
CS-GY :ࠂ676 Lecture ࠁ
Chebyshev’s Inequality, Union Bound,
Exponential Tail Bounds

NYU Tandon School of Engineering, Prof. Christopher Musco

ࠀ

NOTE ON MATHEMATICAL PROOFS

It can be hard to know how formal to be. We will try to provide
feedback on first problem set for anyone who is either too rigorous
or too loose. It’s a learning process.

Things that are generally fine:

• Can assume input size n is > C for some constant c. E.g.
n > n,ࠁ > .߿ࠀ

• Similarly can assume ε < c for constant c. E.g. ε < ,ࠀ. ε < .ࠀ߿.

• If I write O(z), you are free to choose the constant. E.g., it’s fine
if your analysis of CountSketch only works for tables of size
߿߿߿ࠀ ·m.

• Derivatives, integrals, etc. can be taken from e.g. WolframAlpha
without working through steps.

• Basic inequalities can be used without proof, as long as you
verify numerically. Don’t need to include plot on problem set. ࠁ

EXAMPLE INEQUALITY

+ࠀ ε ≤ ࠀ
−ࠀ ε

≤ +ࠀ εࠁ for ε ∈ ,߿] .[ࠄ.

Proof by plotting:

ࠂ

(Oj(Its) t r
4 ¥ 2 1 t e

-
-

- Feet-a

E

EXAMPLE INEQUALITY

−ࠀ ε ≤ ࠀ
+ࠀ ε

≤ −ࠀ εࠄ. for ε ∈ ,߿] .[ࠀ

Proof by plotting:

ࠃ

(I

GENERAL ADVICE

Tip: When confronted with a complex expression, try to simplify by
using big-Oh notation, or just rounding things off. Then clean-up
your proof after you get to a solution.

Examples:

• (m− (ࠀ ≈ m

• ࠀ
n −

ࠀ
nࠁ ≈ ࠀ

n

• log(n/ࠁ) ≈ log(n)

ࠄ

NOTE ON RANDOM HASH FUNCTIONS

Let h be a random function from |U|→ ,ࠀ} . . . ,m}. This means
that h is constructed by an algorithm using a seed of random
numbers, but then the function is fixed. Given input x ∈ U , it
always returns the same output, h(x).

Definition: Uniformly Random Hash Function. A random
function h : U → ,ࠀ} . . . ,m} is called uniformly random if:

• Pr[h(x) = i] = ࠀ
m for all x ∈ U , i ∈ ,ࠀ} . . . ,m}.

• h(x),h(y),h(z), . . . are mutually independent random
variables for all x, y, z, . . . ∈ U .

• Which implies that Pr[h(x) = h(y)] =

U = universe of possible keys, m = number of values hashed to. ࠅ

÷⇐
- -

Yun

NOTE ON RANDOM HASH FUNCTIONS

Why are uniformly random hash functions impractical to
implement?

ࠆ

l o l" " §"
÷

UH I 7-
TE

i ,

i go

NOTE ON RANDOM HASH FUNCTIONS

For the application to CountMin from last class we can weaken
our assumption that h is uniformly random.

Definition (Universal hash function)
A random hash function h : U → ,ࠀ} . . . ,m} is universal if, for
any fixed x, y ∈ U ,

Pr[h(x) = h(y)] ≤ ࠀ
m
.

Claim: A uniformly random hash-function is universal.

Efficient alternative: Let p be a prime number between |U| and
.|U|ࠁ Let a,b be random numbers in ,߿ . . . ,p, a &= .߿

h(x) = [a · x+ b (mod p)] (mod m)

is universal. Lecture notes with proof posted on website. ࠇ

←

tool o l.....÷#±.

NOTE ON RANDOM HASH FUNCTIONS

Another definition you might come across:

Definition (Pairwise independent hash function)
A random hash function h : U → ,ࠀ} . . . ,m} is pairwise
independent if, for any fixed x, y ∈ U , i, j ∈ ࠀ} . . . ,m},

Pr[h(x) = i ∩ h(y) = j] = ࠀ
mࠁ .

Can we naturally extended to k-wise independence for k > ,ࠁ
which is strictly stronger, and needed for some applications.

ࠈ

= . -
- 0

"

P r fh(x,): i , n hex.): i , n . . . h (xx) :in],¥ .
fo r a l l X ., . . . X uE U , i,...-inEl,...,m.

LECTURE ROAD MAP

Last week we saw the power of Linearity of Expectation +
Markov’s. This week we will discuss four more tools:

• Linearity of Variance + Chebyshev’s Inequality
• Union Bound + Exponential Tail Bounds

These six simple tools combined are surprising powerful and
flexible. They form the cornerstone of randomized algorithm

design.
߿ࠀ

CHEBYSHEV’S INEQUALITY

A new concentration inequality:

Lemma (Chebyshev’s Inequality)
Let X be a random variable with expectation E[X] and variance
σࠁ = Var[X]. Then for any k > ,߿

Pr[|X− E[X]| ≥ k · σ] ≤ ࠀ
kࠁ

σ =
√

Var[X] is the standard deviation of X. Intuitively this bound
makes sense: it is tighter when σ is smaller. ࠀࠀ

I
6 = € 3

oddI am

COMPARISON TO MARKOV’S INEQUALITY

Properties of Chebyshev’s inequality:

• Good: No requirement of non-negativity. X can be anything.

• Good: Two-sided. Bounds the probability that |X− EX| is large,
which means that X isn’t too far above or below its expectation.
Markov’s only bounded probability that X exceeds E[X].

• Bad/Good: Requires a bound on the variance of of X.

No hard rule for which to apply! Both Markov’s and Chebyshev’s are
useful in different settings.

ࠁࠀ

PROOF OF CHEBYSHEV’S INEQUALITY

Idea: Apply Markov’s inequality to the (non-negative) random
variable S = (X− E[X])ࠁ.

Lemma (Chebyshev’s Inequality)
Let X be a random variable with expectation E[X] and variance
σࠁ = Var[X]. Then for any k > ,߿

Pr[|X− E[X]| ≥ k · σ] ≤ ࠀ
kࠁ

Markov’s inequality: for non-negative r.v. S, Pr[S ≥ t] ≤ E[S]/t. ࠂࠀ

-

P rI lI Ee nlI y a e

EKxg.ie#j
"""

= i : # . = ¥ .

- - - -

QUICK EXAMPLE

If I flip a fair coin ߿߿ࠀ times, show that with %ࠂࠈ chance I get
between ߿ࠂ and ߿ࠆ heads?

Let Cࠀ, . . . , C߿߿ࠀ be independent random variables that are ࠀ
with probability ,ࠁ/ࠀ ߿ otherwise.

Let H =
߿߿ࠀ∑

i=ࠀ Ci be the number of heads that get flipped.

E[H] =

Var[H] =

ࠃࠀ

- -

- -

I ECE?c i].. EE?Eco]..&?"2=507

Ver ie?Li] = IE?VanCei 3 = ÷÷#est

I E[(G-E(c)))
-- s -

= . 2 5

LINEARITY OF VARIANCE

Fact: For pairwise independent random variables Xࠀ, . . . , Xm,

Var[Xࠀ + Xࠁ + . . .+ Xm] = Var[Xࠀ] + Var[Xࠁ] + . . .+ Var[Xm].

I.e., we require that for any i, j Xi and Xj are independent.

This is strictly weaker than mutual independence, which
requires that for all possible values vࠀ, . . . , vk,

Pr[Xࠀ = vࠀ, . . . , Xk = vk] = Pr[Xࠀ = vࠀ] · . . . · Pr[Xk = vk].

ࠄࠀ

QUICK EXAMPLE

If I flip a fair coin ߿߿ࠀ times, show that with %ࠂࠈ chance I get
between ߿ࠂ and ߿ࠆ heads?

Let Cࠀ, . . . , C߿߿ࠀ be independent random variables that are ࠀ
with probability ,ࠁ/ࠀ ߿ otherwise.

Let H =
߿߿ࠀ∑

i=ࠀ Ci be the number of heads that get flipped.

Var[H] = .ࠄࠁ

Chebyshev’s:

ࠅࠀ

4 0 - 3 0 = 2 0 7 0 - 5 0 = 2 0

- -

-

P rAt-5012k¥E ¥
h - - 4 P rf t 22-0) E ¥ , = , } = 6...-%

OUT OF CLASS EXERCISE

Recall the set up from last lecture:

Draw items xࠀ, . . . , xm uniformly at random from a set of size n
and count the number of collisions:

D =
∑

i,j∈{ࠀ,...,m}
i<j

[xi == xj].

We showed that E[D] =
(m
ࠁ
) ࠀ
n .

Exercise: Show that Var[D] ≤
(m
ࠁ
) ࠀ
n and use to prove the claim

on Slide ࠁࠂ from Lecture .ࠀ

ࠆࠀ

STREAMING ALGORITHMS

Abstract architecture of a streaming algorithm:

Have massive dataset X = xࠀ, . . . , xn with n pieces of data that
arrive in a sequential stream. There is far too much data to
store or process it in a single location.

• Still want to analyze the data: i.e. fit a model or
(approximately) compute some function f(X).

• To do so, we must compress data “on-the-fly”, storing
some smaller data structure which still contains
interesting information.

• Often can only take a single-pass over the data.

Count-Min was our first example of a streaming algorithm for
the (ε, k)-frequent items problem.

ࠇࠀ

-

STREAMING ALGORITHMS IN PRACTICE

Sensor data: GPS or seismometer readings to detect geological
anomalies, telescope images, satellite imagery, highway travel
time sensors.

Web traffic and data: User data for website, including e.g. click
data, web searches and API queries, posts and image uploads
on social media.

Training machine learning models: Often done in a streaming
setting when training dataset is huge, often with multiple
passes.

Lots of software frameworks exist for easy development of
streaming algorithms. ࠈࠀ

DISTINCT ELEMENTS PROBLEM

Input: xࠀ, . . . , xn ∈ U where U is a huge universe of items.

Output: Number of distinct inputs.

Example: f(ࠀ, ,߿ࠀ ,ࠁ ,ࠃ ,ࠈ ,ࠁ ,߿ࠀ →(ࠃ ࠄ

Applications:

• Distinct users hitting a webpage.
• Distinct values in a database column (e.g. for estimating
the size of group by queries)

• Number of distinct queries to a search engine.
• Distinct motifs in DNA sequence.

Implementations widely used at Google (Sawzall, Dremel,
PowerDrill), Yahoo, Twitter, Facebook Presto, etc.

߿ࠁ

-

= - - - - - O

DISTINCT ELEMENTS PROBLEM

Input: dࠀ, . . . ,dn ∈ U where U is a huge universe of items.

Output: Number of distinct inputs.

Example: f(ࠀ, ,߿ࠀ ,ࠁ ,ࠃ ,ࠈ ,ࠁ ,߿ࠀ →(ࠃ ࠄ

Flajolet–Martin (simplified):

• Choose random hash function h : U → ,߿] .[ࠀ
• S = ࠀ
• For i = ,ࠀ . . . ,n

• S← min(S,h(xi))
• Return: ࠀ

S − ࠀ

ࠀࠁ

x x

w(x) a . . 111r . .

- -

i f

-

L I -
h a) : . >

HOLD UP...

The hash function h maps from U to a random point in ,߿] ?[ࠀ

Hashing to real numbers:

• Impossible to implement h(x) in reality, but you can
replace it with g(x)

k , where g is a hash function that maps
to ,߿} ,ࠀ . . . , k} for sufficiently large k.

• All results hold if this “discrete” hash is used instead, but
the analysis is simpler if we assume access to h.

• Just like when we assumed uniform random hash
functions, this is a useful abstraction which makes
understanding and analyzing the underlying algorithms
easier.

ࠁࠁ

{I, a m }

VISUALIZATION

Flajolet–Martin (simplified):

• Choose random hash function h : U → ,߿] .[ࠀ
• S = ࠀ
• For i = ,ࠀ . . . ,n

• S← min(S,h(xi))
• Return: D̃ = ࠀ

S − ࠀ

ࠂࠁ

I

÷Xt÷÷."'

FM ANALYSIS

Let D equal the number of distinct elements in our stream.

Intuition: When D is larger, S will be smaller. Makes sense to
return the estimate D̃ = ࠀ

S − .ࠀ
ࠃࠁ

:

FM ANALYSIS

What is ES?

Let D equal the number of distinct elements in our stream.

Lemma
ES = ࠀ

D+ࠀ .

ࠄࠁ

i f I
1 -A

*
÷ .

' ± "

±

THE CALCULUS PROOF

Proof:

E[S] =
∫ ࠀ

߿
Pr[S ≥ λ]dλ Exercise: Why?

=

∫ ࠀ

߿
−ࠀ) λ)Ddλ

=
−ࠀ)− λ)D+ࠀ

D+ ࠀ

∣∣∣
ࠀ

λ=߿

=
ࠀ

D+ ࠀ

ࠅࠁ

EG] i fo'①C Hadded

- I "
o

PROOF “FROM THE BOOK”

E[S] = Pr[(D+ st(ࠀ item has the smallest hash value].

Pr[A] = Ehࠀ,...,hD [Pr [A | hࠀ, . . . ,hD]]

ࠆࠁ

A

•
i n , h , i l l h ,

=-052
h i , thx.....ha)

t.at..........

PROOF “FROM THE BOOK”

E[S] = Pr[(D+ st(ࠀ item has the smallest hash value].

By symmetry, this equals ࠀ
D+ࠀ (since every ball is equally likely

to be first).

ࠇࠁ

=

O c t) o h ,

g

"¥"

0

I s - E s l
Hts):¥ ,

FM ANALYSIS

ES = ࠀ
D+ࠀ . Estimate: D̃ = ࠀ

S − .ࠀ We have for ε < ࠀ
ࠁ :

If −ࠀ) ε)S ≤ ES ≤ +ࠀ) ε)S, then:

−ࠀ) ε)Dࠃ ≤ D̃ ≤ +ࠀ) .ε)Dࠃ

So, it suffices to show that S concentrates around its mean. I.e.
that |S− ES| ≤ ε · ES. We will use Chebyshev’s inequality as
our concentration bound. ࠈࠁ

① i'Es-I gfii.gg#s.Qtta=t-a-
ta=lta- O

"±E÷÷÷÷÷÷÷i÷÷÷÷⇒
⇐⇒"

"'" '"'

d÷¥¥÷Ii¥¥÷¥¥÷⇒""" ' " "¥5''

CALCULUS PROOF

Lemma
Var[S] = E[Sࠁ]− E[S]ࠁ = ࠁ

(D+ࠀ)(D+ࠁ) −
ࠀ

(D+ࠀ)ࠁ ≤
ࠀ

(D+ࠀ)ࠁ .

Proof:

E[Sࠁ] =
∫ ࠀ

߿
Pr[Sࠁ ≥ λ]dλ

=

∫ ࠀ

߿
Pr[S ≥

√
λ]dλ

=

∫ ࠀ

߿
−ࠀ)

√
λ)Ddλ

=
ࠁ

(D+ +D)(ࠀ (ࠁ

www.wolframalpha.com/input/?i=integral+from+0+to+1+
of+%281-sqrt%28x%29%29%5ED

߿ࠂ

N Z

→ ÷=÷*."""
-

www.wolframalpha.com/input/?i=integral+from+0+to+1+of+%281-sqrt%28x%29%29%5ED
www.wolframalpha.com/input/?i=integral+from+0+to+1+of+%281-sqrt%28x%29%29%5ED

PROOF “FROM THE BOOK”

E[Sࠁ] =??.

ࠀࠂ

FM ANALYSIS

• E[S] = ࠀ
D+ࠀ = µ.

• Var[S] ≤ µࠁ. Standard deviation: σ ≤ µ.
• Want to bound Pr[|S− µ| ≤ εµ] ≤ δ.

Chebyshev’s: Pr[|S− µ| ≤ εµ] = Pr[|S− µ| ≤ εσ] ≤ ࠀ
εࠁ
.

Vacuous bound. Our variance is way too high!

ࠁࠂ

(I-E)L I K E S E (l t e)#(53

= -

⇒ ls-EIIc.EE#
8 = . I

÷:#±.
G c u

VARIANCE REDUCTION

Trick of the trade: Repeat many independent trials and take
the mean to get a better estimator.

Given i.i.d. (independent, identically distributed) random
variables Xࠀ, . . . , Xk with mean µ and variance σࠁ, what is:

• E
[
ࠀ
k
∑k

i=ࠀ Xi
]
=

• Var
[
ࠀ
k
∑k

i=ࠀ Xi
]
=

ࠂࠂ

=
- -

ut,;§" I I Ix;) = tu-K-u= D

µ
tuzvarls.I.li) = I . 6 2

÷ . .

FM ANALYSIS

Using independent hash functions, maintain k independent
sketches Sࠀ, . . . , Sk.

Flajolet–Martin:

• Choose k random hash function hࠀ, . . . ,hk : U → ,߿] .[ࠀ
• Sࠀ = ,ࠀ . . . , Sk = ࠀ
• For i = ,ࠀ . . . ,n

• Sj ← min(Sj,hj(xi)) for all j ∈ ,ࠀ . . . , k.
• S = (Sࠀ + . . .+ Sk)/k
• Return: ࠀ

S − ࠀ ࠃࠂ

¥63= pt,

f - o
- -

- -
=

FM ANALYSIS

ࠀ estimator:

• E[S] = ࠀ
D+ࠀ = µ.

• Var[S] = µࠁ

k estimators:

• E[S] = ࠀ
D+ࠀ = µ.

• Var[S] = µࠁ/k
• By Chebyshev, Pr[|S− ES| ≥ cµ/

√
k] ≤ ࠀ

cࠁ .

Setting c = /ࠀ
√
δ and k = O

(ࠀ
εࠁδ

)
gives:

Pr[|S− µ| ≥ εµ] ≤ δ.

Total space complexity: O
(ࠀ
εࠁδ

)
to estimate distinct elements

up to error ε with success probability −ࠀ δ.

ࠄࠂ

-

¥ , teter ¥ = C G

Y
0 0 ¥={=

Yrs

;

- 0 prlls.ES#ru3'

Em-en

- k i t

NOTE ON FAILURE PROBABILITY

O
(ࠀ
εࠁδ

)
space is an impressive bound:

• Achieves any accuracy desired. ࠁε/ࠀ dependence cannot
be improved.

• No dependence on number of distinct elements D. Naive
algorithm takes O(D) space.

• But... δ/ࠀ dependence is not ideal. For %ࠄࠈ success rate,
pay a ࠀ

%ࠄ = ߿ࠁ factor overhead in space.

We can get a better bound depending on O(log(ࠀ/δ)) using
exponential tail bounds.

ࠅࠂ

- 0 5
, 0 1 1 0 0 0 0

-

g
l o ,(D)

o
-

O o -

O

DISTINCT ELEMENTS IN PRACTICE

In practice, we cannot hash to real numbers on ,߿] .[ࠀ Instead,
map to bit vectors.

Real Flajolet-Martin / HyperLogLog:

• Estimate # distinct elements
based on maximum number of
trailing zeros m.

• The more distinct hashes we see,
the higher we expect this
maximum to be.

ࠆࠂ

• togas sundae?

§
loyal)= log

(d)

10¥ dog, = D
"" '"

LOGLOG SPACE

Total Space: O
(
log log D

εࠁ
+ logD

)
for an ε approximate count.

“Using an auxiliary memory smaller than the size of this abstract, the
LogLog algorithm makes it possible to estimate in a single pass and
within a few percents the number of different words in the whole of
Shakespeare’s works.” – Flajolet, Durand.

Using HyperLogLog to count ࠀ billion distinct items with %ࠁ accuracy:

space used = O
(
log logD

εࠁ
+ logD

)

=
ࠃ߿.ࠀ · +logࠁ logࠁ D,

εࠁ
+ +logࠁ D, bits

=
ࠃ߿.ࠀ · ࠄ
ࠁࠁ߿.

+ ߿ࠂ = ߿ࠂ߿ࠂࠀ bits ≈ ࠅ.ࠀ kB!

ࠇࠂ

p
E's

l o l = D

- -

i -

g ,
gloo
m - -

DISTRIBUTED DISTINCT ELEMENTS

Distinct elements summaries are “mergeable”. No need to
share lists of distinct elements if those elements are stored on
different machines. Just share minimum hash value.

ࠈࠂ

£9 .

HYPERLOGLOG IN PRACTICE

Implementations: Google PowerDrill, Facebook Presto, Twitter
Algebird, Amazon Redshift.

Use Case: Exploratory SQL-like queries on tables with s’߿߿ࠀ of
billions of rows.

• Count number of distinct users in Germany that made at least
one search containing the word ‘auto’ in the last month.

• Count number of distinct subject lines in emails sent by users
that have registered in the last week, in comparison to number
of emails sent overall (to estimate rates of spam accounts).

Answering a query requires a (distributed) linear scan over the
database: ࠁ seconds in Google’s distributed implementation.

Google Paper: “Processing a Trillion Cells per Mouse Click”

߿ࠃ

=

BREAK

߿ࠃ

LOAD BALANCING

Load balancing problem:

Suppose Google answers map search queries using servers
Aࠀ, . . . , Aq. Given a query like “new york to rhode island”,
common practice is to choose a random hash function
h→ ࠀ} . . . ,q} and to route this query to server:

Ah(“new york to rhode island’)

Why use a hash function instead of just distributing requests
randomly?

Goal: Ensure that requests are distributed evenly, so no one
server gets loaded with too many requests. We want to avoid
downtime and slow responses to clients.

ࠀࠃ

-

- a

LOAD BALANCING

Suppose we have n servers and m requests, xࠀ, . . . , xm. Let si
be the number of requests sent to server i ∈ ,ࠀ} . . . ,n} :

si =
m∑

j=ࠀ

[h(xj) = i].

Formally, our goal is to understand the value of maximum load
on any server, which can be written as the random variable:

S = max
i∈{ࠀ,...,n}

si.

ࠁࠃ

- - .

EGii.EE#hcx;i=i
&"

= -

LOAD BALANCING

A good first step in any analysis of random variables is to first
think about expectations. If we have n servers and m requests,
for any i ∈ ,ࠀ} . . . ,n}:

E[si] =
m∑

j=ࠀ

E
[

[h(xj) = i]
]
=

m
n
.

But it’s very unclear what the expectation of S = maxi∈{ࠀ,...,n} si
is... in particular, E[S] &= maxi∈{ࠀ,...,n} E[si].

Exercise: Convince yourself that for two random variables A
and B, E[max(A,B)] &= max(E[A],E[B]) even if those random
variable are independent.

ࠂࠃ

1,00000

O1000

-

- - I

SIMPLIFYING ASSUMPTIONS

Number of servers: To reduce notation and keep the math
simple, let’s assume that m = n. I.e., we have exactly the same
number of servers and requests.

Hash function: Continue to assume a fully (uniformly) random
hash function h.

Often called the “balls-into-bins” model.

E[si] = expected number of balls per bin = m
n = .ࠀ We would

like to prove a bound of the form:

Pr[max
i

si ≥ C] ≤ ࠀ
߿ࠀ

.

for as tight a value of C. I.e., something much better than C = n. ࠃࠃ

- -

←
- ,

⇐ h

c = f
c = l o s e ,

BOUNDING A UNION OF EVENTS

Goal: Prove that for some C,

Pr[max
i

si ≥ C] ≤ ࠀ
߿ࠀ

.

∪ means “or”. ∩ means “and”.

Equivalent statement: Prove that for some C,

Pr[(sࠀ ≥ C) ∪ (sࠁ ≥ C) ∪ . . . ∪ (sn ≥ C)] ≤ ࠀ
߿ࠀ

.

Need to bound the probability of a union of different events.

These events are not independent!!

n = number of balls and number of bins. si is number of balls in
bin i. C = upper bound on maximum number of balls in any bin.

ࠄࠃ

%
-

Hoo

- O - O - 99%

USE A UNION BOUND

Lemma (Union Bound)
For any random events Aࠀ, . . . , Ak:

Pr[Aࠀ ∪ Aࠁ ∪ . . . ∪ Ak] ≤ Pr[Aࠀ] + Pr[Aࠁ] + . . .+ Pr[Ak].

ࠅࠃ

-

APPLICATION OF UNION BOUND

We want to prove that:

Pr[max
i

si ≥ C] = Pr[(sࠀ ≥ C) ∪ (sࠁ ≥ C) ∪ . . . ∪ (sn ≥ C)] ≤ ࠀ
߿ࠀ

.

To do so, it suffices to prove that for all i:

Pr[si ≥ C] ≤ ࠀ
n߿ࠀ

.

Why? Because then by the union bound,

Pr[max
i

si ≥ C] ≤
n∑

i=ࠀ

Pr[si ≥ C] (Union bound)

≤
n∑

i=ࠀ

ࠀ
n߿ࠀ

=
ࠀ
߿ࠀ

.

n = number of balls and number of bins. si is number of balls in
bin i.

ࠆࠃ

÷E PCs,I c)+
Pleats,

2 c) E fof fo-t..-to,
= to

NEW GOAL

Prove that for some C,

Pr[si ≥ C] ≤ ࠀ
n߿ࠀ

.

This should look hard! We need to prove that si < C (i.e. the ith

bin has a small number of balls) with very high probability
(specifically −ࠀ ࠀ

.(n߿ࠀ

Markov’s inequality is too weak of a bound for this.

n = number of balls and number of bins. si is number of balls in
bin i. C = upper bound on maximum number of balls in any bin.

ࠇࠃ

o _ 0

APPLICATION TO BALLS INTO BINS

Goal: Prove that Pr[si ≥ C] ≤ ࠀ
n߿ࠀ .

• Step .ࠀ To apply Chebyshev’s inequality, we need to
understand σࠁ = Var[si].

Use linearity of variance. Let si,j be a ,߿} {ࠀ indicator random
variable for the event that ball j falls in bin i. We have:

si =
n∑

j=ࠀ

si,j.

And si,ࠀ, . . . , si,n are independent so:

Var[si] =
n∑

j=ࠀ

Var[si,j].

n = number of balls and number of bins. si is number of balls in
bin i. E[si] = .ࠀ C = upper bound on max number of balls in bin. ࠈࠃ

=

- -

D -→
#G-t h ball i n i t sb i ,]

-
a

VARIANCE ANALYSIS

si,j =

ࠀ with probability ࠀ

n

߿ otherwise.

E[si,j] =
E[sࠁi,j] =

So:

Var[si,j] = E[sࠁi,j]− E[si,j]ࠁ =

n = number of balls and number of bins. si,j is event ball j lands in
bin i.

߿ࠄ

-

f 1 -' a t O-Ll-÷) = th
- th

- th-th-th t £ In

APPLYING CHEBYSHEV’S

Goal: Prove that Pr[si ≥ C] ≤ ࠀ
n߿ࠀ .

Step .ࠀ To apply Chebyshev’s inequality, we need to
understand σࠁ = Var[si].

Var[si] =
n∑

j=ࠀ

Var[si,j] =
n∑

j=ࠀ

ࠀ
n
− ࠀ

nࠁ = −ࠀ ࠀ
n
≤ .ࠀ

Step .ࠁ Apply Chebyshev’s inequality:

Pr [|si − E[si]| ≥ k · [ࠀ ≤ ࠀ
kࠁ

which implies Pr [|si − |ࠀ ≥ k · [ࠀ ≤ ࠀ
kࠁ

.

n = number of balls and number of bins. si = number of balls in
bin i. si,j is event ball j lands in bin i. E[si] = .ࠀ

ࠀࠄ

¥ " fon
K i f f

oo s:|........
- -

P r t s i z r i o r] Eldon

APPLYING CHEBYSHEV’S

Goal: Prove that Pr[si ≥ C] ≤ ࠀ
n߿ࠀ .

We just proved: Pr[|si − |ࠀ ≥ k] ≤ ࠀ
kࠁ .

Setting k =
√
n߿ࠀ gives:

Pr[|si − |ࠀ ≥
√
[n߿ࠀ ≤ ࠀ

n߿ࠀ
.

So, we have that:

Pr[si ≥
√
+n߿ࠀ [ࠀ ≤ ࠀ

n߿ࠀ
.

By the union bound argument from earlier, it thus holds that:

Pr[max
i∈{ࠀ,...,n}

si ≥
√
+n߿ࠀ [ࠀ ≤ ࠀ

߿ࠀ
.

n = number of balls and number of bins. si is number of balls in
bin i. C = upper bound on maximum number of balls in any bin. ࠁࠄ

FINAL RESULT

When hashing n balls into n bins, the maximum bin contains
o(
√
n) balls with probability ࠈ

߿ࠀ .

Much better than the trivial bound of n!

ࠂࠄ

. E Ei i .
÷ .

PROOF A UNION BOUND

Lemma (Union Bound)
For any random events Aࠀ, . . . , Ak:

Pr[Aࠀ ∪ Aࠁ ∪ . . . ∪ Ak] ≤ Pr[Aࠀ] + Pr[Aࠁ] + . . .+ Pr[Ak].

Let Xi = [Ai] and apply Markov’s to S =
∑k

i=ࠀ Xi.

ࠃࠄ

- .

⇒ -

=

E l s s = §g¥¥
¥

= §,Prati3iii.÷:÷i÷÷÷
..... →

Markov's inequality.

D

TAKEAWAYS

Techniques used that will appear again:

• Union bound to control the maximum of many random
variables.

• Chebyshev’s inequality to bound a variable whose
variance we can compute.

• To compute the variance, break down random variable
into smaller pieces and apply linearity of variance.

But... For this problem we can actually use even stronger tools
to prove a better bound of O(log n) for the most loaded bin.

ࠄࠄ

0 (ru)

-

BEYOND CHEBYSHEV

Motivating question: Is Chebyshev’s Inequality tight?

ࠈࠈ-ࠄࠈ-ࠇࠅ rule for Gaussian bell-curve. X ∼ N(߿,σࠁ)

Chebyshev’s Inequality:

Pr (|X− E[X]| ≥ (σࠀ ≤ %߿߿ࠀ
Pr (|X− E[X]| ≥ (σࠁ ≤ %ࠄࠁ
Pr (|X− E[X]| ≥ (σࠂ ≤ %ࠀࠀ
Pr (|X− E[X]| ≥ (σࠃ ≤ .%ࠅ

Truth:

Pr (|X− E[X]| ≥ (σࠀ ≈ %ࠁࠂ
Pr (|X− E[X]| ≥ (σࠁ ≈ %ࠄ
Pr (|X− E[X]| ≥ (σࠂ ≈ %ࠀ
Pr (|X− E[X]| ≥ (σࠃ ≈ %ࠀ߿. ࠅࠄ

GL:Vcrfix]

Prllx.tt#k67f
@egurlig

- - - - -

- -

- -

=

¥
-

GAUSSIAN CONCENTRATION

For X ∼ N (µ,σࠁ):

Pr[X = µ± x] = ࠀ
σ
√
πࠁ

e−xࠁ/ࠁσࠁ

Lemma (Guassian Tail Bound)
For X ∼ N (µ,σࠁ):

Pr[|X− EX| ≥ k · σ] ≤ .ࠁ/ࠁe−kࠁ

Standard y-scale. Logarithmic y-scale.
ࠆࠄ

O ' a
a u

- - - - s o

8

GAUSSIAN CONCENTRATION

Takeaway: Gaussian random variables concentrate much
tighter around their expectation than variance alone predicts.

Why does this matter for algorithm design?

ࠇࠄ

CENTRAL LIMIT THEOREM

Theorem (CLT – Informal)
Any sum of mutually independent, (identically distributed)
r.v.’s Xࠀ, . . . , Xk with mean µ and finite variance σࠁ converges to
a Gaussian r.v. with mean k · µ and variance k · σࠁ, as k→∞.

S =
n∑

i=ࠀ

Xi =⇒ N (k · µ, k · σࠁ).

ࠈࠄ

O
"

t
"'" ' '

UI,random co-⇐" " ' "
m o n

tuetaence

gaussian

O O O O

INDEPENDENCE

Recall:

Definition (Mutual Independence)
Random variables Xࠀ, . . . , Xk are mutually independent if, for
all possible values vࠀ, . . . , vk,

Pr[Xࠀ = vࠀ, . . . , Xk = vk] = Pr[Xࠀ = vࠀ] · . . . · Pr[Xk = vk]

Strictly stronger than pairwise independence.

߿ࠅ

-

EXERCISE

If I flip a fair coin ߿߿ࠀ times, lower bound the chance I get between
߿ࠂ and ߿ࠆ heads?

For this problem, we will assume the CLT holds exactly for a sum of
independent random variables – i.e., that this sum looks exactly like
a Gaussian random variable.

Lemma (Guassian Tail Bound)
For X ∼ N (µ,σࠁ):

Pr[|X− EX| ≥ k · σ] ≤ .ࠁ/ࠁe−kࠁ

ࠀࠅ

hey,sure > 9 3% IEC..-3=50 Worf.-3=25
- o f
2 0 aw a y f r om5 0s.iq?Hi-79IYIpr1s-solii%3e.fq6.4o-

I, s
g.so,,, , , ,>

e ." % . ze.se=.oµ

t -

s .

QUANTITATIVE VERSIONS OF THE CLT

These back-of-the-envelop calculations can be made
rigorous! Lots of different “versions” of bound which do so.

• Chernoff bound
• Bernstein bound
• Hoeffding bound
• . . .

Different assumptions on random varibles (e.g. binary vs.
bounded), different forms (additive vs. multiplicative error),

etc. Wikipedia is your friend.

ࠁࠅ

Exponential concentrations inequalities

1 -

l y (K) - w i r e indepe-due

QUANTITATIVE VERSIONS OF THE CLT

Theorem (Chernoff Bound)
Let Xࠀ, Xࠁ, . . . , Xk be independent ,߿} valued-{ࠀ random
variables and let pi = E[Xi], where ߿ < pi < .ࠀ Then the sum
S =

∑k
i=ࠀ Xi, which has mean µ =

∑k
i=ࠀ pi, satisfies

Pr[S ≥ +ࠀ) ε)µ] ≤ e
−εࠁµ
ε+ࠁ .

and for ߿ < ε < ࠀ

Pr[S ≤ −ࠀ) ε)µ] ≤ e
−εࠁµ

ࠁ .

ࠂࠅ

y a ,c , = §...v a rN i] = ¥..K ¥ 3 " { 0 ,1 3
✓orgs)× u

±

G e r m
- -

- =

FIN-Ed]'win':±÷÷÷÷÷÷.
III.

÷÷±÷
'÷¥
¥Ii::÷:i÷±÷÷÷÷÷÷÷""

QUANTITATIVE VERSIONS OF THE CLT

Theorem (Bernstein Inequality)
Let Xࠀ, Xࠁ, . . . , Xk be independent random variables with each
Xi ∈ ,ࠀ−] .[ࠀ Let µi = E[Xi] and σࠁ

i = Var[Xi]. Let µ =
∑

i µi and
σࠁ =

∑
i σ

ࠁ
i . Then, for k ≤

ࠀ
,σࠁ S =

∑
i Xi satisfies

Pr[|S− µ| > k · σ] ≤ ࠁ exp
(
−kࠁ

ࠃ

)
.

ࠃࠅ

-

-Po.
e-K%

QUANTITATIVE VERSIONS OF THE CLT

Theorem (Hoeffding Inequality)
Let Xࠀ, Xࠁ, . . . , Xk be independent random variables with each
Xi ∈ [ai,bi]. Let µi = E[Xi] and µ =

∑
i µi. Then, for any α > ,߿

S =
∑

i Xi satisfies:

Pr[|S− µ| > α] ≤ ࠁ exp
(
− αࠁ
∑k

i=ࠀ(bi − ai)ࠁ

)
.

ࠄࠅ

HOW ARE THESE BOUNDS PROVEN?

Variance is a natural measure of central tendency, but there
are others.

qth central moment: E[(X− EX)q]

k = ࠁ gives the variance. Proof of Chebyshev’s applies Markov’s
inequality to the random variable (X− EX)ࠁ).

Idea in brief: Apply Markov’s inequality to E[(X− EX)q for
larger q, or more generally to f(X− EX) for some other
non-negative function f. E.g., to exp(X− EX).

We will explore this approach in the problem set.

ࠅࠅ

-

G 7 2

TECHIE's

"' "' " '" '" "

÷. . . . -won : :& .

=
I
+monotonic

CHERNOFF BOUND APPLICATION

Sample Application: Flip biased coin k times: i.e. the coin is heads
with probability b. As long as k ≥ O

(
log(ࠀ/δ)

εࠁ

)
,

Pr[|# heads− b · k| ≥ εk] ≤ δ

Setup: Let Xi = [ith flip is heads]. Want bound probability that∑k
i=ࠀ Xi deviates from it’s expectation.

Corollary of Chernoff bound: Let S =
∑k

i=ࠀ Xi and µ = E[S]. For
߿ < ε < ,ࠀ

Pr[|S− µ| ≥ εµ] ≤ ࠂ/µࠁe−εࠁ

ࠆࠅ

K : # o f flipsT o
i o s

I#heads-b.K / s E k @

"

"÷..........
÷"a - I =

CHERNOFF BOUND APPLICATION

Sample Application: Flip biased coin k times: i.e. the coin is
heads with probability b. As long as k ≥ O

(
log(ࠀ/δ)

εࠁ

)
,

Pr[|# heads− b · k| ≥ εk] ≤ δ

Pay very little for higher probability – if you increase the
number of coin flips by ,xࠁ δ goes from
→߿ࠀ/ࠀ →߿߿ࠀ/ࠀ ߿߿߿߿ࠀ/ࠀ

ࠇࠅ

- - - 0

Iq(tho) = I log(Yao) = I l-g(' d o ooo)

LOAD BALANCING

We are going to see a more interesting applicatoin of exponential
concentration bounds to the randomized load balancing problem. n
jobs are distributed randomly to n servers using a hash function. Let
Si be the number of jobs sent to server i. What’s the smallest B for
which we can prove:

Pr[maxiSi ≥ B] ≤ ߿ࠀ/ࠀ

Recall: Suffices to prove that, for any i, Pr[Si ≥ B] ≤ :n߿ࠀ/ࠀ

Pr[maxiSi ≥ B] = Pr[Sࠀ ≥ B or . . . or Sࠀ ≥ B]
≤ Pr[Sࠀ ≥ B] + . . .+ Pr[Sn ≥ B] (union bound).

ࠈࠅ

-

=p look) psiltdo
-

s e t 5 = 2 Go:3÷=÷÷.?:*

LOAD BALANCING

Theorem (Chernoff Bound)
Let Xࠀ, Xࠁ, . . . , Xn be independent ,߿} valued-{ࠀ random
variables and let pi = E[Xi], where ߿ < pi < .ࠀ Then the sum
S =

∑n
j=ࠀ Xi, which has mean µ =

∑n
j=ࠀ pi, satisfies

Pr[X ≥ +ࠀ) ε)µ] ≤ e
−εࠁµ
ε+ࠁ .

Consider a single bin. Let Xj = [ball j lands in that bin].
E[Xj] = ࠀ

n , so µ = .ࠀ

Pr[S ≥ +ࠀ) c log n)µ] ≤ e
−cࠁ logࠁ n
c+ࠁ log n ≤ e

−c logࠁ n
ࠁ log n ≤ e−.ࠄc log n ≤ ࠀ

n߿ࠀ
,

for sufficiently large c

߿ࠆ

F o r n 7 1 0 , tu.E fon

- - , - , s '

,

TICS;)=u=1 .5.}
= 2

1%1×7 lord"@
,=

lozelx)-1%4%5; S i :¥,X ;

=

ECsi3-E.Ecx;].-§.y , = , .

" "

-

s ←I÷÷
→i

-
€

=

2 t doon E z do>(u) 21%67=1%47E -- cloglu)
e -1%47=1,

POWER OF TWO CHOICES

So max load for randomized load balancing is O(log n)! Best
we could prove with Chebyshev’s was O(

√
n).

Power of ࠁ Choices: Instead of assigning job to random server,
choose ࠁ random servers and assign to the least loaded. With
probability ߿ࠀ/ࠀ the maximum load is bounded by:

(a) O(log n)
(b) O(

√
log n)

(c) O(log logn)
(d) O(ࠀ)

ࠀࠆ

= chook 3 s e r v e r s

tog l o ,loser

t o y , log(m)

logs 100(u)
(oou l o oc u)

