࠂ ,d

ࠁ
ࠁ = .ࠁ

ࠀࠆ

