
CS-GY 6763: Lecture 5
Near neighbor search in high dimensions

NYU Tandon School of Engineering, Prof. Christopher Musco
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PROJECT

• Sign-up to present or lead discussion for 1 reading group
slot. We need presenters for next Friday!
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LAST CLASS: EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Distributional JL Lemma)
Let Π ∈ Rk×d be a random Gaussian/sign matrix. For any two
real-valued vectors q, y ∈ Rd, then with probability 1− δ,

(1− ϵ)∥q− y∥2 ≤ ∥Πq−Πy∥2 ≤ (1+ ϵ)∥q− y∥2,

as long as k = O
(
log(1/δ)

ϵ2

)
.
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LAST CLASS: MINHASH SKETCHES FOR BINARY VECTORS

• Choose k random hash functions
h1, . . . ,hk : {1, . . . ,n} → [0, 1].

• For i ∈ 1, . . . , k,
• Let ci = minj,qj=1 hi(j).

• C(q) = [c1, . . . , ck].
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LAST CLASS: MINHASH SKETCHES FOR BINARY VECTORS

Let J̃(C(q), C(y)) = 1
k
∑k

i=1 1[C(q)i = C(y)i].

Lemma (Distributional JL Lemma)
For any two binary vectors q, y ∈ Rd, with probability 1− δ,

J(q, y)− ϵ ≤ J̃(C(q), C(y)) ≤ J(q, y) + ϵ,

as long as k = O
(
log(1/δ)

ϵ2

)
.

Recall that J(q, y) = |q∩y|
|q∪y| .
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SIMILARITY SKETCHING
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NEAR NEIGHBOR SEARCH

Common goal: Find all vectors in database q1, . . . ,qn ∈ Rd that
are close to some input query vector y ∈ Rd. I.e. find all of y’s
“nearest neighbors” in the database.

• The Shazam problem.
• Audio + video search.
• Finding duplicate or near duplicate documents.
• Detecting seismic events.

How does similarity sketching help in these applications?

• Improves runtime of “linear scan” from O(nd) to O(nk).
• Improves space complexity from O(nd) to O(nk). This can
be super important – e.g. if it means the linear scan only
accesses vectors in fast memory.
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BEYOND A LINEAR SCAN

New goal: Sublinear o(n) time to find near neighbors.
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BEYOND A LINEAR SCAN

This problem can already be solved for a small number of
dimensions using space partitioning approaches (e.g. kd-tree).

Runtime is roughly O(d ·min(n, 2d)), which is only sublinear for
d = o(log n).
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HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

Only been attacked much more recently:

• Locality-sensitive hashing [Indyk, Motwani, 1998]
• Spectral hashing [Weiss, Torralba, and Fergus, 2008]
• Vector quantization [Jégou, Douze, Schmid, 2009]

Key Insight of LSH: Trade worse space-complexity for better
time-complexity. I.e. typically use more than O(n) space.
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LOCALITY SENSITIVE HASH FUNCTIONS

Let h : Rd → {1, . . . ,m} be a random hash function.

We call h locality sensitive for similarity function s(q, y) if
Pr [h(q) == h(y)] is:

• Higher when q and y are more similar, i.e. s(q, y) is higher.
• Lower when q and y are more dissimilar, i.e. s(q, y) is
lower.
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LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q, y) equal to Jaccard similarity:

• Let c : {0, 1}d → [0, 1] be a single instantiation of MinHash.
• Let g : [0, 1]→ {1, . . . ,m} be a uniform random hash
function.

• Let h(q) = g(c(q)).
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LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

• Let c : {0, 1}d → [0, 1] be a single instantiation of MinHash.
• Let g : [0, 1]→ {1, . . . ,m} be a uniform random hash
function.

• Let h(x) = g(c(x)).

If J(q, y) = v,

Pr [h(q) == h(y)] =
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NEAR NEIGHBOR SEARCH

Basic approach for near neighbor search in a database.

Pre-processing:

• Select random LSH function h : {0, 1}d → 1, . . . ,m.
• Create table T with m = O(n) slots.1

• For i = 1, . . . ,n, insert qi into T(h(qi)).

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors q ∈ T(h(y)) and return any
that are close to y. Time required is O(d · |T(h(y)|).

1Enough to make the O(1/m) term negligible.
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NEAR NEIGHBOR SEARCH
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NEAR NEIGHBOR SEARCH

Two main considerations:

• False Negative Rate: What’s the probability we do not find
a vector that is close to y?

• False Positive Rate: What’s the probability that a vector in
T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime – we
need to compute J(q, y) for every q ∈ T(h(y)) to check if it’s
actually close to y.

Note: The meaning of “close” and “not close” is application
dependent. E.g. we might specify that we want to find anything
with Jaccard similarity > .4, but not with Jaccard similarity < .2.
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REDUCING FALSE NEGATIVE RATE

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we do not find q?
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REDUCING FALSE NEGATIVE RATE

Pre-processing:

• Select t independent LSH’s h1, . . . ,ht : {0, 1}d → 1, . . . ,m.
• Create tables T1, . . . , Tt, each with m slots.
• For i = 1, . . . ,n, j = 1, . . . , t,

• Insert qi into Tj(hj(qi)).
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REDUCING FALSE NEGATIVE RATE

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors in
T1(h1(y)) ∪ T2(h2(y)) ∪ . . . , Tt(ht(y)).

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we find q?
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WHAT HAPPENS TO FALSE POSITIVES?

Suppose there is some other database point z with J(y, z) = .2.

What is the probability we will need to compute J(z, y) in our
hashing scheme with one table? I.e. the probability that y
hashes into at least one bucket containing z.

In the new scheme with t = 10 tables?
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REDUCING FALSE POSITIVES

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let c1, . . . , cr : {0, 1}d → [0, 1] be random MinHash.

• Let g : [0, 1]r → {1, . . . ,m} be a uniform random hash function.

• Let h(x) = g(c1(x), . . . , cr(x)).
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REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let c1, . . . , cr : {0, 1}d → [0, 1] be random MinHash.

• Let g : [0, 1]r → {1, . . . ,m} be a uniform random hash function.

• Let h(x) = g(c1(x), . . . , cr(x)).

If J(q, y) = v, then Pr [h(q) == h(y)] =
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TUNABLE LSH
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TUNABLE LSH

Full LSH cheme has two parameters to tune:
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TUNABLE LSH

Effect of increasing number of tables t on:

False Negatives False Positives

Effect of increasing number of bands r on:

False Negatives False Positives
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s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

r = 5, t = 5
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s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ 1− (1− vr)t

r = 5, t = 40
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s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ 1− (1− vr)t

r = 40, t = 5
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s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

1− (1− vr)t

Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity. 29



FIXED THRESHOLD

Use Case 1: Fixed threshold.

• Shazam wants to find match to audio clip y in a database of 10
million clips.

• There are 10 true matches with J(y,q) > .9.

• There are 10,000 near matches with J(y,q) ∈ [.7, .9].

• All other items have J(y,q) < .7.

With r = 25 and t = 40,

• Hit probability for J(y,q) > .9 is ≳ 1− (1− .925)40 = .95

• Hit probability for J(y,q) ∈ [.7, .9] is ≲ 1− (1− .925)40 = .95

• Hit probability for J(y,q) < .7 is ≲ 1− (1− .725)40 = .005

Upper bound on total number of items checked:

.95 · 10+ .95 · 10, 000+ .005 · 9, 989, 990 ≈ 60, 000≪ 10, 000, 000. 30



FIXED THRESHOLD

Space complexity: 40 hash tables ≈ 40 · O(n).

Directly trade space for fast search.
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FIXED THRESHOLD R

Near Neighbor Search Problem

Concrete worst case result:
Theorem (Indyk, Motwani, 1998)
If there exists some q with ∥q− y∥0 ≤ R, return a vector q̃ with
∥q̃− y∥0 ≤ C · R in:

• Time: O
(
n1/C).

• Space: O
(
n1+1/C).

∥q− y∥0 = “hamming distance” = number of elements that
differ between q and y.
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APPROXIMATE NEAREST NEIGHBOR SEARCH

Theorem (Indyk, Motwani, 1998)
Let q be the closest database vector to y. Return a vector q̃
with ∥q̃− y∥0 ≤ C · ∥q− y∥0 in:

• Time: Õ
(
n1/C).

• Space: Õ
(
n1+1/C).
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OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other
similarity measures.

Cosine similarity cos (θ(x, y)) = ⟨x,y⟩
∥x∥2∥y∥2 :

−1 ≤ cos (θ(x, y)) ≤ 1.
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COSINE SIMILARITY

Cosine similarity is natural “inverse” for Euclidean distance.

Euclidean distance ∥x− y∥22:

• Suppose for simplicity that ∥x∥22 = ∥y∥22 = 1.
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SIMHASH

Locality sensitive hash for cosine similarity:

• Let g ∈ Rd be randomly chosen with each entry N (0, 1).
• Let f : {−1, 1} → {1, . . . ,m} be a uniformly random hash
function.

• h : Rd → {1, . . . ,m} is definied h(x) = f (sign(⟨g, x⟩)).

If cos(θ(x, y)) = v, what is Pr[h(x) == h(y)]?
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SIMHASH ANALYSIS IN 2D

Theorem (to be prove): If cos(θ(x, y)) = v, then

Pr[h(x) == h(y)] = 1− θ

π
+

1
m = 1− cos−1(v)

π
+

1
m
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SIMHASH

SimHash can be tuned, just like our MinHash based LSH
function for Jaccard similarity:

• Let g1, . . . , gr ∈ Rd be randomly chosen with each entry
N (0, 1).

• Let f : {−1, 1}r → {1, . . . ,m} be a uniformly random hash
function.

• h : Rd → {1, . . . ,m} is defined
h(x) = f ([sign(⟨g1, x⟩), . . . , sign(⟨gr, x⟩)]).

Pr[h(x) == h(y)] =
(
1− θ

Π

)r
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SIMHASH ANALYSIS IN 2D

To prove: Pr[h(x) == h(y)] = 1− θ
π , where h(x) = f (sign(⟨g, x⟩))

and f is uniformly random hash function.

Pr[h(x) == h(y)] = z+ 1− v
m ≈ z.

where z = Pr[sign(⟨g, x⟩) == sign(⟨g, y⟩)] 39



SIMHASH ANALYSIS 2D

Pr[h(x) == h(y)] ≈ probability x and y are on the same side of
hyperplane orthogonal to g.
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SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix U such that Ux,Uy are
spanned by the first two-standard basis vectors and have the
same cosine similarity as x and y.
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SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix U such that x, y are
spanned by the first two-standard basis vectors.
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SIMHASH ANALYSIS HIGHER DIMENSIONS

Claim:

1− θ

π
= Pr[sign(⟨g,Ux⟩) == sign(⟨g,Uy⟩)]

= Pr[sign(⟨g, x⟩) == sign(⟨g, y⟩)]

Why?
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BREAK
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NEXT UNIT: CONTINUOUS OPTIMIZATION

Have some function f : Rd → R. Want to find x∗ such that:

f(x∗) = min
x

f(x).

Or at least x̂ which is close to a minimum. E.g.
f(x̂) ≤ minx f(x) + ϵ

Often we have some additional constraints:

• x > 0.
• ∥x∥2 ≤ R, ∥x∥1 ≤ R.
• aTx > c.
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CONTINUOUS OPTIMIZATION

Dimension d = 1:

Dimension d = 2:
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OPTIMIZATION IN MACHINE LEARNING

Continuouos optimization is the foundation of modern
machine learning.

Supervised learning: Want to learn a model that maps inputs

• numerical data vectors
• images, video
• text documents

to predictions

• numerical value (probability stock price increases)
• label (is the image a cat? does the image contain a car?)
• decision (turn car left, rotate robotic arm)
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MACHINE LEARNING MODEL

Let Mx be a model with parameters x = {x1, . . . , xk}, which
takes as input a data vector a and outputs a prediction.

Example:

Mx(a) = sign(aTx)
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MACHINE LEARNING MODEL

Example:

x ∈ R(# of connections) is the parameter vector containing all the
network weights.
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SUPERVISED LEARNING

Classic approach in supervised learning: Find a model that
works well on data that you already have the answer for
(labels, values, classes, etc.).

• Model Mx parameterized by a vector of numbers x.
• Dataset a(1), . . . , a(n) with outputs y(1), . . . , y(n).

Want to find x̂ so that Mx̂(a(i)) ≈ y(i) for i ∈ 1, . . . ,n.

How do we turn this into a function minimization problem?
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LOSS FUNCTION

Loss function L (Mx(a), y): Some measure of distance between
prediction Mx(a) and target output y. Increases if they are
further apart.

• Squared (ℓ2) loss: |Mx(a)− y|2

• Absolute deviation (ℓ1) loss: |Mx(a)− y|
• Hinge loss: 1 - y ·Mx(a)
• Cross-entropy loss (log loss).
• Etc.
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EMPIRICAL RISK MINIMIZATION

Empirical risk minimization:

f(x) =
n∑
i=1

L
(
Mx(a(i)), y(i)

)
Solve the optimization problem minx f(x).
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EXAMPLE: LINEAR REGRESSION

• Mx(a) = xTa. x contains the regression coefficients.
• L(z, y) = |z− y|2.
• f(x) =

∑n
i=1 |xTa(i) − y(i)|2

f(x) = ∥Ax− y∥22

where A is a matrix with a(i) as its ith row and y is a vector with
y(i) as its ith entry.
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ALGORITHMS FOR CONTINUOUS OPTIMIZATION

The choice of algorithm to minimize f(x) will depend on:

• The form of f(x) (is it linear, is it quadratic, does it have
finite sum structure, etc.)

• If there are any additional constraints imposed on x. E.g.
∥x∥2 ≤ c.

What are some example algorithms for continuous
optimization?
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FIRST TOPIC: GRADIENT DESCENT + VARIANTS

Gradient descent: A greedy algorithm for minimizing functions
of multiple variables that often works amazingly well.

Runtime generally scales linearly with the dimension of x
(although this is a bit of an over-simplification).
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SECOND TOPIC: METHODS SUITABLE FOR LOWER DIMENSION

• Cutting plane methods (e.g. center-of-gravity, ellipsoid)
• Interior point methods

Fast and more accurate in low-dimensions, slower in very high
dimensions. Generally runtime scales polynomially with the
dimension of x.
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CALCULUS REVIEW

For i = 1, . . . ,d, let xi be the ith entry of x. Let e(i) be the ith

standard basis vector.

Partial derivative:

∂f
∂xi

(x) = lim
t→0

f(x+ te(i))− f(x)
t

Directional derivative:

Dvf(x) = lim
t→0

f(x+ tv)− f(x)
t
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CALCULUS REVIEW

Gradient:

∇f(x) =


∂f
∂x1 (x)
∂f
∂x2 (x)...
∂f
∂xd (x)


Directional derivative:

Dvf(x) = lim
t→0

f(x+ tv)− f(x)
t = ∇f(x)Tv.
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FIRST ORDER OPTIMIZATION

Given a function f to minimize, assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.

We view the implementation of these oracles as black-boxes,
but they can often require a fair bit of computation.
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EXAMPLE GRADIENT EVALUATION

Linear least-squares regression:

• Given a(1), . . . a(n) ∈ Rd, y(1), . . . y(n) ∈ R.
• Want to minimize:

f(x) =
n∑
i=1

(
xTa(i) − y(i)

)2
= ∥Ax− y∥22.

∂f
∂xj

=
n∑
i=1

2
(
xTa(i) − y(i)

)
· a(i)j = (2Ax− y)Tα(j)

where α(j) is the jth column of A.

∇f(x) = 2AT (Ax− y)

What is the time complexity of a gradient oracle for ∇f(x)?
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DECENT METHODS

Greedy approach: Given a starting point x, make a small
adjustment that decreases f(x). In particular, x← x+ ηv and
f(x)← f(x+ ηv).

What property do I want in v?

Leading question: When η is small, what’s an approximation
for f(x+ ηv)− f(x)?

f(x+ ηv)− f(x) ≈
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DIRECTIONAL DERIVATIVES

Dvf(x) = lim
t→0

f(x+ tv)− f(x)
t = ∇f(x)Tv.

So:

f(x+ ηv)− f(x) ≈

How should we choose v so that f(x+ ηv) < f(x)?
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GRADIENT DESCENT

Prototype algorithm:

• Choose starting point x(0).
• For i = 0, . . . , T:

• x(i+1) = x(i) − η∇f(x(i))

• Return x(T).

η is a step-size parameter, which is often adapted on the go.
For now, assume it is fixed ahead of time.
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GRADIENT DESCENT INTUITION

1 dimensional example:
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GRADIENT DESCENT INTUITION

2 dimensional example:
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KEY RESULTS

For a convex function f(x): For sufficiently small η and a
sufficiently large number of iterations T, gradient descent will
converge to a near global minimum:

f(x(T)) ≤ f(x∗) + ϵ.

Examples: least squares regression, logistic regression, kernel
regression, SVMs.

For a non-convex function f(x): For sufficiently small η and a
sufficiently large number of iterations T, gradient descent will
converge to a near stationary point:

∥∇f(x(T))∥2 ≤ ϵ.

Examples: neural networks, matrix completion problems,
mixture models.
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CONVEX VS. NON-CONVEX

One issue with non-convex functions is that they can have
local minima. Even when they don’t, convergence analysis
requires different assumptions than convex functions.
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APPROACH FOR THIS UNIT

We care about how fast gradient descent and related methods
converge, not just that they do converge.

• Bounding iteration complexity requires placing some
assumptions on f(x).

• Stronger assumptions lead to better bounds on the
convergence.

Understanding these assumptions can help us design faster
variants of gradient descent (there are many!).

67


