
CS-GY 6763: Lecture 5
Near neighbor search in high dimensions

NYU Tandon School of Engineering, Prof. Christopher Musco

1

PROJECT

• Sign-up to present or lead discussion for 1 reading group
slot. We need presenters for next Friday!

2

LAST CLASS: EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Distributional JL Lemma)
Let Π ∈ Rk×d be a random Gaussian/sign matrix. For any two
real-valued vectors q, y ∈ Rd, then with probability 1− δ,

(1− ϵ)∥q− y∥2 ≤ ∥Πq−Πy∥2 ≤ (1+ ϵ)∥q− y∥2,

as long as k = O
(
log(1/δ)

ϵ2

)
.

3

LAST CLASS: MINHASH SKETCHES FOR BINARY VECTORS

• Choose k random hash functions
h1, . . . ,hk : {1, . . . ,n} → [0, 1].

• For i ∈ 1, . . . , k,
• Let ci = minj,qj=1 hi(j).

• C(q) = [c1, . . . , ck].

4

LAST CLASS: MINHASH SKETCHES FOR BINARY VECTORS

Let J̃(C(q), C(y)) = 1
k
∑k

i=1 1[C(q)i = C(y)i].

Lemma (Distributional JL Lemma)
For any two binary vectors q, y ∈ Rd, with probability 1− δ,

J(q, y)− ϵ ≤ J̃(C(q), C(y)) ≤ J(q, y) + ϵ,

as long as k = O
(
log(1/δ)

ϵ2

)
.

Recall that J(q, y) = |q∩y|
|q∪y| .

5

SIMILARITY SKETCHING

6

NEAR NEIGHBOR SEARCH

Common goal: Find all vectors in database q1, . . . ,qn ∈ Rd that
are close to some input query vector y ∈ Rd. I.e. find all of y’s
“nearest neighbors” in the database.

• The Shazam problem.
• Audio + video search.
• Finding duplicate or near duplicate documents.
• Detecting seismic events.

How does similarity sketching help in these applications?

• Improves runtime of “linear scan” from O(nd) to O(nk).
• Improves space complexity from O(nd) to O(nk). This can
be super important – e.g. if it means the linear scan only
accesses vectors in fast memory.

7

BEYOND A LINEAR SCAN

New goal: Sublinear o(n) time to find near neighbors.

8

BEYOND A LINEAR SCAN

This problem can already be solved for a small number of
dimensions using space partitioning approaches (e.g. kd-tree).

Runtime is roughly O(d ·min(n, 2d)), which is only sublinear for
d = o(log n).

9

HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

Only been attacked much more recently:

• Locality-sensitive hashing [Indyk, Motwani, 1998]
• Spectral hashing [Weiss, Torralba, and Fergus, 2008]
• Vector quantization [Jégou, Douze, Schmid, 2009]

Key Insight of LSH: Trade worse space-complexity for better
time-complexity. I.e. typically use more than O(n) space.

10

LOCALITY SENSITIVE HASH FUNCTIONS

Let h : Rd → {1, . . . ,m} be a random hash function.

We call h locality sensitive for similarity function s(q, y) if
Pr [h(q) == h(y)] is:

• Higher when q and y are more similar, i.e. s(q, y) is higher.
• Lower when q and y are more dissimilar, i.e. s(q, y) is
lower.

11

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q, y) equal to Jaccard similarity:

• Let c : {0, 1}d → [0, 1] be a single instantiation of MinHash.
• Let g : [0, 1]→ {1, . . . ,m} be a uniform random hash
function.

• Let h(q) = g(c(q)).

12

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

• Let c : {0, 1}d → [0, 1] be a single instantiation of MinHash.
• Let g : [0, 1]→ {1, . . . ,m} be a uniform random hash
function.

• Let h(x) = g(c(x)).

If J(q, y) = v,

Pr [h(q) == h(y)] =

13

NEAR NEIGHBOR SEARCH

Basic approach for near neighbor search in a database.

Pre-processing:

• Select random LSH function h : {0, 1}d → 1, . . . ,m.
• Create table T with m = O(n) slots.1

• For i = 1, . . . ,n, insert qi into T(h(qi)).

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors q ∈ T(h(y)) and return any
that are close to y. Time required is O(d · |T(h(y)|).

1Enough to make the O(1/m) term negligible.

14

NEAR NEIGHBOR SEARCH

15

NEAR NEIGHBOR SEARCH

Two main considerations:

• False Negative Rate: What’s the probability we do not find
a vector that is close to y?

• False Positive Rate: What’s the probability that a vector in
T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime – we
need to compute J(q, y) for every q ∈ T(h(y)) to check if it’s
actually close to y.

Note: The meaning of “close” and “not close” is application
dependent. E.g. we might specify that we want to find anything
with Jaccard similarity > .4, but not with Jaccard similarity < .2.

16

REDUCING FALSE NEGATIVE RATE

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we do not find q?

17

REDUCING FALSE NEGATIVE RATE

Pre-processing:

• Select t independent LSH’s h1, . . . ,ht : {0, 1}d → 1, . . . ,m.
• Create tables T1, . . . , Tt, each with m slots.
• For i = 1, . . . ,n, j = 1, . . . , t,

• Insert qi into Tj(hj(qi)).

18

REDUCING FALSE NEGATIVE RATE

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors in
T1(h1(y)) ∪ T2(h2(y)) ∪ . . . , Tt(ht(y)).

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we find q?

19

WHAT HAPPENS TO FALSE POSITIVES?

Suppose there is some other database point z with J(y, z) = .2.

What is the probability we will need to compute J(z, y) in our
hashing scheme with one table? I.e. the probability that y
hashes into at least one bucket containing z.

In the new scheme with t = 10 tables?

20

REDUCING FALSE POSITIVES

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let c1, . . . , cr : {0, 1}d → [0, 1] be random MinHash.

• Let g : [0, 1]r → {1, . . . ,m} be a uniform random hash function.

• Let h(x) = g(c1(x), . . . , cr(x)).

21

REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let c1, . . . , cr : {0, 1}d → [0, 1] be random MinHash.

• Let g : [0, 1]r → {1, . . . ,m} be a uniform random hash function.

• Let h(x) = g(c1(x), . . . , cr(x)).

If J(q, y) = v, then Pr [h(q) == h(y)] =

22

TUNABLE LSH

23

TUNABLE LSH

Full LSH cheme has two parameters to tune:

24

TUNABLE LSH

Effect of increasing number of tables t on:

False Negatives False Positives

Effect of increasing number of bands r on:

False Negatives False Positives

25

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

r = 5, t = 5
26

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ 1− (1− vr)t

r = 5, t = 40
27

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ 1− (1− vr)t

r = 40, t = 5
28

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

1− (1− vr)t

Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity. 29

FIXED THRESHOLD

Use Case 1: Fixed threshold.

• Shazam wants to find match to audio clip y in a database of 10
million clips.

• There are 10 true matches with J(y,q) > .9.

• There are 10,000 near matches with J(y,q) ∈ [.7, .9].

• All other items have J(y,q) < .7.

With r = 25 and t = 40,

• Hit probability for J(y,q) > .9 is ≳ 1− (1− .925)40 = .95

• Hit probability for J(y,q) ∈ [.7, .9] is ≲ 1− (1− .925)40 = .95

• Hit probability for J(y,q) < .7 is ≲ 1− (1− .725)40 = .005

Upper bound on total number of items checked:

.95 · 10+ .95 · 10, 000+ .005 · 9, 989, 990 ≈ 60, 000≪ 10, 000, 000. 30

FIXED THRESHOLD

Space complexity: 40 hash tables ≈ 40 · O(n).

Directly trade space for fast search.

31

FIXED THRESHOLD R

Near Neighbor Search Problem

Concrete worst case result:
Theorem (Indyk, Motwani, 1998)
If there exists some q with ∥q− y∥0 ≤ R, return a vector q̃ with
∥q̃− y∥0 ≤ C · R in:

• Time: O
(
n1/C).

• Space: O
(
n1+1/C).

∥q− y∥0 = “hamming distance” = number of elements that
differ between q and y.

32

APPROXIMATE NEAREST NEIGHBOR SEARCH

Theorem (Indyk, Motwani, 1998)
Let q be the closest database vector to y. Return a vector q̃
with ∥q̃− y∥0 ≤ C · ∥q− y∥0 in:

• Time: Õ
(
n1/C).

• Space: Õ
(
n1+1/C).

33

OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other
similarity measures.

Cosine similarity cos (θ(x, y)) = ⟨x,y⟩
∥x∥2∥y∥2 :

−1 ≤ cos (θ(x, y)) ≤ 1.

34

COSINE SIMILARITY

Cosine similarity is natural “inverse” for Euclidean distance.

Euclidean distance ∥x− y∥22:

• Suppose for simplicity that ∥x∥22 = ∥y∥22 = 1.

35

SIMHASH

Locality sensitive hash for cosine similarity:

• Let g ∈ Rd be randomly chosen with each entry N (0, 1).
• Let f : {−1, 1} → {1, . . . ,m} be a uniformly random hash
function.

• h : Rd → {1, . . . ,m} is definied h(x) = f (sign(⟨g, x⟩)).

If cos(θ(x, y)) = v, what is Pr[h(x) == h(y)]?

36

SIMHASH ANALYSIS IN 2D

Theorem (to be prove): If cos(θ(x, y)) = v, then

Pr[h(x) == h(y)] = 1− θ

π
+

1
m = 1− cos−1(v)

π
+

1
m

37

SIMHASH

SimHash can be tuned, just like our MinHash based LSH
function for Jaccard similarity:

• Let g1, . . . , gr ∈ Rd be randomly chosen with each entry
N (0, 1).

• Let f : {−1, 1}r → {1, . . . ,m} be a uniformly random hash
function.

• h : Rd → {1, . . . ,m} is defined
h(x) = f ([sign(⟨g1, x⟩), . . . , sign(⟨gr, x⟩)]).

Pr[h(x) == h(y)] =
(
1− θ

Π

)r

38

SIMHASH ANALYSIS IN 2D

To prove: Pr[h(x) == h(y)] = 1− θ
π , where h(x) = f (sign(⟨g, x⟩))

and f is uniformly random hash function.

Pr[h(x) == h(y)] = z+ 1− v
m ≈ z.

where z = Pr[sign(⟨g, x⟩) == sign(⟨g, y⟩)] 39

SIMHASH ANALYSIS 2D

Pr[h(x) == h(y)] ≈ probability x and y are on the same side of
hyperplane orthogonal to g.

40

SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix U such that Ux,Uy are
spanned by the first two-standard basis vectors and have the
same cosine similarity as x and y.

41

SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix U such that x, y are
spanned by the first two-standard basis vectors.

42

SIMHASH ANALYSIS HIGHER DIMENSIONS

Claim:

1− θ

π
= Pr[sign(⟨g,Ux⟩) == sign(⟨g,Uy⟩)]

= Pr[sign(⟨g, x⟩) == sign(⟨g, y⟩)]

Why?

43

BREAK

43

NEXT UNIT: CONTINUOUS OPTIMIZATION

Have some function f : Rd → R. Want to find x∗ such that:

f(x∗) = min
x

f(x).

Or at least x̂ which is close to a minimum. E.g.
f(x̂) ≤ minx f(x) + ϵ

Often we have some additional constraints:

• x > 0.
• ∥x∥2 ≤ R, ∥x∥1 ≤ R.
• aTx > c.

44

CONTINUOUS OPTIMIZATION

Dimension d = 1:

Dimension d = 2:

45

OPTIMIZATION IN MACHINE LEARNING

Continuouos optimization is the foundation of modern
machine learning.

Supervised learning: Want to learn a model that maps inputs

• numerical data vectors
• images, video
• text documents

to predictions

• numerical value (probability stock price increases)
• label (is the image a cat? does the image contain a car?)
• decision (turn car left, rotate robotic arm)

46

MACHINE LEARNING MODEL

Let Mx be a model with parameters x = {x1, . . . , xk}, which
takes as input a data vector a and outputs a prediction.

Example:

Mx(a) = sign(aTx)

47

MACHINE LEARNING MODEL

Example:

x ∈ R(# of connections) is the parameter vector containing all the
network weights.

48

SUPERVISED LEARNING

Classic approach in supervised learning: Find a model that
works well on data that you already have the answer for
(labels, values, classes, etc.).

• Model Mx parameterized by a vector of numbers x.
• Dataset a(1), . . . , a(n) with outputs y(1), . . . , y(n).

Want to find x̂ so that Mx̂(a(i)) ≈ y(i) for i ∈ 1, . . . ,n.

How do we turn this into a function minimization problem?

49

LOSS FUNCTION

Loss function L (Mx(a), y): Some measure of distance between
prediction Mx(a) and target output y. Increases if they are
further apart.

• Squared (ℓ2) loss: |Mx(a)− y|2

• Absolute deviation (ℓ1) loss: |Mx(a)− y|
• Hinge loss: 1 - y ·Mx(a)
• Cross-entropy loss (log loss).
• Etc.

50

EMPIRICAL RISK MINIMIZATION

Empirical risk minimization:

f(x) =
n∑
i=1

L
(
Mx(a(i)), y(i)

)
Solve the optimization problem minx f(x).

51

EXAMPLE: LINEAR REGRESSION

• Mx(a) = xTa. x contains the regression coefficients.
• L(z, y) = |z− y|2.
• f(x) =

∑n
i=1 |xTa(i) − y(i)|2

f(x) = ∥Ax− y∥22

where A is a matrix with a(i) as its ith row and y is a vector with
y(i) as its ith entry.

52

ALGORITHMS FOR CONTINUOUS OPTIMIZATION

The choice of algorithm to minimize f(x) will depend on:

• The form of f(x) (is it linear, is it quadratic, does it have
finite sum structure, etc.)

• If there are any additional constraints imposed on x. E.g.
∥x∥2 ≤ c.

What are some example algorithms for continuous
optimization?

53

FIRST TOPIC: GRADIENT DESCENT + VARIANTS

Gradient descent: A greedy algorithm for minimizing functions
of multiple variables that often works amazingly well.

Runtime generally scales linearly with the dimension of x
(although this is a bit of an over-simplification).

54

SECOND TOPIC: METHODS SUITABLE FOR LOWER DIMENSION

• Cutting plane methods (e.g. center-of-gravity, ellipsoid)
• Interior point methods

Fast and more accurate in low-dimensions, slower in very high
dimensions. Generally runtime scales polynomially with the
dimension of x.

55

CALCULUS REVIEW

For i = 1, . . . ,d, let xi be the ith entry of x. Let e(i) be the ith

standard basis vector.

Partial derivative:

∂f
∂xi

(x) = lim
t→0

f(x+ te(i))− f(x)
t

Directional derivative:

Dvf(x) = lim
t→0

f(x+ tv)− f(x)
t

56

CALCULUS REVIEW

Gradient:

∇f(x) =

∂f
∂x1 (x)
∂f
∂x2 (x)...
∂f
∂xd (x)

Directional derivative:

Dvf(x) = lim
t→0

f(x+ tv)− f(x)
t = ∇f(x)Tv.

57

FIRST ORDER OPTIMIZATION

Given a function f to minimize, assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.

We view the implementation of these oracles as black-boxes,
but they can often require a fair bit of computation.

58

EXAMPLE GRADIENT EVALUATION

Linear least-squares regression:

• Given a(1), . . . a(n) ∈ Rd, y(1), . . . y(n) ∈ R.
• Want to minimize:

f(x) =
n∑
i=1

(
xTa(i) − y(i)

)2
= ∥Ax− y∥22.

∂f
∂xj

=
n∑
i=1

2
(
xTa(i) − y(i)

)
· a(i)j = (2Ax− y)Tα(j)

where α(j) is the jth column of A.

∇f(x) = 2AT (Ax− y)

What is the time complexity of a gradient oracle for ∇f(x)?

59

DECENT METHODS

Greedy approach: Given a starting point x, make a small
adjustment that decreases f(x). In particular, x← x+ ηv and
f(x)← f(x+ ηv).

What property do I want in v?

Leading question: When η is small, what’s an approximation
for f(x+ ηv)− f(x)?

f(x+ ηv)− f(x) ≈

60

DIRECTIONAL DERIVATIVES

Dvf(x) = lim
t→0

f(x+ tv)− f(x)
t = ∇f(x)Tv.

So:

f(x+ ηv)− f(x) ≈

How should we choose v so that f(x+ ηv) < f(x)?

61

GRADIENT DESCENT

Prototype algorithm:

• Choose starting point x(0).
• For i = 0, . . . , T:

• x(i+1) = x(i) − η∇f(x(i))

• Return x(T).

η is a step-size parameter, which is often adapted on the go.
For now, assume it is fixed ahead of time.

62

GRADIENT DESCENT INTUITION

1 dimensional example:

63

GRADIENT DESCENT INTUITION

2 dimensional example:

64

KEY RESULTS

For a convex function f(x): For sufficiently small η and a
sufficiently large number of iterations T, gradient descent will
converge to a near global minimum:

f(x(T)) ≤ f(x∗) + ϵ.

Examples: least squares regression, logistic regression, kernel
regression, SVMs.

For a non-convex function f(x): For sufficiently small η and a
sufficiently large number of iterations T, gradient descent will
converge to a near stationary point:

∥∇f(x(T))∥2 ≤ ϵ.

Examples: neural networks, matrix completion problems,
mixture models.

65

CONVEX VS. NON-CONVEX

One issue with non-convex functions is that they can have
local minima. Even when they don’t, convergence analysis
requires different assumptions than convex functions.

66

APPROACH FOR THIS UNIT

We care about how fast gradient descent and related methods
converge, not just that they do converge.

• Bounding iteration complexity requires placing some
assumptions on f(x).

• Stronger assumptions lead to better bounds on the
convergence.

Understanding these assumptions can help us design faster
variants of gradient descent (there are many!).

67

