CS-GY 6763: Lecture 5 Near neighbor search in high dimensions

NYU Tandon School of Engineering, Prof. Christopher Musco

• Sign-up to present or lead discussion for 1 reading group slot. We need presenters for next Friday!

Lemma (Distributional JL Lemma)

Let $\Pi \in \mathbb{R}^{k \times d}$ be a random Gaussian/sign matrix. For any two real-valued vectors $\mathbf{q}, \mathbf{y} \in \mathbb{R}^d$, then with probability $1 - \delta$,

$$(1-\epsilon)\|\mathbf{q}-\mathbf{y}\|_2 \le \|\mathbf{\Pi}\mathbf{q}-\mathbf{\Pi}\mathbf{y}\|_2 \le (1+\epsilon)\|\mathbf{q}-\mathbf{y}\|_2,$$

as long as $k = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$.

LAST CLASS: MINHASH SKETCHES FOR BINARY VECTORS

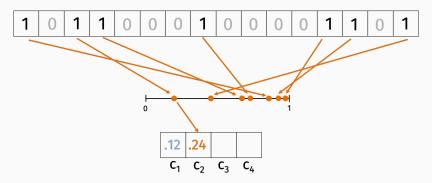
• Choose k random hash functions

$$h_1, \ldots, h_k : \{1, \ldots, n\} \to [0, 1].$$

• For $i \in 1, \ldots, k$,

• Let
$$c_i = \min_{j,\mathbf{q}_j=1} h_i(j)$$
.

• $C(\mathbf{q}) = [c_1, \ldots, c_k].$



Let
$$\widetilde{J}(C(\mathbf{q}), C(\mathbf{y})) = \frac{1}{k} \sum_{i=1}^{k} \mathbb{1}[C(\mathbf{q})_i = C(\mathbf{y})_i].$$

Lemma (Distributional JL Lemma)

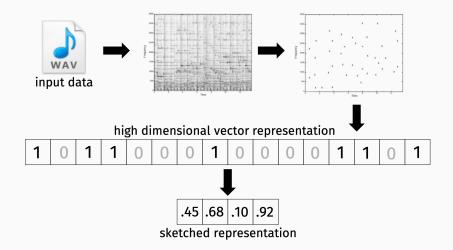
For any two binary vectors $\mathbf{q}, \mathbf{y} \in \mathbb{R}^d$, with probability $1 - \delta$,

$$J(q, y) - \epsilon \leq \tilde{J}(C(q), C(y)) \leq J(q, y) + \epsilon,$$

as long as
$$k = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$$

Recall that $J(\mathbf{q}, \mathbf{y}) = \frac{|\mathbf{q} \cap \mathbf{y}|}{|\mathbf{q} \cup \mathbf{y}|}$.

SIMILARITY SKETCHING



Common goal: Find all vectors in database $\mathbf{q}_1, \ldots, \mathbf{q}_n \in \mathbb{R}^d$ that are close to some input query vector $\mathbf{y} \in \mathbb{R}^d$. I.e. find all of \mathbf{y} 's "nearest neighbors" in the database.

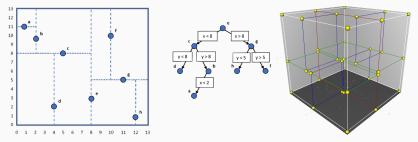
- The Shazam problem.
- Audio + video search.
- Finding duplicate or near duplicate documents.
- Detecting seismic events.

How does similarity sketching help in these applications?

- Improves runtime of "linear scan" from O(nd) to O(nk).
- Improves space complexity from O(nd) to O(nk). This can be super important – e.g. if it means the linear scan only accesses vectors in fast memory.

New goal: Sublinear o(n) time to find near neighbors.

This problem can already be solved for a small number of dimensions using space partitioning approaches (e.g. kd-tree).



Runtime is roughly $O(d \cdot \min(n, 2^d))$, which is only sublinear for $d = o(\log n)$.

Only been attacked much more recently:

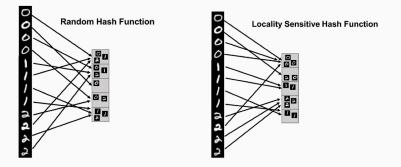
- Locality-sensitive hashing [Indyk, Motwani, 1998]
- Spectral hashing [Weiss, Torralba, and Fergus, 2008]
- Vector quantization [Jégou, Douze, Schmid, 2009]

Key Insight of LSH: Trade worse space-complexity for better time-complexity. I.e. typically use more than O(n) space.

Let $h : \mathbb{R}^d \to \{1, \dots, m\}$ be a random hash function.

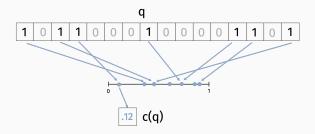
We call h <u>locality sensitive</u> for similarity function s(q, y) if Pr [h(q) == h(y)] is:

- Higher when **q** and **y** are more similar, i.e. s(q, y) is higher.
- Lower when **q** and **y** are more dissimilar, i.e. *s*(**q**, **y**) is lower.



LSH for *s*(**q**, **y**) equal to Jaccard similarity:

- Let $c: \{0,1\}^d \rightarrow [0,1]$ be a single instantiation of MinHash.
- Let $g : [0,1] \rightarrow \{1, \dots, m\}$ be a uniform random hash function.
- Let $h(\mathbf{q}) = g(c(\mathbf{q}))$.



LSH for Jaccard similarity:

- Let $c: \{0,1\}^d \rightarrow [0,1]$ be a single instantiation of MinHash.
- Let $g : [0, 1] \rightarrow \{1, \dots, m\}$ be a uniform random hash function.
- Let $h(\mathbf{x}) = g(c(\mathbf{x}))$.

 $\mathsf{lfJ}(\mathsf{q},\mathsf{y})=\mathsf{v}_{\mathsf{,}}$

 $\Pr[h(q) == h(y)] =$

Basic approach for near neighbor search in a database.

Pre-processing:

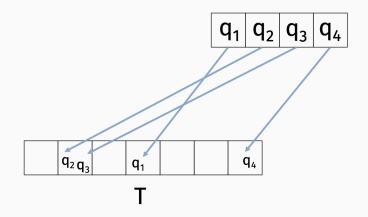
- Select random LSH function $h: \{0,1\}^d \rightarrow 1, \dots, m$.
- Create table T with m = O(n) slots.¹
- For $i = 1, \ldots, n$, insert \mathbf{q}_i into $T(h(\mathbf{q}_i))$.

Query:

- Want to find near neighbors of input $\mathbf{y} \in \{0, 1\}^d$.
- Linear scan through all vectors $\mathbf{q} \in T(h(\mathbf{y}))$ and return any that are close to \mathbf{y} . Time required is $O(d \cdot |T(h(\mathbf{y})|)$.

¹Enough to make the O(1/m) term negligible.

NEAR NEIGHBOR SEARCH



Two main considerations:

- False Negative Rate: What's the probability we do not find a vector that <u>is close</u> to **y**?
- False Positive Rate: What's the probability that a vector in T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

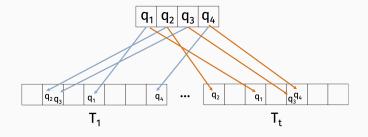
A higher false positive rate means increased runtime – we need to compute $J(\mathbf{q}, \mathbf{y})$ for every $\mathbf{q} \in T(h(\mathbf{y}))$ to check if it's actually close to \mathbf{y} .

Note: The meaning of "close" and "not close" is application dependent. E.g. we might specify that we want to find anything with Jaccard similarity > .4, but not with Jaccard similarity < .2.

Suppose the nearest database point **q** has $J(\mathbf{y}, \mathbf{q}) = .4$.

What's the probability we do not find q?

REDUCING FALSE NEGATIVE RATE



Pre-processing:

- Select t independent LSH's $h_1, \ldots, h_t : \{0, 1\}^d \rightarrow 1, \ldots, m$.
- Create tables T_1, \ldots, T_t , each with *m* slots.
- For i = 1, ..., n, j = 1, ..., t,
 - Insert \mathbf{q}_i into $T_j(h_j(\mathbf{q}_i))$.

Query:

- Want to find near neighbors of input $\mathbf{y} \in \{0, 1\}^d$.
- Linear scan through all vectors in $T_1(h_1(\mathbf{y})) \cup T_2(h_2(\mathbf{y})) \cup \dots, T_t(h_t(\mathbf{y})).$

Suppose the nearest database point q has J(y, q) = .4.

What's the probability we find q?

Suppose there is some other database point **z** with J(y, z) = .2. What is the probability we will need to compute J(z, y) in our hashing scheme with one table? I.e. the probability that **y** hashes into at least one bucket containing **z**.

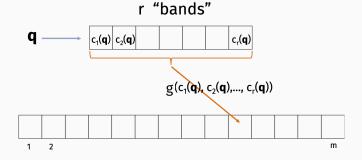
In the new scheme with t = 10 tables?

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

- Choose parameter $r \in \mathbb{Z}^+$.
- Let $c_1, \ldots, c_r : \{0, 1\}^d \rightarrow [0, 1]$ be random MinHash.
- + Let $g: [0,1]^r \to \{1,\ldots,m\}$ be a uniform random hash function.

• Let
$$h(\mathbf{x}) = g(c_1(\mathbf{x}), \dots, c_r(\mathbf{x})).$$

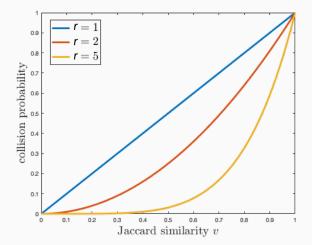


Tunable LSH for Jaccard similarity:

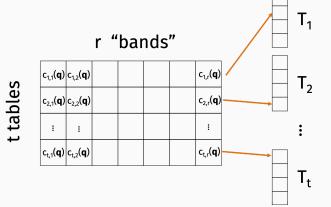
- Choose parameter $r \in \mathbb{Z}^+$.
- Let $c_1, \ldots, c_r : \{0, 1\}^d \rightarrow [0, 1]$ be random MinHash.
- + Let $g: [0,1]^r \to \{1,\ldots,m\}$ be a uniform random hash function.
- Let $h(\mathbf{x}) = g(c_1(\mathbf{x}), \dots, c_r(\mathbf{x})).$

If J(q, y) = v, then $\Pr[h(q) == h(y)] =$

TUNABLE LSH



Full LSH cheme has two parameters to tune:



Effect of **increasing number of tables** t on:

False Negatives

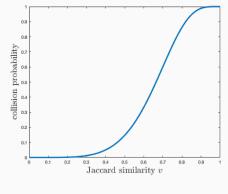
False Positives

Effect of **increasing number of bands** *r* on:

False Negatives

False Positives

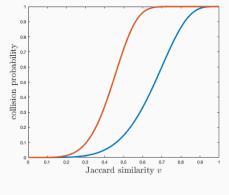
Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:



r = 5, t = 5

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

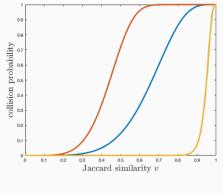
$$\approx 1 - (1 - v^r)^t$$



r = 5, t = 40

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

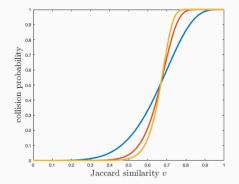
$$\approx 1 - (1 - v^r)^t$$



r = 40, t = 5

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

$$1 - (1 - v^r)^t$$



Increasing both *r* and *t* gives a steeper curve.

Better for search, but worse space complexity.

Use Case 1: Fixed threshold.

- Shazam wants to find match to audio clip **y** in a database of 10 million clips.
- There are 10 true matches with J(y, q) > .9.
- There are 10,000 <u>near matches</u> with $J(\mathbf{y}, \mathbf{q}) \in [.7, .9]$.
- All other items have J(y, q) < .7.

With r = 25 and t = 40,

- + Hit probability for J(y,q) > .9 is $\gtrsim 1-(1-.9^{25})^{40}=.95$
- + Hit probability for J(y,q) \in [.7, .9] is $\lesssim 1-(1-.9^{25})^{40}=.95$
- + Hit probability for J(y,q) < .7 is $\lesssim 1-(1-.7^{25})^{40}=.005$

Upper bound on total number of items checked:

 $.95 \cdot 10 + .95 \cdot 10,000 + .005 \cdot 9,989,990 \approx 60,000 \ll 10,000,000.$ 30

Space complexity: 40 hash tables $\approx 40 \cdot O(n)$. Directly trade space for fast search.

Near Neighbor Search Problem

Concrete worst case result:

Theorem (Indyk, Motwani, 1998)

If there exists some q with $\|\mathbf{q} - \mathbf{y}\|_0 \le R$, return a vector $\mathbf{\tilde{q}}$ with $\|\mathbf{\tilde{q}} - \mathbf{y}\|_0 \le C \cdot R$ in:

- Time: $O(n^{1/C})$.
- Space: $O(n^{1+1/C})$.

 $\|\boldsymbol{q}-\boldsymbol{y}\|_0=$ "hamming distance" = number of elements that differ between \boldsymbol{q} and $\boldsymbol{y}.$

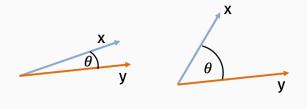
Theorem (Indyk, Motwani, 1998)

Let q be the closest database vector to y. Return a vector \tilde{q} with $\|\tilde{q}-y\|_0 \leq C \cdot \|q-y\|_0$ in:

- Time: $\tilde{O}(n^{1/C})$.
- Space: $\tilde{O}\left(n^{1+1/C}\right)$.

Good locality sensitive hash functions exists for other similarity measures.

Cosine similarity $\cos(\theta(\mathbf{x}, \mathbf{y})) = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}$:



 $-1 \le \cos(\theta(\mathbf{x}, \mathbf{y})) \le 1.$

Cosine similarity is natural "inverse" for Euclidean distance.

Euclidean distance $\|\mathbf{x} - \mathbf{y}\|_2^2$:

• Suppose for simplicity that $\|\mathbf{x}\|_2^2 = \|\mathbf{y}\|_2^2 = 1$.

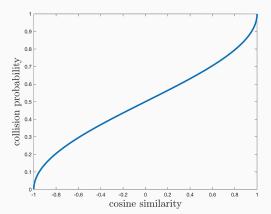
Locality sensitive hash for cosine similarity:

- Let $\mathbf{g} \in \mathbb{R}^d$ be randomly chosen with each entry $\mathcal{N}(0, 1)$.
- Let $f: \{-1, 1\} \rightarrow \{1, \dots, m\}$ be a uniformly random hash function.
- $h : \mathbb{R}^d \to \{1, \dots, m\}$ is defined $h(\mathbf{x}) = f(\operatorname{sign}(\langle \mathbf{g}, \mathbf{x} \rangle)).$

If $cos(\theta(\mathbf{x}, \mathbf{y})) = v$, what is $Pr[h(\mathbf{x}) == h(\mathbf{y})]$?

Theorem (to be prove): If $cos(\theta(\mathbf{x}, \mathbf{y})) = v$, then

$$\Pr[h(\mathbf{x}) == h(\mathbf{y})] = 1 - \frac{\theta}{\pi} + \frac{1}{m} = 1 - \frac{\cos^{-1}(v)}{\pi} + \frac{1}{m}$$



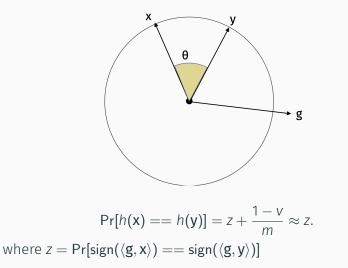
SimHash can be tuned, just like our MinHash based LSH function for Jaccard similarity:

- Let $\mathbf{g}_1, \ldots, \mathbf{g}_r \in \mathbb{R}^d$ be randomly chosen with each entry $\mathcal{N}(0, 1)$.
- Let $f: \{-1,1\}^r \to \{1,\ldots,m\}$ be a uniformly random hash function.
- $h : \mathbb{R}^d \to \{1, \dots, m\}$ is defined $h(\mathbf{x}) = f([sign(\langle \mathbf{g}_1, \mathbf{x} \rangle), \dots, sign(\langle \mathbf{g}_r, \mathbf{x} \rangle)]).$

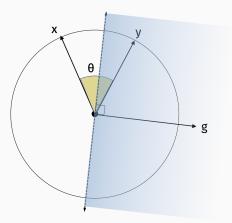
$$\Pr[h(\mathbf{x}) == h(\mathbf{y})] = \left(1 - \frac{\theta}{\Pi}\right)^r$$

SIMHASH ANALYSIS IN 2D

To prove: $\Pr[h(\mathbf{x}) == h(\mathbf{y})] = 1 - \frac{\theta}{\pi}$, where $h(\mathbf{x}) = f(\operatorname{sign}(\langle \mathbf{g}, \mathbf{x} \rangle))$ and *f* is uniformly random hash function.

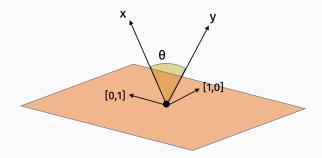


SIMHASH ANALYSIS 2D



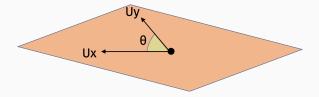
 $Pr[h(\mathbf{x}) == h(\mathbf{y})] \approx$ probability \mathbf{x} and \mathbf{y} are on the same side of hyperplane orthogonal to \mathbf{g} .

SIMHASH ANALYSIS HIGHER DIMENSIONS



There is always some <u>rotation matrix</u> **U** such that **Ux**, **Uy** are spanned by the first two-standard basis vectors and have the same cosine similarity as **x** and **y**.

SIMHASH ANALYSIS HIGHER DIMENSIONS



There is always some <u>rotation matrix</u> **U** such that **x**, **y** are spanned by the first two-standard basis vectors.

Claim:

$$1 - \frac{\theta}{\pi} = \Pr[\operatorname{sign}(\langle g, \mathsf{U} \mathsf{x} \rangle) == \operatorname{sign}(\langle g, \mathsf{U} \mathsf{y} \rangle)]$$
$$= \Pr[\operatorname{sign}(\langle g, \mathsf{x} \rangle) == \operatorname{sign}(\langle g, \mathsf{y} \rangle)]$$

Why?

BREAK

Have some function $f : \mathbb{R}^d \to \mathbb{R}$. Want to find \mathbf{x}^* such that:

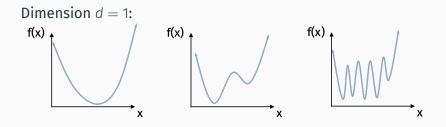
$$f(\mathbf{x}^*) = \min_{\mathbf{x}} f(\mathbf{x}).$$

Or at least $\hat{\mathbf{x}}$ which is close to a minimum. E.g. $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x}} f(\mathbf{x}) + \epsilon$

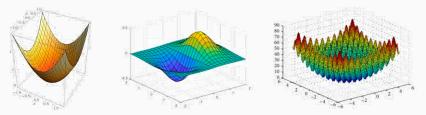
Often we have some additional constraints:

- **x** > 0.
- $\|\mathbf{x}\|_{2} \le R$, $\|\mathbf{x}\|_{1} \le R$.
- $\mathbf{a}^T \mathbf{x} > c$.

CONTINUOUS OPTIMIZATION



Dimension d = 2:



Continuouos optimization is the foundation of modern machine learning.

Supervised learning: Want to learn a model that maps inputs

- numerical data vectors
- images, video
- text documents

to predictions

- numerical value (probability stock price increases)
- label (is the image a cat? does the image contain a car?)
- decision (turn car left, rotate robotic arm)

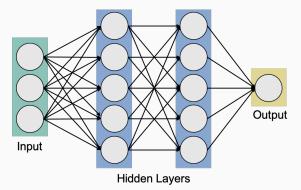
Let M_x be a model with parameters $\mathbf{x} = \{x_1, \dots, x_k\}$, which takes as input a data vector \mathbf{a} and outputs a prediction.

Example:

$$M_{\mathbf{x}}(\mathbf{a}) = \operatorname{sign}(\mathbf{a}^{\mathsf{T}}\mathbf{x})$$

MACHINE LEARNING MODEL

Example:



 $x \in \mathbb{R}^{(\text{\# of connections})}$ is the parameter vector containing all the network weights.

Classic approach in <u>supervised learning</u>: Find a model that works well on data that you already have the answer for (labels, values, classes, etc.).

- Model M_x parameterized by a vector of numbers x.
- Dataset $\mathbf{a}^{(1)}, \ldots, \mathbf{a}^{(n)}$ with outputs $y^{(1)}, \ldots, y^{(n)}$.

Want to find $\hat{\mathbf{x}}$ so that $M_{\hat{\mathbf{x}}}(\mathbf{a}^{(i)}) \approx y^{(i)}$ for $i \in 1, ..., n$. How do we turn this into a function minimization problem? **Loss function** $L(M_x(\mathbf{a}), y)$: Some measure of distance between prediction $M_x(\mathbf{a})$ and target output y. Increases if they are further apart.

- Squared (ℓ_2) loss: $|M_x(\mathbf{a}) y|^2$
- Absolute deviation (ℓ_1) loss: $|M_x(a) y|$
- Hinge loss: $1 y \cdot M_x(a)$
- Cross-entropy loss (log loss).
- Etc.

Empirical risk minimization:

$$f(\mathbf{x}) = \sum_{i=1}^{n} L\left(M_{\mathbf{x}}(\mathbf{a}^{(i)}), y^{(i)}\right)$$

Solve the optimization problem $\min_{\mathbf{x}} f(\mathbf{x})$.

• $M_x(a) = x^T a$. x contains the regression coefficients.

•
$$L(z, y) = |z - y|^2$$
.

•
$$f(\mathbf{x}) = \sum_{i=1}^{n} |\mathbf{x}^{T} \mathbf{a}^{(i)} - y^{(i)}|^2$$

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2$$

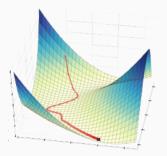
where **A** is a matrix with $\mathbf{a}^{(i)}$ as its *i*th row and **y** is a vector with $y^{(i)}$ as its *i*th entry.

The choice of algorithm to minimize $f(\mathbf{x})$ will depend on:

- The form of $f(\mathbf{x})$ (is it linear, is it quadratic, does it have finite sum structure, etc.)
- If there are any additional constraints imposed on **x**. E.g. $\|\mathbf{x}\|_2 \leq c$.

What are some example algorithms for continuous optimization?

Gradient descent: A greedy algorithm for minimizing functions of multiple variables that often works amazingly well.



Runtime generally scales <u>linearly</u> with the dimension of **x** (although this is a bit of an over-simplification).

- Cutting plane methods (e.g. center-of-gravity, ellipsoid)
- Interior point methods

Fast and more accurate in low-dimensions, slower in very high dimensions. Generally runtime scales <u>polynomially</u> with the dimension of **x**.

For i = 1, ..., d, let x_i be the i^{th} entry of **x**. Let $e^{(i)}$ be the i^{th} standard basis vector.

Partial derivative:

$$\frac{\partial f}{\partial x_i}(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{e}^{(i)}) - f(\mathbf{x})}{t}$$

Directional derivative:

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t}$$

Gradient:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} rac{\partial f}{\partial x_1}(\mathbf{x}) \\ rac{\partial f}{\partial x_2}(\mathbf{x}) \\ \vdots \\ rac{\partial f}{\partial x_d}(\mathbf{x}) \end{bmatrix}$$

7

Directional derivative:

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t} = \nabla f(\mathbf{x})^{\mathsf{T}}\mathbf{v}$$

Given a function *f* to minimize, assume we have:

- Function oracle: Evaluate f(x) for any x.
- Gradient oracle: Evaluate $\nabla f(\mathbf{x})$ for any \mathbf{x} .

We view the implementation of these oracles as black-boxes, but they can often require a fair bit of computation.

Linear least-squares regression:

- Given $\mathbf{a}^{(1)}, \dots \mathbf{a}^{(n)} \in \mathbb{R}^d$, $y^{(1)}, \dots y^{(n)} \in \mathbb{R}$.
- Want to minimize:

$$f(\mathbf{x}) = \sum_{i=1}^{n} \left(\mathbf{x}^{T} \mathbf{a}^{(i)} - \mathbf{y}^{(i)} \right)^{2} = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2}.$$

$$\frac{\partial f}{\partial x_j} = \sum_{i=1}^n 2\left(\mathbf{x}^{\mathsf{T}} \mathbf{a}^{(i)} - \mathbf{y}^{(i)}\right) \cdot a_j^{(i)} = (2\mathbf{A}\mathbf{x} - \mathbf{y})^{\mathsf{T}} \boldsymbol{\alpha}^{(j)}$$

where $\alpha^{(j)}$ is the *j*th <u>column</u> of **A**.

$$\nabla f(\mathbf{x}) = 2\mathbf{A}^T (\mathbf{A}\mathbf{x} - \mathbf{y})$$

What is the time complexity of a gradient oracle for $\nabla f(\mathbf{x})$?

Greedy approach: Given a starting point **x**, make a small adjustment that decreases $f(\mathbf{x})$. In particular, $\mathbf{x} \leftarrow \mathbf{x} + \eta \mathbf{v}$ and $f(\mathbf{x}) \leftarrow f(\mathbf{x} + \eta \mathbf{v})$.

What property do I want in **v**?

Leading question: When η is small, what's an approximation for $f(\mathbf{x} + \eta \mathbf{v}) - f(\mathbf{x})$?

$$f(\mathbf{x} + \eta \mathbf{v}) - f(\mathbf{x}) \approx$$

DIRECTIONAL DERIVATIVES

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{t\to 0} \frac{f(\mathbf{x}+t\mathbf{v})-f(\mathbf{x})}{t} = \nabla f(\mathbf{x})^T \mathbf{v}.$$

So:

$$f(\mathbf{x} + \eta \mathbf{v}) - f(\mathbf{x}) \approx$$

How should we choose v so that $f(x + \eta v) < f(x)$?

Prototype algorithm:

- Choose starting point $\mathbf{x}^{(0)}$.
- For i = 0, ..., T:

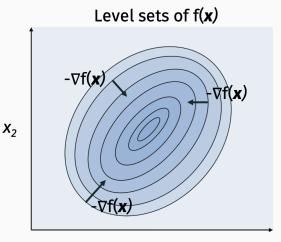
•
$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$$

• Return **x**^(T).

 η is a step-size parameter, which is often adapted on the go. For now, assume it is fixed ahead of time.

1 dimensional example:

2 dimensional example:



For a convex function $f(\mathbf{x})$: For sufficiently small η and a sufficiently large number of iterations *T*, gradient descent will converge to a near global minimum:

 $f(\mathbf{x}^{(T)}) \leq f(\mathbf{x}^*) + \epsilon.$

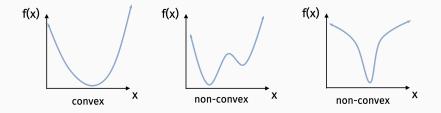
Examples: least squares regression, logistic regression, kernel regression, SVMs.

For a non-convex function $f(\mathbf{x})$: For sufficiently small η and a sufficiently large number of iterations *T*, gradient descent will converge to a near stationary point:

 $\|\nabla f(\mathbf{x}^{(T)})\|_2 \leq \epsilon.$

Examples: neural networks, matrix completion problems, mixture models.

CONVEX VS. NON-CONVEX



One issue with non-convex functions is that they can have **local minima**. Even when they don't, convergence analysis requires different assumptions than convex functions.

We care about <u>how fast</u> gradient descent and related methods converge, not just that they do converge.

- Bounding iteration complexity requires placing some assumptions on *f*(**x**).
- Stronger assumptions lead to better bounds on the convergence.

Understanding these assumptions can help us design faster variants of gradient descent (there are many!).