
CS-GY 6763: Lecture 4
Dimensionality reduction + Near neighbor
search in high dimensions

NYU Tandon School of Engineering, Prof. Christopher Musco
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EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points qࠀ, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
εࠁ

)
such that for all

i, j,

−ࠀ) ε)‖qi − qj‖ࠁ ≤ ‖Πqi −Πqj‖ࠁ ≤ +ࠀ) ε)‖qi − qj‖ࠁ.
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EUCLIDEAN DIMENSIONALITY REDUCTION

Please remember: This is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points qࠀ, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
εࠁ

)
such that for all

i, j,

−ࠀ) ε)‖qi − qj‖2ࠁ ≤ ‖Πqi −Πqj‖2ࠁ ≤ +ࠀ) ε)‖qi − qj‖2ࠁ.

because for small ε, +ࠀ) ε)ࠁ = +ࠀ O(ε) and −ࠀ) ε)ࠁ = −ࠀ O(ε).
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EUCLIDEAN DIMENSIONALITY REDUCTION

And this is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points qࠀ, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
εࠁ

)
such that for all

i, j,

−ࠀ) ε)‖Πqi −Πqj‖ࠁࠁ ≤ ‖qi − qj‖ࠁࠁ ≤ +ࠀ) ε)‖Πqi −Πqj‖ࠁࠁ.

because for small ε, ࠀ
ε+ࠀ = −ࠀ O(ε) and ࠀ

ε−ࠀ = +ࠀ O(ε).
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SAMPLE APPLICATION

k-means clustering: Give data points aࠀ, . . . , an ∈ Rd, find
centers µࠀ, . . . ,µk ∈ Rd to minimize:

Cost(µࠀ, . . . ,µk) =
n∑

i=ࠀ

min
j=ࠀ,...,k

‖µj − ai‖ࠁࠁ
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SAMPLE APPLICATION

k-means clustering: Give data points aࠀ, . . . , an ∈ Rd, find
centers µࠀ, . . . ,µk ∈ Rd to minimize:

Cost(µࠀ, . . . ,µk) =
n∑

i=ࠀ

min
j=ࠀ,...,k
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SAMPLE APPLICATION

k-means clustering: Give data points aࠀ, . . . , an ∈ Rd, find
centers µࠀ, . . . ,µk ∈ Rd to minimize:

Cost(µࠀ, . . . ,µk) =
n∑

i=ࠀ

min
j=ࠀ,...,k

‖µj − ai‖ࠁࠁ
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K-MEANS CLUSTERING

NP hard to solve exactly, but there are many good
approximation algorithms. All depend at least linearly on the
dimension d.

Approximation scheme: Find clusters C̃ࠀ, . . . , C̃k for the
k = O

(
log n
εࠁ

)
dimension data set Πaࠀ, . . . ,Πan.

Argue these clusters are near optimal for aࠀ, . . . , an.
ࠇ
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K-MEANS CLUSTERING

Equivalent form: Find clusters Cࠀ, . . . , Ck ⊆ ,ࠀ} . . . ,n} to
minimize:

Cost(Cࠀ, . . . , Ck) =
k∑

j=ࠀ

ࠀ
|Cj|ࠁ

∑

u,v∈Cj

‖au − av‖ࠁࠁ.

Exercise: Prove this to your self. ࠈ
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K-MEANS CLUSTERING

Cost(Cࠀ, . . . , Ck) =
k∑

j=ࠀ

ࠀ
|Cj|ࠁ

∑

u,v∈Cj

‖au − av‖ࠁࠁ

C̃ost(Cࠀ, . . . , Ck) =
k∑

j=ࠀ

ࠀ
|Cj|ࠁ

∑

u,v∈Cj

‖Πau − Πav‖ࠁࠁ

Claim: For any clusters Cࠀ, . . . , Ck:

−ࠀ) ε)Cost(Cࠀ, . . . , Ck) ≤ C̃ost(Cࠀ, . . . , Ck) ≤ +ࠀ) ε)Cost(Cࠀ, . . . , Ck)

߿ࠀ
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K-MEANS CLUSTERING

Suppose we use an approximation algorithm to find clusters
Bࠀ, . . . ,Bk such that:

C̃ost(Bࠀ, . . . ,Bk) ≤ +ࠀ) α)C̃ost
∗

Then:

Cost(Bࠀ, . . . ,Bk) ≤
ࠀ

−ࠀ ε
C̃ost(Bࠀ, . . . ,Bk)

≤ +ࠀ) O(ε))(ࠀ+ α)C̃ost
∗

≤ +ࠀ) O(ε))(ࠀ+ α)(ࠀ+ ε)Cost∗

= +ࠀ) O(α+ ε)) Cost∗

Cost∗ = minCࠀ,...,Ck Cost(Cࠀ, . . . , Ck) and
C̃ost

∗
= minCࠀ,...,Ck C̃ost(Cࠀ, . . . , Ck) ࠀࠀ
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EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points qࠀ, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
εࠁ

)
such that for all

i, j,

−ࠀ) ε)‖qi − qj‖ࠁ ≤ ‖Πqi −Πqj‖ࠁ ≤ +ࠀ) ε)‖qi − qj‖ࠁ.
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EUCLIDEAN DIMENSIONALITY REDUCTION

Remarkably, Π can be chosen completely at random!

One possible construction: Random Gaussian.

Πi,j =
√ࠀ
k
N ,߿) (ࠀ

The map Π is oblivious to the data set. This stands in contrast
to e.g. PCA, amoung other differences.

[Indyk, Motwani [ࠇࠈࠈࠀ [Arriage, Vempala [ࠈࠈࠈࠀ [Achlioptas [ࠀ߿߿ࠁ
[Dasgupta, Gupta .[ࠂ߿߿ࠁ

Many other possible choices suffice – you can use random
{ࠀ−,ࠀ+} variables, sparse random matrices, pseudorandom Π.
Each with different advantages.

ࠂࠀ
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RANDOMIZED JL CONSTRUCTIONS

Let Π ∈ Rk×d be chosen so that each entry equals √ࠀ
k
N ,߿) .(ࠀ

... or each entry equals √ࠀ
k
± ࠀ with equal probability.

A random orthogonal matrix also works. I.e. with ΠΠT = Ik×k.
For this reason, the JL operation is often called a “random

projection”, even though it technically isn’t a projection when
entries are i.i.d.

ࠃࠀ
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RANDOM PROJECTION

Intuitively, close points will remain close after projection, and
far points will remain far.
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EUCLIDEAN DIMENSIONALITY REDUCTION

Intermediate result:
Lemma (Distributional JL Lemma)
Let Π ∈ Rk×d be chosen so that each entry equals √ࠀ

k
N ,߿) ,(ࠀ

where N ,߿) (ࠀ denotes a standard Gaussian random variable.

If we choose k = O
(
log(ࠀ/δ)

εࠁ

)
, then for any vector x, with

probability −ࠀ) δ):

−ࠀ) ε)‖x‖ࠁࠁ ≤ ‖Πx‖ࠁࠁ ≤ +ࠀ) ε)‖x‖ࠁࠁ

Given this lemma, how do we prove the traditional
Johnson-Lindenstrauss lemma?

ࠅࠀ
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JL FROM DISTRIBUTIONAL JL

We have a set of vectors qࠀ, . . . ,qn. Fix i, j ∈ ,ࠀ . . . ,n.

Let x = qi − qj. By linearity, Πx = Π(qi − qj) = Πqi −Πqj.

By the Distributional JL Lemma, with probability −ࠀ δ,

−ࠀ) ε)‖qi − qj‖ࠁ ≤ ‖Πqi −Πqj‖ࠁ ≤ +ࠀ) ε)‖qi − qj‖ࠁ.

ࠆࠀ

I -



JL FROM DISTRIBUTIONAL JL

By the Distributional JL Lemma, with probability −ࠀ δ, we have
that for any qi, qj,

−ࠀ) ε)‖qi − qj‖ࠁ ≤ ‖Πqi −Πqj‖ࠁ ≤ +ࠀ) ε)‖qi − qj‖ࠁ.

Finally, set δ = ࠀ
ࠁn߿ࠀ . Since there are < nࠁ total i, j pairs, by a

union bound we have that with probability ,߿ࠀ/ࠈ the above will
hold for all i, j, as long as we compress to:

k = O
(
log(ࠀ/(ࠀ/nࠁ))

εࠁ

)
= O

(
log n
εࠁ

)
dimensions.

ࠇࠀ
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PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability −ࠀ) δ),

−ࠀ) ε)‖x‖ࠁࠁ ≤ |Πx‖ࠁࠁ ≤ +ࠀ) ε)‖x‖ࠁࠁ

Claim: E
[
‖Πx‖ࠁࠁ

]
= ‖x‖ࠁࠁ.

Some notation:

So each πi contains N ,߿) (ࠀ entries. ࠈࠀ
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PROOF OF DISTRIBUTIONAL JL

Intermediate Claim:

E
[
‖Πx‖ࠁࠁ

]
= E

[
(〈πࠀ, x〉)ࠁ

]
.

Goal: Prove E
[
‖Πx‖ࠁࠁ

]
= ‖x‖ࠁࠁ.

߿ࠁ
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PROOF OF DISTRIBUTIONAL JL

〈πࠀ, x〉 = Zࠀ · x(ࠀ) + Zࠁ · x(ࠁ) + . . .+ Zd · x(d)

where each Zࠀ, . . . , Zd is a standard normal N ,߿) (ࠀ random
variable.

We have that Zi · x(i) is a normal N ,߿) x(i)ࠁ) random variable.

Goal: Prove E
[
‖Πx‖ࠁࠁ

]
= ‖x‖ࠁࠁ. Have: E

[
‖Πx‖ࠁࠁ

]
= E

[
(〈πࠀ, x〉)ࠁ

]

ࠀࠁ
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STABLE RANDOM VARIABLES

What type of random variable is 〈πi, x〉?

Fact (Stability of Gaussian random variables)

N (µࠀ,σ
ࠁ
ࠀ ) +N (µࠁ,σ

ࠁ
(ࠁ = N (µࠀ + µࠁ,σ

ࠁ
ࠀ + σࠁ

(ࠁ

〈πࠀ, x〉 = N ,߿) x(ࠀ)ࠁ) +N ,߿) x(ࠁ)ࠁ) + . . .+N ,߿) x(d)ࠁ)
= N ,߿) ‖x‖ࠁࠁ).

So E
[
‖Πx‖ࠁࠁ

]
= E

[
(〈πࠀ, x〉)ࠁ

]
= ‖x‖ࠁࠁ, as desired.

Goal: Prove E
[
‖Πx‖ࠁࠁ

]
= ‖x‖ࠁࠁ. Have: E

[
‖Πx‖ࠁࠁ

]
= E

[
(〈πࠀ, x〉)ࠁ

]
ࠁࠁ
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PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability −ࠀ) δ),

−ࠀ) ε)‖x‖ࠁࠁ ≤ ‖Πx‖ࠁࠁ ≤ +ࠀ) ε)‖x‖ࠁࠁ

.ࠀ E
[
‖Πx‖ࠁࠁ

]
= ‖x‖ࠁࠁ.

.ࠁ Need to use a concentration bound.

‖Πx‖ࠁࠁ =
ࠀ
k

k∑

i=ࠀ

(〈πi, x〉)ࠁ =
ࠀ
k

k∑

i=ࠀ

N ,߿) ‖x‖ࠁࠁ)

“Chi-squared random variable with k degrees of freedom.”

ࠂࠁ
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CONCENTRATION OF CHI-SQUARED RANDOM VARIABLES

Lemma
Let Z be a Chi-squared random variable with k degrees of
freedom.

Pr[|EZ− Z| ≥ εEZ] ≤ ࠇ/ࠁe−kεࠁ

Goal: Prove ‖Πx‖ࠁࠁ concentrates within ±ࠀ ε of its expectation,
which equals ‖x‖ࠁࠁ. ࠃࠁ
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CONNECTION TO LAST LECTURE

If high dimensional geometry is so different from
low-dimensional geometry, why is dimensionality reduction
possible? Doesn’t Johnson-Lindenstrauss tell us that
high-dimensional geometry can be approximated in low
dimensions?

ࠄࠁ



CONNECTION TO DIMENSIONALITY REDUCTION

Hard case: xࠀ, . . . , xn ∈ Rd are all mutually orthogonal unit
vectors:

‖xi − xj‖ࠁࠁ = ࠁ for all i, j.

From our result earlier, in O(log n/εࠁ) dimensions, there exists
log·ࠁO(εࠁ n/εࠁ) ≥ n unit vectors that are close to mutually
orthogonal.

O(log n/εࠁ) = just enough dimensions.

ࠅࠁ
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DIMENSIONALITY REDUCTION

The Johnson-Lindenstrauss Lemma let us sketch vectors and
preserve their ࠁ% Euclidean distance.

We also have dimensionality reduction techniques that
preserve alternative measures of similarity!

ࠆࠁ



JACCARD SIMILARITY

Another distance measure (actually a similarity measure)
between binary vectors in ,߿} d{ࠀ :

Definition (Jaccard Similarity)

J(q, y) = |q ∩ y|
|q ∪ y| =

# of non-zero entries in common
total # of non-zero entries

Natural similarity measure for binary vectors. ߿ ≤ J(q, y) ≤ .ࠀ

Can be applied to any data which has a natural binary
representation (more than you might think).

y =
[
ࠀ ߿ ࠀ ࠀ ߿ ߿

]

q =
[
ࠀ ࠀ ߿ ࠀ ߿ ߿

]

ࠇࠁ



SIMILARITY ESTIMATION

How does Shazam match a song clip against a library of ࠇ
million songs ࠁࠂ) TB of data) in a fraction of a second?

Spectrogram extracted
from audio clip.

Processed spectrogram:
used to construct audio
“fingerprint” q ∈ ,߿} .d{ࠀ

Each clip is represented by a high dimensional binary vector q.

ࠈࠁ
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SIMILARITY ESTIMATION

Given q, find any nearby “fingerprint” y in a database – i.e. any
y with dist(y,q) small.

Challenges:

• Database is possibly huge: O(nd) bits.
• Expensive to compute dist(y,q): O(d) time.

߿ࠂ
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JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

How many words do a pair of documents have in common?

ࠀࠂ



JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

How many bigrams do a pair of documents have in common?

ࠁࠂ



APPLICATIONS: DOCUMENT SIMILARITY

• Finding duplicate or new duplicate documents or
webpages.

• Change detection for high-speed web caches.
• Finding near-duplicate emails or customer reviews which
could indicate spam.

ࠂࠂ



JACCARD SIMILARITY FOR SEISMIC DATA

Feature extract pipeline for earthquake data.

(see paper by Rong et al. posted on course website)

ࠃࠂ



SIMILARITY ESTIMATION

Goal: Design a compact sketch C : ,߿} {ࠀ → Rk:

Homomorphic Compression: Want to use C(q), C(y) to
approximately compute the Jaccard similarity J(q, y).

ࠄࠂ

•

-

Hq Ty



MINHASH

MinHash (Broder, ’97):

• Choose k random hash functions
hࠀ, . . . ,hk : ,ࠀ} . . . ,n} → ,߿] .[ࠀ

• For i ∈ ,ࠀ . . . , k,
• Let ci = minj,qj=ࠀ hi(j).

• C(q) = [cࠀ, . . . , ck].

ࠅࠂ
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MINHASH

• Choose k random hash functions
hࠀ, . . . ,hk : ,ࠀ} . . . ,n} → ,߿] .[ࠀ

• For i ∈ ,ࠀ . . . , k,
• Let ci = minj,qj=ࠀ hi(j).

• C(q) = [cࠀ, . . . , ck].

ࠆࠂ
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MINHASH ANALYSIS

Claim: Pr[ci(q) = ci(y)] = J(q, y).

Proof:

.ࠀ For ci(q) = ci(y), we need that argmini∈q h(i) = argmini∈y h(i).

ࠇࠂ
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MINHASH ANALYSIS

Claim: Pr[ci(q) = ci(y)] = J(q, y).

.ࠁ Every non-zero index in q ∪ y is equally likely to produce the
lowest hash value. ci(q) = ci(y) only if this index is ࠀ in both q
and y. There are q ∩ y such indices. So:

Pr[ci(q) = ci(y)] =
q ∩ y
q ∪ y = J(q, y)

ࠈࠂ



MINHASH ANALYSIS

Let J = J(q, y) denote the Jaccard similarity between q and y.

Return: J̃ = ࠀ
k
∑k

i=ࠀ [ci(q) = ci(y)].

Unbiased estimate for Jaccard similarity:

ẼJ =

The more repetitions, the lower the variance.

߿ࠃ
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MINHASH ANALYSIS

Let J = J(q, y) denote the true Jaccard similarity.

Estimator: J̃ = ࠀ
k
∑k

i=ࠀ [ci(q) = ci(y)].

Var[̃J] =

Plug into Chebyshev inequality. How large does k need to be
so that with probability > −ࠀ δ, |J− J̃| ≤ ε?

ࠀࠃ
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MINHASH ANALYSIS

Chebyshev inequality: As long as k = O
( ࠀ
εࠁδ

)
, then with prob.

−ࠀ δ,

J(q, y)− ε ≤ J̃ (C(q), C(y)) ≤ J(q, y) + ε.

And J̃ only takes O(k) time to compute! Independent of
original fingerprint dimension d.

Can be improved to log(ࠀ/δ) dependence. Can anyone tell me
how?
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SIMILARITY SKETCHING
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NEAR NEIGHBOR SEARCH

Common goal: Find all vectors in database qࠀ, . . . ,qn ∈ Rd that
are close to some input query vector y ∈ Rd. I.e. find all of y’s
“nearest neighbors” in the database.

• The Shazam problem.
• Audio + video search.
• Finding duplicate or near duplicate documents.
• Detecting seismic events.

How does similarity sketching help in these applications?

• Improves runtime of “linear scan” from O(nd) to O(nk).
• Improves space complexity from O(nd) to O(nk). This can
be super important – e.g. if it means the linear scan only
accesses vectors in fast memory.

ࠃࠃ



BEYOND A LINEAR SCAN

New goal: Sublinear o(n) time to find near neighbors.

ࠄࠃ



BEYOND A LINEAR SCAN

This problem can already be solved for a small number of
dimensions using space partitioning approaches (e.g. kd-tree).

Runtime is roughly O(d ·min(n, ,((dࠁ which is only sublinear for
d = o(log n).

ࠅࠃ



HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

Only been attacked much more recently:

• Locality-sensitive hashing [Indyk, Motwani, 1998]
• Spectral hashing [Weiss, Torralba, and Fergus, [ࠇ߿߿ࠁ
• Vector quantization [Jégou, Douze, Schmid, [ࠈ߿߿ࠁ

• Probably the most practical. This is most similar to the
custom method e.g. Shazam uses.

Key Insight: Trade worse space-complexity for better
time-complexity.

ࠆࠃ



LOCALITY SENSITIVE HASH FUNCTIONS

Let h : Rd → ,ࠀ} . . . ,m} be a random hash function.

We call h locality sensitive for similarity function s(q, y) if
Pr [h(q) == h(y)] is:

• Higher when q and y are more similar, i.e. s(q, y) is higher.
• Lower when q and y are more dissimilar, i.e. s(q, y) is
lower.

ࠇࠃ



LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q, y) equal to Jaccard similarity:

• Let c : ,߿} d{ࠀ → ,߿] [ࠀ be a single instantiation of MinHash.
• Let g : ,߿] [ࠀ → ,ࠀ} . . . ,m} be a uniform random hash
function.

• Let h(q) = g(c(q)).

ࠈࠃ



LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

• Let c : ,߿} d{ࠀ → ,߿] [ࠀ be a single instantiation of MinHash.
• Let g : ,߿] [ࠀ → ,ࠀ} . . . ,m} be a uniform random hash
function.

• Let h(x) = g(c(x)).

If J(q, y) = v,

Pr [h(q) == h(y)] =

߿ࠄ



NEAR NEIGHBOR SEARCH

Basic approach for near neighbor search in a database.

Pre-processing:

• Select random LSH function h : ,߿} d{ࠀ → ,ࠀ . . . ,m.
• Create table T with m = O(n) slots.ࠀ

• For i = ,ࠀ . . . ,n, insert qi into T(h(qi)).

Query:

• Want to find near neighbors of input y ∈ ,߿} .d{ࠀ
• Linear scan through all vectors q ∈ T(h(y)) and return any
that are close to y. Time required is O(d · |T(h(y)|).

Enoughࠀ to make the O(ࠀ/m) term negligible.

ࠀࠄ



NEAR NEIGHBOR SEARCH
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NEAR NEIGHBOR SEARCH

Two main considerations:

• False Negative Rate: What’s the probability we do not find
a vector that is close to y?

• False Positive Rate: What’s the probability that a vector in
T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime – we
need to compute J(q, y) for every q ∈ T(h(y)) to check if it’s
actually close to y.

Note: The meaning of “close” and “not close” is application
dependent. E.g. we might specify that we want to find anything
with Jaccard similarity > ,ࠃ. but not with Jaccard similarity < .ࠁ.

ࠂࠄ



REDUCING FALSE NEGATIVE RATE

Suppose the nearest database point q has J(y,q) = .ࠃ.

What’s the probability we do not find q?

ࠃࠄ



REDUCING FALSE NEGATIVE RATE

Pre-processing:

• Select t independent LSH’s hࠀ, . . . ,ht : ,߿} d{ࠀ → ,ࠀ . . . ,m.
• Create tables Tࠀ, . . . , Tt, each with m slots.
• For i = ,ࠀ . . . ,n, j = ,ࠀ . . . , t,

• Insert qi into Tj(hj(qi)).

ࠄࠄ



REDUCING FALSE NEGATIVE RATE

Query:

• Want to find near neighbors of input y ∈ ,߿} .d{ࠀ
• Linear scan through all vectors in
Tࠀ(hࠀ(y)) ∪ Tࠁ(hࠁ(y)) ∪ . . . , Tt(ht(y)).

Suppose the nearest database point q has J(y,q) = .ࠃ.

What’s the probability we find q?

ࠅࠄ
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WHAT HAPPENS TO FALSE POSITIVES?

Suppose there is some other database point z with J(y, z) = .ࠁ.

What is the probability we will need to compute J(z, y) in our
hashing scheme with one table? I.e. the probability that y
hashes into at least one bucket containing z.

In the new scheme with t = ߿ࠀ tables?

ࠆࠄ
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REDUCING FALSE POSITIVES

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let cࠀ, . . . , cr : ,߿} d{ࠀ → ,߿] [ࠀ be random MinHash.

• Let g : ,߿] r[ࠀ → ,ࠀ} . . . ,m} be a uniform random hash function.

• Let h(x) = g(cࠀ(x), . . . , cr(x)).

ࠇࠄ



REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let cࠀ, . . . , cr : ,߿} d{ࠀ → ,߿] [ࠀ be random MinHash.

• Let g : ,߿] r[ࠀ → ,ࠀ} . . . ,m} be a uniform random hash function.

• Let h(x) = g(cࠀ(x), . . . , cr(x)).

If J(q, y) = v, then Pr [h(q) == h(y)] =

ࠈࠄ



TUNABLE LSH
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TUNABLE LSH

Full LSH cheme has two parameters to tune:

ࠀࠅ



TUNABLE LSH

Effect of increasing number of tables t on:

False Negatives False Positives

Effect of increasing number of bands r on:

False Negatives False Positives

ࠁࠅ



s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

r = ,ࠄ t = ࠄ
ࠂࠅ



s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ −ࠀ −ࠀ) vr)t

r = ,ࠄ t = ߿ࠃ
ࠃࠅ



s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ −ࠀ −ࠀ) vr)t

r = ,߿ࠃ t = ࠄ
ࠄࠅ



s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

−ࠀ −ࠀ) vr)t

Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity. ࠅࠅ



FIXED THRESHOLD

Use Case 1: Fixed threshold.

• Shazam wants to find match to audio clip y in a database of ߿ࠀ
million clips.

• There are ߿ࠀ true matches with J(y,q) > .ࠈ.

• There are ߿߿߿,߿ࠀ near matches with J(y,q) ∈ ,ࠆ.] .[ࠈ.

• All other items have J(y,q) < .ࠆ.

With r = ࠄࠁ and t = ,߿ࠃ

• Hit probability for J(y,q) > ࠈ. is ! −ࠀ −ࠀ) ߿ࠃ(ࠄࠁࠈ. = ࠄࠈ.

• Hit probability for J(y,q) ∈ ,ࠆ.] [ࠈ. is " −ࠀ −ࠀ) ߿ࠃ(ࠄࠁࠈ. = ࠄࠈ.

• Hit probability for J(y,q) < ࠆ. is " −ࠀ −ࠀ) ߿ࠃ(ࠄࠁࠆ. = ࠄ߿߿.

Upper bound on total number of items checked:

ࠄࠈ. · +߿ࠀ ࠄࠈ. · ,߿ࠀ +߿߿߿ ࠄ߿߿. · ,ࠈ ,ࠈࠇࠈ ߿ࠈࠈ ≈ ,߿ࠅ ߿߿߿ . ,߿ࠀ ,߿߿߿ .߿߿߿ ࠆࠅ



FIXED THRESHOLD

Space complexity: ߿ࠃ hash tables ≈ ߿ࠃ · O(n).

Directly trade space for fast search.

ࠇࠅ



FIXED THRESHOLD R

Near Neighbor Search Problem

Concrete worst case result:

Theorem (Indyk, Motwani, 1998)
If there exists some q with ‖q− y‖߿ ≤ R, return a vector q̃ with
‖q̃− y‖߿ ≤ C · R in:

• Time: O
(
nࠀ/C).

• Space: O
(
nࠀ+ࠀ/C).

‖q− y‖߿ = “hamming distance” = number of elements that
differ between q and y.

ࠈࠅ



APPROXIMATE NEAREST NEIGHBOR SEARCH

Theorem (Indyk, Motwani, 1998)
Let q be the closest database vector to y. Return a vector q̃
with ‖q̃− y‖߿ ≤ C · ‖q− y‖߿ in:

• Time: Õ
(
nࠀ/C).

• Space: Õ
(
nࠀ+ࠀ/C).

߿ࠆ



OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other
similarity measures.

Cosine similarity cos (θ(x, y)) = 〈x,y〉
‖x‖ࠁ‖y‖ࠁ :

ࠀ− ≤ cos (θ(x, y)) ≤ .ࠀ

ࠀࠆ



COSINE SIMILARITY

Cosine similarity is natural “inverse” for Euclidean distance.

Euclidean distance ‖x− y‖ࠁࠁ:

• Suppose for simplicity that ‖x‖ࠁࠁ = ‖y‖ࠁࠁ = .ࠀ

ࠁࠆ



SIMHASH

Locality sensitive hash for cosine similarity:

• Let g ∈ Rd be randomly chosen with each entry N ,߿) .(ࠀ
• Let f : ,ࠀ−} {ࠀ → ,ࠀ} . . . ,m} be a uniformly random hash
function.

• h : Rd → ,ࠀ} . . . ,m} is definied h(x) = f (sign(〈g, x〉)).

If cos(θ(x, y)) = v, what is Pr[h(x) == h(y)]?

ࠂࠆ



SIMHASH ANALYSIS

Theorem: If cos(θ(x, y)) = v, then

Pr[h(x) == h(y)] = −ࠀ θ

π
+ O( ࠀ

m
) = −ࠀ cos−ࠀ(v)

π
+ O( ࠀ

m
)

Not a linear function in v, as we had for MinHash, but still
suffices for locality sensitive hashing.

ࠃࠆ



SIMHASH

SimHash can be tuned, just like our MinHash based LSH
function for Jaccard similarity:

• Let gࠀ, . . . , gr ∈ Rd be randomly chosen with each entry
N ,߿) .(ࠀ

• Let f : ,ࠀ−} r{ࠀ → ,ࠀ} . . . ,m} be a uniformly random hash
function.

• h : Rd → ,ࠀ} . . . ,m} is defined
h(x) = f ([sign(〈gࠀ, x〉), . . . , sign(〈gr, x〉)]).

Pr[h(x) == h(y)] =
(
−ࠀ θ

Π

)r

ࠄࠆ



SIMHASH ANALYSIS

To prove:

Pr[h(x) == h(y)] = −ࠀ θ
π , where h(x) = f (sign(〈g, x〉)).

Pr[h(x) == h(y)] = z+ −ࠀ v
m

≈ z.

where z = Pr[sign(〈g, x〉) == sign(〈g, y〉)] ࠅࠆ



SIMHASH ANALYSIS

Pr[h(x) == h(y)] ≈ probability x and y are on the same side of
hyperplane orthogonal to g.

ࠆࠆ


