CS-GY 6763: Lecture 5 Near neighbor search in high dimensions

NYU Tandon School of Engineering, Prof. Christopher Musco

PROJECT

• Sign-up to present or lead discussion for 1 reading group slot. We need presenters for next Friday!

LAST CLASS: EUCLIDEAN DIMENSIONALITY REDUCTION

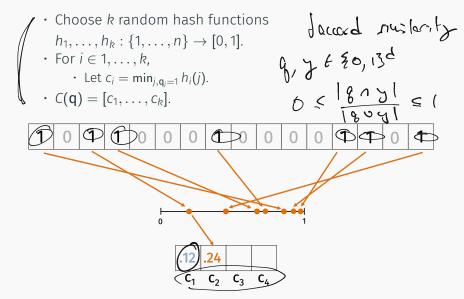
Lemma (Distributional JL Lemma)

Let $\Pi \in \mathbb{R}^{k \times d}$ be a random Gaussian/sign matrix. For any two real-valued vectors $\mathbf{q}, \mathbf{y} \in \mathbb{R}^d$, then with probability $1 - \delta$,

$$(1-\epsilon)\|\mathbf{q}-\mathbf{y}\|_2 \leq \|\underline{\mathbf{\Pi}}\mathbf{q}-\underline{\mathbf{\Pi}}\mathbf{y}\|_2 \leq (1+\epsilon)\|\mathbf{q}-\mathbf{y}\|_2,$$

as long as
$$k = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$$
.

LAST CLASS: MINHASH SKETCHES FOR BINARY VECTORS

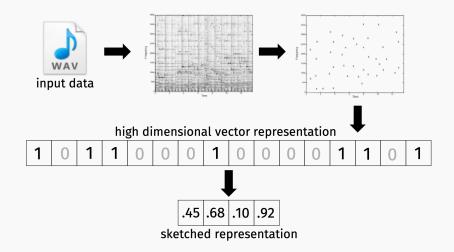


LAST CLASS: MINHASH SKETCHES FOR BINARY VECTORS

Let
$$\tilde{J}(C(q),C(y))=\frac{1}{k}\sum_{i=1}^{k}\mathbb{I}(C(q)_i)=C(y)_i$$
.

Lemma (Distributional JL Lemma) Jaccar I Space of Space o

SIMILARITY SKETCHING



Common goal: Find all vectors in database $(\mathbf{q}_1, \dots, \mathbf{q}_n \in \mathbb{R}^d)$ that are close to some input query vector $\mathbf{y} \in \mathbb{R}^d$. I.e. find all of \mathbf{y} 's "nearest neighbors" in the database.

- · The Shazam problem.
- · Audio + video search.
- Finding duplicate or near duplicate documents.
- · Detecting seismic events.

How does similarity sketching help in these applications?

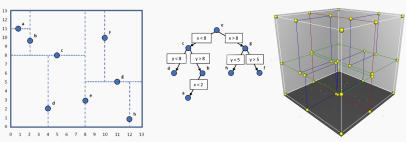
- Improves runtime of "linear scan" from O(nk) to O(nk).
- Improves space complexity from O(nd) to O(nk). This can be super important e.g. if it means the linear scan only accesses vectors in fast memory.

BEYOND A LINEAR SCAN

New goal: Sublinear o(n) time to find near neighbors.

BEYOND A LINEAR SCAN

This problem can already be solved for a small number of dimensions using space partitioning approaches (e.g. kd-tree).



Runtime is roughly $O(d \cdot \min(n, 2^d))$, which is only sublinear for $d = o(\log n)$.

0(20)

HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

Only been attacked much more recently:

6. Locality-sensitive hashing [Indyk, Motwani, 1998]

Spectral hashing [Weiss, Torralba, and Fergus, 2008]

Vector quantization [Jégou, Douze, Schmid, 2009] Product

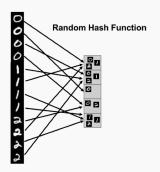
Quantization

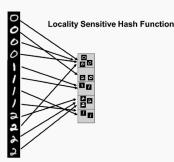
Key Insight of LSH: Trade worse space-complexity for better time-complexity. I.e. typically use more than O(n) space.

LOCALITY SENSITIVE HASH FUNCTIONS

Let $h: \mathbb{R}^d \to \{\underline{1, \dots, m}\}$ be a random hash function. We call h <u>locality sensitive</u> for similarity function $\underline{s}(\underline{q}, \underline{y})$ if $g-y|_{Q}$ Pr [h(q) == h(y)] is:

- · Higher when \underline{q} and \underline{y} are more similar, i.e. s(q,y) is higher.
- Lower when q and y are more dissimilar, i.e. s(q, y) is lower.

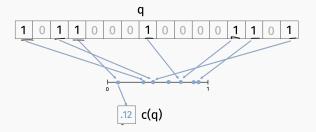




LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q, y) equal to Jaccard similarity: 5(q, y) = J(q, y)

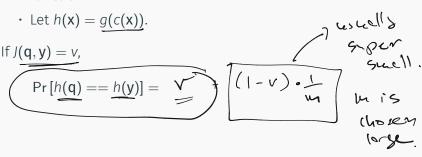
- Let $\underline{c}: \{0,1\}^d \rightarrow [0,1]$ be a single instantiation of MinHash.
- Let $\underline{g}: [0,1] \to \{1,\ldots,m\}$ be a uniform random hash function.
- Let $h(\mathbf{q}) = g(c(\mathbf{q}))$.



LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

- Let $c: \{0,1\}^d \to [0,1]$ be a single instantiation of MinHash.
- Let $g:[0,1] \to \{1,\ldots,m\}$ be a uniform random hash function.



Basic approach for near neighbor search in a database.

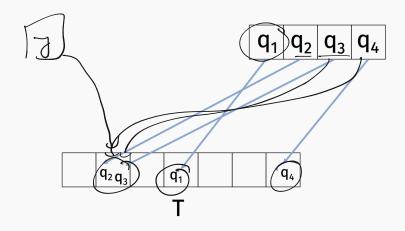
Pre-processing:

- Select random LSH function $h: \{0,1\}^d \to 1, \ldots, m$.
- Create table T with $\underline{m} = O(n)$ slots.¹
- For i = 1, ..., n, insert \mathbf{q}_i into $T(\underline{h}(\mathbf{q}_i))$. $\mathcal{G}(\mathcal{L}(\mathbf{q}_i))$

Query:

- Want to find near neighbors of input $\mathbf{y} \in \{0,1\}^d$.
- Linear scan through all vectors $\mathbf{q} \in T(h(\mathbf{y}))$ and return any that are close to y. Time required is $O(\underline{d}(|T(h(y))))$

¹Enough to make the O(1/m) term negligible.



Two main considerations:

- False Negative Rate: What's the probability we do not find a vector that is close to y?
- False Positive Rate: What's the probability that a vector in T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime – we need to compute $J(\mathbf{q}, \mathbf{y})$ for every $\mathbf{q} \in T(h(\mathbf{y}))$ to check if it's actually close to \mathbf{y} .

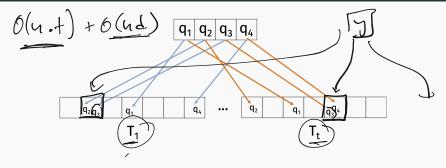
Note: The meaning of "close" and "not close" is application dependent. E.g. we might specify that we want to find anything with Jaccard similarity > .4, but not with Jaccard similarity < .2.

REDUCING FALSE NEGATIVE RATE

Suppose the nearest database point q has $J(\underline{y},q) = .4$.

What's the probability we do not find q?

REDUCING FALSE NEGATIVE RATE



Pre-processing:

- Select \underline{t} independent LSH's $(\underline{h}, \dots, \underline{h}_t) \{0, 1\}^d \to 1, \dots, m$.
- Create tables T_1, \ldots, T_t , each with m slots.
- For $\underline{i} = \underline{1}, \dots, \underline{n}, j = 1, \dots, t$,
 - Insert $\underline{\mathbf{q}_i}$ into $T_j(h_j(\underline{\mathbf{q}_i}))$.

Query:

- Want to find near neighbors of input $\mathbf{y} \in \{0,1\}^d$.
- Linear scan through all vectors in $(T_1(h_1(y)) \cup T_2(h_2(y)) \cup \dots, T_t(h_t(y)).)$

Suppose the nearest database point q has J(y,q) = .4.

What's the probability we find q?

$$\frac{1}{1} - \left(\frac{1-v}{1-v}\right)^{+}$$

Suppose there is some other database point **z** with $J(\mathbf{y},\mathbf{z}) = .2.$

What is the probability we will need to compute J(z, y) in our hashing scheme with one table? I.e. the probability that y hashes into at least one bucket containing z.

In the new scheme with t = 10 tables?

REDUCING FALSE POSITIVES

Change our locality sensitive hash function.

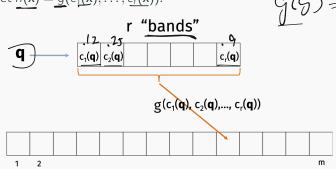
<u>Tunable</u> LSH for Jaccard similarity:

g: 60,13-7 J... 4

- Choose parameter $\underline{r} \in \mathbb{Z}^+$.
- Let $c_1, \ldots, c_r : \{0, 1\}^d \to [0, 1]$ be random MinHash.
- Let $g:[0,1]^r \to \{1,\ldots,m\}$ be a uniform random hash function.

· Let
$$\underline{h(\mathbf{x})} = \underline{g}(c_1(\mathbf{x}), \dots, c_r(\mathbf{x})).$$

9(2)=5(8)



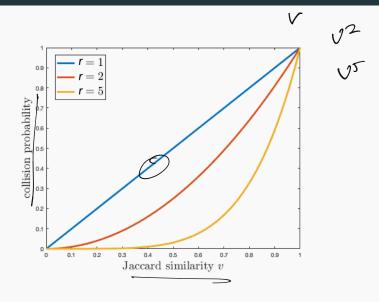
REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

5

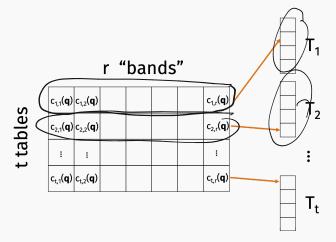
- Choose parameter $r \in \mathbb{Z}^+$.
- Let $c_1, \ldots, c_r : \{0,1\}^d \to [0,1]$ be random MinHash.
- Let $g:[0,1]^r \to \{1,\ldots,m\}$ be a uniform random hash function.
- · Let $h(\mathbf{x}) = g(c_1(\mathbf{x}), \dots, c_r(\mathbf{x})).$

TUNABLE LSH



TUNABLE LSH

Full LSH cheme has two parameters to tune:



TUNABLE LSH

Effect of **increasing number of tables** *t* on:

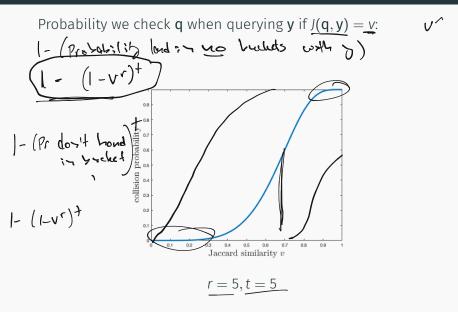
False Negatives

False Positives

Effect of **increasing number of bands** *r* on:

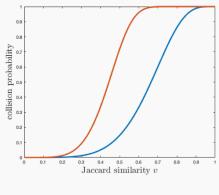
False Negatives

False Positives



Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

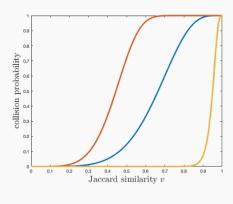
$$\approx 1 - (1 - v^r)^t$$



$$r = 5, t = 40$$

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

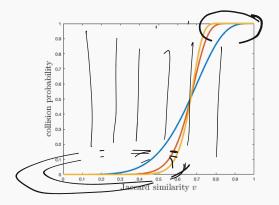
$$\approx 1 - (1 - v^r)^t$$



$$r = 40, t = 5$$

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

$$1 - (1 - v^r)^t$$



Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity.

FIXED THRESHOLD

Use Case 1: Fixed threshold.

- <u>Shazam</u> wants to find match to audio clip <u>y</u> in a database of <u>10</u> million clips.
- There are 10 true matches with J(y,q) > .9.
- There are 10,000 near matches with $J(y,q) \in [.7,.9]$.
- All other items have J(y,q) < .7

With r = 25 and t = 40,

- Hit probability for J(y, q) > .9 is $\gtrsim 1 (1 .9^{25})^{40} = .95$
- Hit probability for $J(y,q) \in \underline{[.7,9]}$ is $\lesssim \underline{1-(1-.9^{25})^{40}} = \underline{.95}$
- + Hit probability for J(y, q) < .7 is $\lesssim 1 \underline{-(1-.7^{25})}^{40} = .005$

Upper bound on total number of items checked:

$$.95 \cdot 10 + .95 \cdot 10,000 + .005 \cdot 9,989,990 \approx 60,000 \ll 10,000,000.$$

FIXED THRESHOLD

Space complexity: 40 hash table $40 \cdot O(n)$

Directly trade space for fast search.

Near Neighbor Search Problem

Concrete worst case result:

Theorem (Indyk, Motwani, 1998)
If there exists some q with $\|\mathbf{q} - \mathbf{y}\|_0 \le R$, return a vector $\tilde{\mathbf{q}}$ with $\|\tilde{\mathbf{q}} - \mathbf{y}\|_0 \le \underline{C \cdot R}$ in:

- Time: $O(n^{1/C})$.
- Space: $O(n^{1+1/C})$.

 $\|\mathbf{q} - \mathbf{y}\|_0$ = "hamming distance" = number of elements that differ between \mathbf{q} and \mathbf{y} .

APPROXIMATE NEAREST NEIGHBOR SEARCH

Theorem (Indyk, Motwani, 1998)

Let q be the closest database vector to y. Return a vector $\tilde{\mathbf{q}}$ with $\|\tilde{\mathbf{q}}-\mathbf{y}\|_0 \leq C \cdot \|\mathbf{q}-\mathbf{y}\|_0$ in:

- Time: $\tilde{O}(n^{1/C})$.
- Space: $\tilde{O}(n^{1+1/C})$.

OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other $\|\chi\|_2 = \|\eta\|_2 = 1$ similarity measures.

Cosine similarity
$$\cos(\theta(x,y)) = \frac{\langle x,y \rangle}{\|x\|_2 \|y\|_2}$$
: $\langle x, y \rangle$

$$||x-y||_{2}^{2} = ||x||_{2}^{2} + ||y||_{2}^{2} - 2(x,y) \times$$

$$= 2 - 2(x,y) \frac{x}{y}$$

$$-1 \le \cos(\theta(\mathbf{x}, \mathbf{y})) \le 1.$$

COSINE SIMILARITY

Cosine similarity is natural "inverse" for Euclidean distance.

Euclidean distance $||x - y||_2^2$:

• Suppose for simplicity that $\|\mathbf{x}\|_2^2 = \|\mathbf{y}\|_2^2 = 1$.

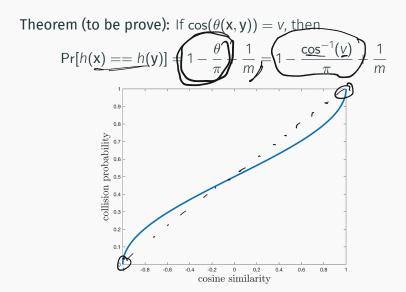
SIMHASH

- · Let $\mathbf{g} \in \mathbb{R}^d$ be randomly chosen with each entry $\mathcal{N}(0,1)$.
- Let $f: \{-1,1\} \to \{1,\ldots,m\}$ be a uniformly random hash function.
- $h: \mathbb{R}^d \to \{1, \dots, m\}$ is definied $h(\mathbf{x}) = \underline{f(\operatorname{sign}(\langle \mathbf{g}, \mathbf{x} \rangle))}$.

If
$$\cos(\theta(x,y)) = v$$
, what is $\Pr[h(x) == h(y)]$?

$$\Pr\left(s_{y} \setminus (\langle y, x \rangle) = s_{y} \setminus (\langle y, y \rangle) + \frac{1}{v}\right)$$

SIMHASH ANALYSIS IN 2D



SimHash can be tuned, just like our MinHash based LSH function for Jaccard similarity:

- Let $\underline{g_1, \dots, g_r} \in \mathbb{R}^d$ be randomly chosen with each entry $\mathcal{N}(0, 1)$.
- Let $f: \{-1,1\}^r \to \{1,\ldots,m\}$ be a uniformly random hash function.
- $h: \mathbb{R}^d \to \{1, \dots, m\}$ is defined $h(\mathbf{x}) = f([\operatorname{sign}(\langle \mathbf{g}_1, \mathbf{x} \rangle), \dots, \operatorname{sign}(\langle \mathbf{g}_r, \mathbf{x} \rangle)]).$

$$Pr[h(x) == h(y)] = \left(1 - \frac{\theta}{\Pi}\right)^r$$

SIMHASH ANALYSIS IN 2D

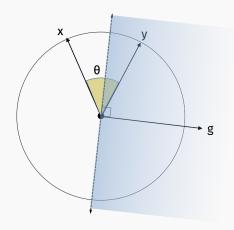
To prove: $\Pr[h(x) == h(y)] = (1 - \frac{\dot{\theta}}{\pi})$ where $h(x) = f(\text{sign}(\langle \underline{g}, x \rangle))$ and f is uniformly random hash function.

Pr[
$$h(x) == h(y)$$
] = $z + \frac{1-v}{m} \approx z$.

where $z = \Pr[\text{sign}(\langle g, x \rangle) == \text{sign}(\langle g, y \rangle)]$

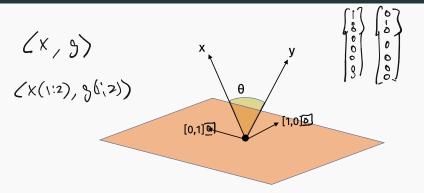
39

SIMHASH ANALYSIS 2D



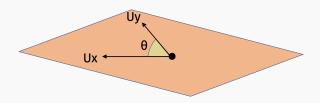
 $\Pr[h(\mathbf{x}) == h(\mathbf{y})] \approx \text{probability } \mathbf{x} \text{ and } \mathbf{y} \text{ are on the same side of hyperplane orthogonal to } \mathbf{g}.$

SIMHASH ANALYSIS HIGHER DIMENSIONS



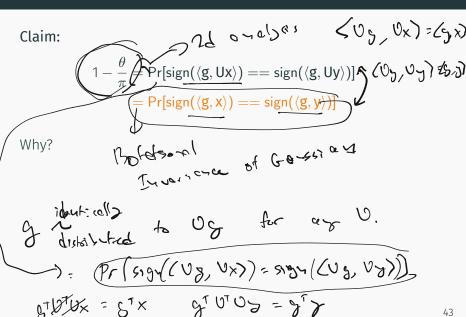
There is always some <u>rotation matrix</u> \underline{U} such that Ux, Uy are spanned by the first two-standard basis vectors and have the same cosine similarity as x and y.

SIMHASH ANALYSIS HIGHER DIMENSIONS



There is always some $\underline{\text{rotation matrix}}\ U$ such that x,y are spanned by the first two-standard basis vectors.

SIMHASH ANALYSIS HIGHER DIMENSIONS



NEXT UNIT: CONTINUOUS OPTIMIZATION

Have some function $\underline{f}:\underline{\mathbb{R}^d}\to\underline{\mathbb{R}}.$ Want to find \mathbf{x}^* such that:

$$f(\mathbf{x}^*) = \min_{\mathbf{x}} f(\mathbf{x}).$$

Or at least \hat{x} which is close to a minimum. E.g.

$$f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x}} f(\mathbf{x}) + \epsilon$$

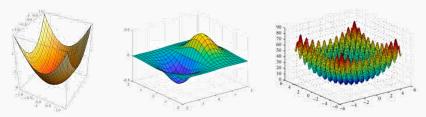
Often we have some additional constraints:

- x > 0.
- $\|\mathbf{x}\|_2 \le R$, $\|\mathbf{x}\|_1 \le R$.
- $\mathbf{a}^T\mathbf{x} > c$.

CONTINUOUS OPTIMIZATION



Dimension d = 2:



OPTIMIZATION IN MACHINE LEARNING

Continuouos optimization is the foundation of modern machine learning.

Supervised learning: Want to learn a model that maps inputs

- numerical data vectors
- · images, video
- text documents

to predictions

- numerical value (probability stock price increases)
- · label (is the image a cat? does the image contain a car?)
- decision (turn car left, rotate robotic arm)

MACHINE LEARNING MODEL

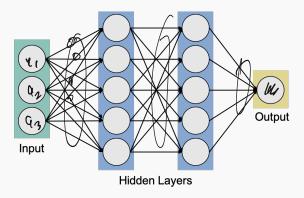
Let \underline{M}_{Σ} be a model with parameters $\mathbf{x} = \{x_1, \dots, x_k\}$, which takes as input a data vector \mathbf{a} and outputs a prediction.

Example:

$$M_{x}(a) = sign(a^{T}x)$$
 \underline{t}

MACHINE LEARNING MODEL

Example:



 $\underline{x} \in \mathbb{R}^{(\text{\# of connections})}$ is the parameter vector containing all the network weights.

SUPERVISED LEARNING

Classic approach in <u>supervised learning</u>: Find a model that works well on data that you already have the answer for (labels, values, classes, etc.).

- Model M_x parameterized by a vector of numbers x.
- Dataset $\mathbf{a}^{(1)}, \dots, \mathbf{a}^{(n)}$ with outputs $\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(n)}$.

Want to find $\hat{\mathbf{x}}$ so that $\underline{M}_{\hat{\mathbf{x}}}(\mathbf{a}^{(i)}) \approx \underline{y}^{(i)}$ for $i \in 1, \dots, n$.

How do we turn this into a function minimization problem?

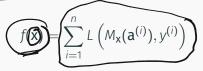
LOSS FUNCTION

Loss function $L(M_x(a), y)$: Some measure of distance between prediction $M_x(a)$ and target output y. Increases if they are further apart.

- Squared (ℓ_2) loss: $|M_x(\mathbf{a}) y|^2$
- Absolute deviation (ℓ_1) loss: $|\underline{M_x(a)} y|$
- Hinge loss: $1 y \cdot M_x(a)$
- Cross-entropy loss (log loss).
- · Etc.

EMPIRICAL RISK MINIMIZATION

Empirical risk minimization:



Solve the optimization problem $\min_{\mathbf{x}} f(\mathbf{x})$.

EXAMPLE: LINEAR REGRESSION

- $M_{\mathbf{x}}(\mathbf{a}) = \mathbf{x}^{\mathsf{T}}\mathbf{a}$. \mathbf{x} contains the regression coefficients.
- $\cdot L(z,y) = |z-y|^2.$
- $f(x) = \sum_{i=1}^{n} |x^{T}a^{(i)} y^{(i)}|^{2}$

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2$$

where **A** is a matrix with $\mathbf{a}^{(i)}$ as its i^{th} row and \mathbf{y} is a vector with $\mathbf{y}^{(i)}$ as its i^{th} entry.

ALGORITHMS FOR CONTINUOUS OPTIMIZATION

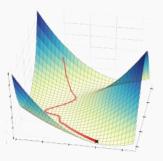
The choice of algorithm to minimize $f(\mathbf{x})$ will depend on:

- The form of f(x) (is it linear, is it quadratic, does it have finite sum structure, etc.)
- If there are any additional constraints imposed on **x**. E.g. $\|\mathbf{x}\|_2 \le c$.

What are some example algorithms for continuous optimization?

FIRST TOPIC: GRADIENT DESCENT + VARIANTS

Gradient descent: A greedy algorithm for minimizing functions of multiple variables that often works amazingly well.



Runtime generally scales <u>linearly</u> with the dimension of x (although this is a bit of an over-simplification).

SECOND TOPIC: METHODS SUITABLE FOR LOWER DIMENSION

- · Cutting plane methods (e.g. center-of-gravity, ellipsoid)
- Interior point methods

Fast and more accurate in low-dimensions, slower in very high dimensions. Generally runtime scales <u>polynomially</u> with the dimension of **x**.

CALCULUS REVIEW

For i = 1, ..., d, let x_i be the i^{th} entry of \mathbf{x} . Let $\mathbf{e}^{(i)}$ be the i^{th} standard basis vector.

Partial derivative:

$$\frac{\partial f}{\partial x_i}(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{e}^{(i)}) - f(\mathbf{x})}{t}$$

Directional derivative:

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t}$$

Gradient:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \frac{\partial f}{\partial x_2}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_d}(\mathbf{x}) \end{bmatrix}$$

Directional derivative:

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t} = \nabla f(\mathbf{x})^{\mathsf{T}}\mathbf{v}.$$

FIRST ORDER OPTIMIZATION

Given a function *f* to minimize, assume we have:

- Function oracle: Evaluate f(x) for any x.
- Gradient oracle: Evaluate $\nabla f(\mathbf{x})$ for any \mathbf{x} .

We view the implementation of these oracles as black-boxes, but they can often require a fair bit of computation.

EXAMPLE GRADIENT EVALUATION

Linear least-squares regression:

- Given $\mathbf{a}^{(1)}, \dots \mathbf{a}^{(n)} \in \mathbb{R}^d$, $y^{(1)}, \dots y^{(n)} \in \mathbb{R}$.
- · Want to minimize:

$$f(\mathbf{x}) = \sum_{i=1}^{n} (\mathbf{x}^{T} \mathbf{a}^{(i)} - y^{(i)})^{2} = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2}.$$

$$\frac{\partial f}{\partial x_j} = \sum_{i=1}^n 2\left(\mathbf{x}^\mathsf{T} \mathbf{a}^{(i)} - \mathbf{y}^{(i)}\right) \cdot a_j^{(i)} = (2\mathbf{A}\mathbf{x} - \mathbf{y})^\mathsf{T} \boldsymbol{\alpha}^{(j)}$$

where $\alpha^{(j)}$ is the j^{th} column of **A**.

$$\nabla f(\mathbf{x}) = 2\mathbf{A}^{\mathsf{T}}(\mathbf{A}\mathbf{x} - \mathbf{y})$$

What is the time complexity of a gradient oracle for $\nabla f(x)$?

DECENT METHODS

Greedy approach: Given a starting point \mathbf{x} , make a small adjustment that decreases $f(\mathbf{x})$. In particular, $\mathbf{x} \leftarrow \mathbf{x} + \eta \mathbf{v}$ and $f(\mathbf{x}) \leftarrow f(\mathbf{x} + \eta \mathbf{v})$.

What property do I want in **v**?

Leading question: When η is small, what's an approximation for $f(\mathbf{x} + \eta \mathbf{v}) - f(\mathbf{x})$?

$$f(\mathbf{x} + \eta \mathbf{v}) - f(\mathbf{x}) \approx$$

DIRECTIONAL DERIVATIVES

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t} = \nabla f(\mathbf{x})^{\mathsf{T}}\mathbf{v}.$$

So:

$$f(\mathbf{x} + \eta \mathbf{v}) - f(\mathbf{x}) \approx$$

How should we choose v so that $f(x + \eta v) < f(x)$?

Prototype algorithm:

- Choose starting point $\mathbf{x}^{(0)}$.
- For i = 0, ..., T: • $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$
- Return $\mathbf{x}^{(T)}$.

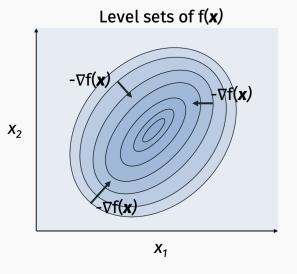
 η is a step-size parameter, which is often adapted on the go. For now, assume it is fixed ahead of time.

GRADIENT DESCENT INTUITION

1 dimensional example:

GRADIENT DESCENT INTUITION

2 dimensional example:



64

KEY RESULTS

For a convex function $f(\mathbf{x})$: For sufficiently small η and a sufficiently large number of iterations T, gradient descent will converge to a near global minimum:

$$f(\mathbf{x}^{(T)}) \leq f(\mathbf{x}^*) + \epsilon.$$

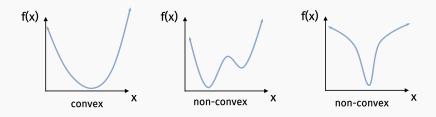
Examples: least squares regression, logistic regression, kernel regression, SVMs.

For a non-convex function $f(\mathbf{x})$: For sufficiently small η and a sufficiently large number of iterations T, gradient descent will converge to a near stationary point:

$$\|\nabla f(\mathbf{x}^{(T)})\|_2 \leq \epsilon.$$

Examples: neural networks, matrix completion problems, mixture models.

CONVEX VS. NON-CONVEX



One issue with non-convex functions is that they can have local minima. Even when they don't, convergence analysis requires different assumptions than convex functions.

APPROACH FOR THIS UNIT

We care about <u>how fast</u> gradient descent and related methods converge, not just that they do converge.

- Bounding iteration complexity requires placing some assumptions on $f(\mathbf{x})$.
- Stronger assumptions lead to better bounds on the convergence.

Understanding these assumptions can help us design faster variants of gradient descent (there are many!).