
CS-GY 6763: Lecture 3
High Dimensional Geometry, the
Johnson-Lindenstrauss Lemma

NYU Tandon School of Engineering, Prof. Christopher Musco
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UNIFYING THEME OF THE COURSE

How do we deal with data (vectors) in high dimensions?

• Locality sensitive hashing for similarity search.
• Iterative methods for optimizing functions that depend on
many variables.

• SVD + low-rank approximation to find and visualize
low-dimensional structure.

• Convert large graphs to high dimensional vector data.
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HIGH DIMENSIONAL IS NOT LIKE LOW DIMENSIONAL

Often visualize data and algorithms in 1,2, or 3 dimensions.

First part of lecture: Prove that high-dimensional space looks
very different from low-dimensional space. These images are

rarely very informative!
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SKETCHING AND DIMENSIONALITY REDUCTION

Second part of lecture: Ignore our own advice.

Learn about sketching, aka dimensionality reduction
techniques that seek to approximate high-dimensional vectors
with much lower dimensional vectors.

• Johnson-Lindenstrauss lemma for ࠁ! space.
• MinHash for binary vectors.

First part of lecture should help you understand the potential
and limitations of these methods. ࠃ
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ORTHOGONAL VECTORS

Recall the inner product between two d dimensional vectors:

〈x, y〉 = xTy = yTx =
d∑

i=ࠀ

x[i]y[i]

〈x, y〉 = cos(θ) · ‖x‖ࠁ · ‖y‖ࠁ
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ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors
xࠀ, . . . , xt in d-dimensional space? I.e. with inner product

|xTi xj| = ߿ for all i, j.
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ORTHOGONAL VECTORS

What is the largest set nearly orthogonal unit vectors xࠀ, . . . , xt
in d-dimensional space. I.e., with inner product |xTi xj| ≤ ε for all

i, j.
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ORTHOGONAL VECTORS

What is the largest set nearly orthogonal unit vectors xࠀ, . . . , xt
in d-dimensional space. I.e., with inner product |xTi xj| ≤ ε for all

i, j.

.ࠀ d .ࠁ Θ(d) .ࠂ Θ(dࠁ) .ࠃ Θ(d)ࠁ

ࠇ

÷,
IX.Tx;1 = 0

T ,

O



ORTHOGONAL VECTORS

Claim: There is an exponential number (i.e., ∼ (dࠁ of nearly
orthogonal unit vectors in d dimensional space.

Proof strategy: Use the Probabilistic Method! For t = O(ࠁd),
define a random process which generates random vectors
xࠀ, . . . , xt that are unlikely to have large inner product.

.ࠀ Claim that, with non-zero probability, |xTi xj| ≤ ε for all i, j.
.ࠁ Conclude that there must exists some set of t unit vectors

with all pairwise inner-products bounded by ε.
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PROBABILISTIC METHOD

Claim: There is an exponential number (i.e., ∼ (dࠁ of nearly
orthogonal unit vectors in d dimensional space.

Proof: Let xࠀ, . . . , xt all have independent random entries, each
set to ± √ࠀ

d
with equal probability.

• ‖xi‖ࠁ =

• E[xTi xj] =

• Var[xTi xj] =

߿ࠀ
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PROBABILISTIC METHOD

Let Z = xTi xj =
∑d

i=ࠀ Ci where each Ci is + ࠀ
d or − ࠀ

d with equal
probability.

Z is a sum of many i.i.d. random variables, so looks
approximately Gaussian. Roughly, we expect that:

Pr[|Z− EZ| ≥ α · σ] ≤ O(e−αࠁ
)

Note that we can transform to binary random variable:

Z =
d∑

i=ࠀ

Ci =
ࠁ
d

d∑

i=ࠀ

d
ࠁ
· Ci

=
ࠁ
d
·
( d∑

i=ࠀ

Bi − ࠁ/ࠀ
)

=
ࠁ
d
·
(
−d
ࠁ
−

d∑

i=ࠀ

Bi

)

where each Bi is uniform in ,߿} .{ࠀ ࠀࠀ
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PROBABILISTIC METHOD

Z = xTi xj.

Z =
ࠁ
d
·
(
−d
ࠁ
+

d∑

i=ࠀ

Bi

)

where each Bi is uniform in ,߿} .{ࠀ

Pr[|Z| > ε] = Pr

[ d∑

i=ࠀ

B ≥ d
ࠁ
+

εd
ࠁ

]
+ Pr

[ d∑

i=ࠀ

B ≤ d
ࠁ
− εd

ࠁ

]

= Pr

[ d∑

i=ࠀ

B ≥ +ࠀ) ε)E[B]
]
+ Pr

[ d∑

i=ࠀ

B ≤ −ࠀ) ε)E[B]
]
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CHERNOFF BOUND

Theorem (Chernoff Bound)
Let Xࠀ, Xࠁ, . . . , Xd be independent ,߿} valued-{ࠀ random
variables and let S =

∑d
i=ࠀ Xi. We have for any ε < ࠀ :

Pr[|S− E[S]| ≥ εE[S]] ≤ eࠁ
−εࠁE[S]

ࠂ .

Pr[|B− E[B]| ≥ ] ≤
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PROBABILISTIC METHOD

Formally, using a Chernoff bound:

Pr[|Z− EZ| ≥ ε] ≤ ࠅ/dࠁe−εࠁ

For any i, j pair, Pr[|xTi xj| < ε] ≥ −ࠀ .ࠅ/dࠁe−εࠁ

By a union bound:

For all i, j pairs simultaneously, Pr[|xTi xj| < ε] ≥ −ࠀ
(
t
ࠁ

)
· .ࠅ/dࠁe−εࠁ
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ORTHOGONAL VECTORS

Final result: In d-dimensional space, there are (dࠁε)θࠁ unit
vectors with all pairwise inner products ≤ ε.

Corollary of proof: Random vectors tend to be far apart in
high-dimensions.
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CURSE OF DIMENSIONALITY

Curse of dimensionality: Suppose we want to use e.g.
k-nearest neighbors to learn a function or classify points in Rd.
If our data distribution is truly random, we typically need an
exponential amount of data.

The existence of lower dimensional structure is our data is
often the only reason we can hope to learn.
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CURSE OF DIMENSIONALITY

Low-dimensional structure.

For example, data lies on low-dimensional subspace, or does
so after transformation. Or function can be represented by a
restricted class of functions, like neural net with specific

structure.
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UNIT BALL IN HIGH DIMENSIONS

Let Bd be the unit ball in d dimensions:

Bd = {x ∈ Rd : ‖x‖ࠁ ≤ .{ࠀ

What percentage of volume of Bd falls with ε of its surface?

Volume of radius R ball is πd/ࠁ

(d/ࠁ)! · R
d.
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ISOPERIMETRIC INEQUALITY

All but an ࠀ
ࠁ
Θ(εd) fraction of a unit ball’s volume is within ε of

its surface.

Isoperimetric Inequality: the ball has the maximum surface
area/volume ratio of any shape.

• If we randomly sample points from any high-dimensional
shape, nearly all will fall near its surface.

• ‘All points are outliers.’ ࠈࠀ
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INTUITION

:Dࠀ surface cubes
total cubes =

:Dࠁ surface cubes
total cubes =

:Dࠂ surface cubes
total cubes =

߿ࠁ
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SLICES OF THE UNIT BALL

What percentage of the volume of Bd falls within ε of its
equator?

S = {x ∈ Bd : |xࠀ| ≤ ε}
ࠀࠁ
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SLICES OF THE UNIT BALL

What percentage of the volume of Bd falls within ε of its
equator? Answer: all but a ࠀ

ࠁ
Θ(εࠁd) fraction.

By symmetry, this is true for any equator:
St = {x ∈ Bd : xTt ≤ ε}. ࠁࠁ
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BIZARRE SHAPE OF UNIT BALL

.ࠀ −ࠀ) ࠀ
ࠁ
Θ(εd)

) fraction of volume lies ε close to surface.
.ࠁ −ࠀ) ࠀ

ࠁ
Θ(εࠁd)

) fraction of volume lies ε close to any equator.

High-dimensional ball looks nothing like 2D ball! ࠂࠁ
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CONCENTRATION AT EQUATOR

Claim: All but a ࠀ
ࠁ
Θ(εࠁd) fraction of the volume of the ball falls

within ε of its equator.

Equivalent: If we draw a point x randomly from the unit ball,
|xࠀ| ≤ ε with probability ≥ −ࠀ ࠀ

ࠁ
Θ(εࠁd).
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CONCENTRATION AT EQUATOR

Let w = x
‖x‖ࠁ . Because ‖x‖ࠁ ≤ ,ࠀ

Pr [|xࠀ| ≤ ε] ≥ Pr [|wࠀ| ≤ ε] .

Claim: |wࠀ| ≤ ε with probability ≥ −ࠀ ࠀ
ࠁ
Θ(εࠁd), which then proves

our statement from the previous slide.

How can we generate w, which is a random vector taken from
the unit sphere (the surface of the ball)?
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IMPORTANT FACT IN HIGH DIMENSIONAL GEOMETRY

Rotational Invariance of Gaussian distribution: Let g be a
random Gaussian vector, with each entry drawn from N ,߿) .(ࠀ
Then w = g/‖g‖ࠁ is distributed uniformly on the unit sphere.
Proof:
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CONCENTRATION AT EQUATOR

Let g be a random Gaussian vector and w = g/‖g‖ࠁ.

• E[‖g‖ࠁࠁ] =

• Var[‖g‖ࠁࠁ] =

• Pr
[
‖g‖ࠁࠁ ≤ ࠀ

‖E[‖gࠁ
ࠁ
[ࠁ
]
≤ ࠀ

ࠁ
θ(d)
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CONCENTRATION AT EQUATOR

For −ࠀ ࠀ
ࠁ
θ(d) fraction of vectors g, ‖g‖ࠁ ≥

√
d/ࠁ. Condition on

the event that we get a random vector in this set.

Given this event:

Pr [|wࠀ| ≤ ε] = Pr
[
|wࠀ| ·

√
d/ࠁ ≤ ε ·

√
d/ࠁ
]

≥ Pr
[
|gࠀ| ≤ ε ·

√
d/ࠁ
]

≥ −ࠀ ࠀ
ࠁ

θ
(
(ε·
√

d/ࠁ(ࠁ
)

By union bound, overall we have:

Pr [|wࠀ| ≤ ε] ≥ −ࠀ ࠀ
ࠁ

θ
(
(ε·
√

d/ࠁ(ࠁ
)

− ࠀ
ࠁ

θ(d)

Recall: w = g
‖g‖ࠁ . So after conditioning, we have wi ≤ gi√

d/ࠁ
. ࠇࠁ

#

- E . f m .
- -i.÷÷:÷i"



BIZARRE SHAPE OF UNIT BALL

.ࠀ −ࠀ) ࠀ
ࠁ
Θ(εd)

) fraction of volume lies ε close to surface.
.ࠁ −ࠀ) ࠀ

ࠁ
Θ(εࠁd)

) fraction of volume lies ε close to any equator.

High-dimensional ball looks nothing like 2D ball! ࠈࠁ
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HIGH DIMENSIONAL CUBE

Let Cd be the d-dimensional cube:

Cd = {x ∈ Rd : |x(i)| ≤ ࠀ ∀i}.

In two dimensions, the cube is pretty similar to the ball.

But volume of Cd is dࠁ while volume of unit ball is
√
πd

(d/ࠁ)! .

This is a huge gap! Cube has O(d)O(d) more volume. ߿ࠂ
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HIGH DIMENSIONAL CUBE

Some other ways to see these shapes are very different:

• maxx∈Bd ‖x‖ࠁࠁ =
• maxx∈Cd ‖x‖ࠁࠁ =

ࠀࠂ
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HIGH DIMENSIONAL CUBE

Some other ways to see these shapes are very different:

• Ex∼Bd‖x‖ࠁࠁ
• Ex∼Cd‖x‖ࠁࠁ =

ࠁࠂ
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HIGH DIMENSIONAL CUBE

Almost all of the volume of the unit cube falls in its corners,
and these corners lie far outside the unit ball.
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RECENT ARTICLE

See The Journey to Define Dimension from Quanta Magazine
for another fun example comparing cubes to balls!

ࠃࠂ
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DIMENSIONALITY REDUCTION

Despite all this warning that low-dimensional space looks
nothing like high-dimensional space, next we are going to
learn about how to compress high dimensional vectors to low
dimensions.

We will be very careful not to compress things too far. An
extremely simple method known as Johnson-Lindenstrauss
Random Projection pushes right up to the edge of how much
compression is possible.
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