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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Main idea: If you want to compute singular vectors or
eigenvectors, multiply two matrices, solve a regression
problem, etc.:

1. Compress your matrices using a randomized method.
2. Solve the problem on the smaller or sparser matrix.
- A called a “sketch” or “coreset” for A.




SKETCHED REGRESSION

Randomized approximate regression using a W¥ "\\1_
Johnson-Lindenstrauss Matrix: Wit JirX-b iy

>

ot
Input: A € R"™*? b € R". Gt

Algorithm: Let X* = arg min, ||[MAx — Mb]|3.
Goal: Want [|A%* — b||2 < (1 74) miny | AX — bl|2
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MAIN RESULT FROM LAST CLASS

Theorem (Randomized Linear Regression)

Let M be a properly scaled JL matrix (random Gaussian, sign,
sparse random, etc.) Wlth@ ( ) rows. Then with

probability (1 —8), for any A € R™% and b € R",

||AX* — b||2 (1+¢€) m|n ||AX — sz
—_— f

where X* = arg min, ||[MMAX — Mb||2.



PROOF APPROACH

- Showed that for all x, WWWH@—

- Easy to prove for a single x using JL lemma.

W x-yN » = (1xe) “T)Ax—ﬂ\/\\:

- To extend to all x (an finite set) used an e-net argument.
_@



RUNTIME CONSIDERATION

For e, 8 = O(1), we need M to have m = O(d) rows.

- Cost to-salve ||Ax — b||2:
'ime for direct method. Need to compute

(ATA)ATb,
- O(nd) - (# of iterations) time for iterative method (GD, AGD,
conjugate gradient method).
- Costtasolve |[MAX — Mb|3:
me for direct method.
(# of iterations) time for iterative method.

) _,*«/r&
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RUNTIME CONSIDERATION

But time to compute MAis an (m x n) x (n x d) matrix
multiply: O(mnd) = O(nd?) time.

Goal: Develop faster Johnson-Lindenstrauss projections.

+ EE + +
3 + k3 ~

£1 +1 1 +1 ‘ A
* *

" +

Typically using sparse or structured matrices instead of fully
random JL matrices.

Useful in many other applications two. For example, faster

methods are often used in LSH systems to implement SimHash. ’



RETURN TO SINGLE VECTOR PROBLEM

Goal: Develop methods that reduce a vector x € R"” down to
m = "’giﬁ dimensions in o(mn) time and guarantee:

(1= e)lIxllz < )2 < (1+ €)|x]3

+1 1 £ 1 #] +1 |
+1 +1 +1
A+ 1 X ‘
+1
+

Recall that once the bound above is proven, linearity lets use

preserve things like ||y — z||5 or ||Aw — b|}3.
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SOLUTION FOR “FLAT” VECTORS

Let S be a random sampling matrix. Every row contains a value
of s =4/n/min a single location, and is zero elsewhere.
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If we take m samples, X can be computed in O(m) time.

Woohoo!

What is the problem with this approach? 9



VECTOR SAMPLING

X cC= o) ]hl)(\qu)
Uniform sampling only works well if g/ is “flat’.
y ) ] ¥~ 9 x § x
é Xrl -Bo
1= \L
< ‘/\‘.'om
) s .
s 4w, LAY hard VeTy hard O(‘\/é/ >

Claim c? 3

If x? <@]x”2 for all i then m = O(clog(1/6)/€ 2) samples
suffices to ensure the (1—e)|x||2 < HSxH < (1+ €)||x||3 with
probability 1 — 6. =

This just follows from standard Hoeffding inequality.



EXTENSION TO GENERAL VECTORS

DMk et JT
Subsampled Randomized Hadamard Transform’ (SHRT)
(Ailon-Chazelle, 2006)

Theorem (The Fast JL Lemma)

Let N = SHD € RZX" be a subsampled randomized Hadamard
transform with m = O ( w> rows. Then for any fixed x,

(1= &)Xl < ||nX||z (1+ e)lIxIl3 5 indipendir
&

with probability (1 — 9) and Mx can be computed in(O(n logn)

(nearly mear)t:me \/’( O(V“\Y\> Y

Very little loss in embedding dimensfon compared to standard JL.

'One of my top 3 favorite randomized algorithms. p



THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

SMix o>
Key idea: First multiply x by a “mixing matrix” M which ensures
it cannot be too concentrated in one place. M=HD

M will have the properties that )E g )hx
2 _ (Ixli2

1. |IMX[3 = [x]3 exactly.
2. Every entry in Mx is bounded. l.e. [Mx], < n||Mx\|§ for some
factor c to be determined. 1&Y..., v

3. We will be able to multiply by M in CM) time.

Then we will multiply by a subsampling matrix S to do the
actual dimensionality reduction: ){"ps"\x\, W\[Mx((,, el -

r. 2 (0%
I{MXVV - {2 [T' Xj, MNx = 5@ ){jmx\(f M \lXU;//

-—
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THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Good mixing matrices should look random:

M O é{\,\‘,‘)bﬁﬁf\
SR

| claim to mix any x with high probability, M needs to be
chosen randomly. Why?

Recall that |[Mx|| = ||x]|2, sO M is orthogonal.

#1141 47412141 -1

-1-1
1 -1
+1 +1
-1-1
-1 +1
-1 41

141 +1 +1 -1 -1
#1471 +1-1 -1 -1
#1411 41 -1 +1
#1471 41 47 -1
111411 -1
141 -1-1-1+1

P

|

X
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THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Good mixing matrices should look random: 5(1-,‘*)

#1141 414721 +1 -1
-1 -1+ #1471 -1 -1
#1-1 #1471 41 -1 -1 -1
FTHT #1411 41141
-1 #1471 =141 47 -1
1+ 111414141
1+ =141 -1-1-1+1

M X

But for this approach to work, we need to be able to compute
Mx very quickly. So we will use a pseudorandom matrix

——
instead.

14



THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Subsampled Randomized Hadamard Transform

—

{

N = SM where M = HD: ) =L l (
M=nl o,

- D € nxnisadiagonal matrix with each entry uniform £1.

* HenxnisaHadamard matrix.

The Hadarmard matrix is an orthogonal matrix closely related
to the discrete Fourier matrix. It has two critical properties

“”’Dk ‘\OKL‘L
M exactly. Thus ||HDx|)3 = ||x||3 = el

can be computed in O(nlogn) time.

gl cixbz HDx Wi o™
l\l?& v e chuy-;\u& ~ 0(‘1\‘3“\) biwee, o



HADAMARD MATRICES RECURSIVE DEFINITION

Assume that n is a power of 2. For k = 0,1,..., the Rt \
Hadamard matrix Hy, is a 2% x 2% matrix defined by: /7 !

—

Ho=1 Hi=

The n x n Hadamard matrix has all entries as +

g
NG

16



HADAMARD MATRICES ARE ORTHOGONAL

.V'r'\'l'u«\—"g, vV = VvV
Property 1: For any k = 0,1,..., we have |[Hpv||2 = ||lv||3 for all v.

l.e,, Hg is orth L. .
VE,W),;J(S orthogona v = v S,H/ -
hopwe Wfdy  Sor Hw -\ —\q—’w—:m

\‘\-\\- \+ "\—V\ - = Iq_\(-\

§ *”u: W - :H‘:l
V\ YA ‘(\ "_l +‘“ H\H u u\ﬂ-v\']u-u \“ \
M Y\ v\ al K JN W\.-l - H’\,_;THM-( “’“,1| “\4,:““\,&1
y |72 o, |3

v O 21 0T
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HADAMARD MATRICES

Property 2: Can compute Mx = SHDx in O(n logn) time.

M\LV" = \/\\-\ “u-\ Vu \J\mU\ > Puave
W = ... —

u'\,\\ 'I’kl

Vo |1Jf\»(—\\/s\ - uw-\ N

Tla) = LT0h) v w

- (iey.3

S Tl = % ) = e v
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RANDOMIZED HADAMARD TRANSFORM

Property 3: The randomized Hadamard matrix is a good
“mixing matrix” for smoothing out vectors.

Deterministic Randomized Fully random sign

Hadamard-matrix. Hadamard PHD. matrix.

Blue squares are 1/4/n’s, white squares are —1/4/n’s.

Pseudorandom objects like this appear all the time in
computer science! Error correcting codes, efficient hash
functions, etc. -



RANDOMIZED HADAMARD ANALYSIS

1 T
Lemma (SHRT mixing lemma) ‘\ S WDx l\v A HDxILE - Wl

Let H be an (n x n) Hadamard matrix and D a random =1
diagonal matrix. Let z = HDXx for x € R". With probability
1—9, for all i simultaneously,

S22
“
@)’
for some fixed constant c.
As

we saw earlier, we can thus argue that ||Sz||3 ~ ||z||3. l.e. that:

IMx]12 = ISHDX||3 ~ ||x||3

20



JOHNSON-LINDENSTRAUSS WITH SHRTS

Our main results then follows directly from our sampling result
from earlier:

Theorem (The Fast JL Lemma)

Let M = SHD € R™*" be a subsampled randomized
Hadamard transform with m = O (M) rows. Then
for any fixed x,

(1= e)lx[3 < IMx]lz < (1+ €)|x]3

with probability (1 — 6).

21



RANDOMIZED HADAMARD ANALYSIS

HDx ~2 W7 D%
oo lo 0
SHRT mixing lemma proof: Need to prove (z;)? < %HZHZ.

2

Let h! be the i*" row of H. z; = h/Dx where:

D1 x!
Dy
h’D ’
Dn
where D, ...,Dp are random =41's.
. . T
This is equivalent to 15" x
T 1 ‘Sn
hD=/—)[R R ... Ra|, ¥ o
\/ﬁ —_— N
N\

-~

where Ry, ...,R, are random +1's.

22



RANDOMIZED HADAMARD ANALYSIS

7 dvades |
i 72— hTDx = - S _R.x:
So we have, for all i 2= h/Dx = ~ Y oimq Rix;.
e
-z is a random variable with mean 0 and variance 1|x|3,

which is a sum of mdependent random variables.
5 [w 0] - Ef2:3- £ 2w \E[% -
Cd |

fO

M| Y
feelel= 2 3wt = % 2o Lz

- Vot L (e
Y \ < < . gVl 23
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RANDOMIZED HADAMARD ANALYSIS

zj is a random variable with mean 0 and variance 1 ||x||2, which
is a sum of independent random variables

2
- By Central Limit Theorem, we expect that: .
IXll2; _ —o®) :
1>t <e
PrU_z_,| >t- ﬁ] < . Z

- Setting t = y/log(n/¢), we have for constant c,

pr[|,~|z ), ’ S

- Applying a union bound to all n entries of z gives the SHRT
mixing lemma.

24



RADEMACHER CONCENTRATION

= X = Y+ c
C@uLcLuser Bem&e%—%e&uaﬁ%y—e%a—s—h#t—-need_m

useBefrfstemn type concentrationteguality ta prove the
baund—
Lemma (Rademacher Concentration)
Let Ry, ..., R, be Rademacher random variables (i.e. uniform
+1’s). Then for any vector a € R”, it Lond xde

; /7 TS 'Ly

Pr !Z R > tuanz] <e 'l e
= -
&

This is call the(Khintchine Inequalityj It is specialized to sums
of scaled £17's, and is a bit tighter and easier to apply than
using a generic Bernstein bound.

25



FINISHING UP

Recall that z; = h/Dx = i\f S RiX;. B 2 22 P _\:5
With probability 17— 4, we have that for all i, Z % Xix:

A\
[lclog n/é) Ix H>: / Clog( n/5 Izl

As shown earlier, we can thus guarantee that:

(1= @)llzll5 < I[szl5 < (1 + )]1zl3

as long as S € R™" js a random sampling matrix with

m=0 <Iog(n/5) Iog(’l/é)) ows.

€2

1S2]15 =(ISHDx|13 J= IINx|5 and ]| || HXHZ, so we are done.

) H’DK 26



LINEAR REGRESSION WITH SHRTS

Upshot for regression: Compute MA in O(ndlogn) time instead
of 0(nd?) time. Compress problem down to A with O(d?)
dimensions. e ()

A o)

| RICE)

L

of w)

27



BRIEF COMMENT ON OTHER METHODS

O(ndlogn) is nearly linear in the size of A when A is dense.

Clarkson-Woodruff 2013, STOC Best Paper: Let O (nnz(A)) be
the number of non-zeros in A. It is possible to compute A with
poly(d) rows in: L 6 (\“L)

O(|1n72(6)) time.
M is chosen to be an ultra-sparse random matrix. Uses totally

different techniques (you can’t do JL + e-net). Related to
Danrong’s reading group presentation.

Lead to a whole close of matrix algorithms (for regression, SVD,
etc.) which run in time:

O (nnz(A)) + poly(d, €).
28



WHAT WERE AILON AND CHAZELLE THINKING?

Simple, inspired algorithm that has been used for accelerating:

- Vector dimensionality reduction

m = 20

cl = (2xrandi(2,1,n)-3).xy;

- Locality sensitive hashing c2 = sqrt(n)xfwht(dy);
(SimHash) c3 = c2(randperm(n));

z =sgrt(n/m)*c3(1:m);

- Linear algebra

- Randomized kernel learning

methods.
o Xy (15 o) e
R (T- £ B (o
é%(’ QK,"uv\Qf % 7}_1-?9\?( @ oo ‘

R

29



WHAT WERE AILON AND CHAZELLE THINKING?

The Hadamard Transform is closely related to the Discrete
Fourier Transform.

Fj,k =e
{0"\1 YIB\, 1" j
\";/* x rﬁm

@7

Real part of F; .

Fy computes the Discrete Fourier Transform of the vectory.
Can be computed in O(nlogn) time using a divide and conquer
algorithm (the Fast Fourier Transform). 30



THE UNCERTAINTY PRINCIPAL

The Uncertainty Principal (informal): A function and it's
Fourier transform cannot both be concentrated.

0z
01 I II II
o

1 2 3 4 5 6 7 s

Vectory. Fourier transform Fy.

31



SPARSE RECOVERY/COMPRESSED SENSING

What do we know?

32



THE UNCERTAINTY PRINCIPAL

Sampling does not preserve norms, i.e. ||Sy||2 % |ly||» when'y
has a few large entries.

Taking a Fourier transform exactly eliminates this hard case,
without changing y’'s norm.

One of the central tools in the field of sparse recovery aka
compressed sensing.

33



SPARSE RECOVERY/COMPRESSED SENSING PROBLEM SETUP

Underdetermined linear regression: Given A € R™*" with
m < n,beR™ Assume b = Ax for some x € R".

A / b
/,

(VERYY S

] j L( QLU*,L(-5

X
- Infinite possible solutionsy to Ay = b, so in general, it is
impossible to recover parameter vector x from the data

A b.
34



SPARSITY RECOVERY/COMPRESSED SENSING

Underdetermined linear regression: Given A € R™*" with
m < n, b e R™. Solve Ax = b for x. \A(Dj(fﬂ/k)
_

PASSE q
W\ ) A —) Z 0

—
\1\ t \xﬁo d[M)

-
o]
BY
7|
T
| ¢ 2]
o |
= x/
o X
- In many cases can recover x with < n rows. In fact, often

~ O(R) suffice.
- Need additional assumptions about Al

35



QUICK ASIDE

- In statistics and machine learning, we often think about
A’s rows as data drawn from some universe/distribution:

edrooms| bathrooms| sq.ft |floors

home 1 2 2 1800 | 2
home 2 4 25 2700 1

home n 5 35  |3600| 3

- In other settings, we will get to choose A’s rows. |.e. each
b: = x"a; for some vector a; that we select.
St
- In the later case, we often call b; a linear measurement of
x and we call A a measurement matrix.

36



ASSUMPTIONS ON MEASUREMENT MATRIX

1
When should this problem be difficult?
. ks

- -

X[

37



ASSUMPTIONS ON MEASUREMENT MATRIX

;véf o Q" “—k}ﬂ i

Many ways to forrrp{our intuition

- A has KryskalrapkT. All sets of r columns in A are linearly
independent.

- Recover vectors x with sparsity kR = r/2.
- Ais p-incoherent. |ATA;| < p||Ai|l2[|A;ll2 for all columns
Ai, Aj, i # . \3 9«%)“‘*{)\# \omnds 5) (\,(’J’.)
- Recover vectors x with sparsity R =1/p.

- Focus today: A obeys the Restricted Isometry Property.

C s =0

38



RESTRICTED ISOMETRY PROPERTY

Definition ((g, €)-Restricted Isometry Property) -1 0
A matrix A satisfies (g, €)-RIP if, for all x with ||x]|o < g,

(1= X3 < IAXII3 < (1 + X3 Yx)l_ < Q

- Johnson-Lindenstrauss type condition.

- A preserves the norm of all g sparse vectors, instead of
the norms of a fixed discrete set of vectors, or all vectors
in a subspace (as in subspace embeddings).

- Preview: A random matrix A with ~ O(qlog(n/q)) rows
satisfies RIP. <~

39



FIRST SPARSE RECOVERY RESULT

Theorem (¢o-minimization)

Suppose we are given A € R™*" and b = Ax for an unknown
k-sparse x € R". If Ais (2R, €)-RIP for any €< thenx is the
unigue minimizer of:

min||z||o subject to Az =b.
epr e
hx- b

- Establishes that information theoretically we can recover
X. Solving the £o-minimization problem is computationally
difficult, requiring O(n*) time. We will address faster
recovery shortly.

40



FIRST SPARSE RECOVERY RESULT

Claim: If Ais (2k, €)-RIP for any e < 1then x is the unique
minimizer of mina,—p ||Z]|0-

Proof: By contradiction, assume there is some y # x such that
Ay =b, [lyllo < [|X[o-

42‘\1 A*a—AK e o /')'V\s

s A(a_x> (1<) ly-<Y < \‘/HD"‘)XU
o . X

[ D ZL D o
€U g

41



ROBUSTNESS

Important note: Robust versions of this theorem and the
others we will discuss exist. These are much more important
practically. Here’s a flavor of a robust result:

- Suppose b = A(x here X is R-sparse and e is dense
but has bounded norm.

- Recover some k-sparse X such that:

1% —x]l2 < [le]x
—_— —

or even

1
)uwy

IW—Mh§O<

5
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ROBUSTNESS

We will not discuss robustness in detail, but along with
computational considerations, it is a big part of what has
made compressed sensing such an active research area in the

last 20 years. Non-robust compressed sensing results have
been known for a long time:

Gaspard Riche de Prony, Essay experimental et analytique: sur
les lois de la dilatabilite de fluides elastique et sur celles de la
force expansive de la vapeur de 'alcool, a differentes
temperatures. Journal de 'Ecole Polytechnique, 24-76._1795.

43



RESTRICTED ISOMETRY PROPERTY

What matrices satisfy this property?

- Random Johnson-Lindenstrauss matrices (Gaussian, sign,
etc.) with m = O(“'80/1) rows are (k, ¢)-RIP.

Some real world data may look random, but this is also a
useful observation algorithmically when we want to design A.

4



APPLICATION: SINGLE PIXEL CAMERA

Typical acquisition of image by camera:

light sensors

[TTTTTT

> W -

Requires one image sensor per pixel captured.

45



APPLICATION: SINGLE PIXEL CAMERA

Compressed acquisition of image:

single liff sensor

11
n n

—_—

S|l—=

p= ZX/ =
=1

Does not provide very much information about the image. i



APPLICATION: SINGLE PIXEL CAMERA

But several random linear measurements do!

47



APPLICATION: SINGLE PIXEL CAMERA

o\vo \l O
> (=>\ oo

- Imaging outside of the visible spectrum (fbre expensive
sensors).

Applications in:

- Microscopy.
- Other scientific imaging.

Compressed sensing theory does not exactly describe these
problems, but has been very valuable in modeling them.

48



THE DISCRETE FOURIER MATRIX

The n x n discrete Fourier matrix F is defined:

—2mi ;
Fie=e"n",

)

where | = v/—1. Recall e/ = cos(2mjR/n) — isin(2mjR/n).

= - S (a >
SNNAN L
- _ P NN
v Vv
— NS - / N ’
= ’ (g
= ~ - 1= ~ f /
\ s \ -
L L
| | d [ |
- P LA ! \
\ / y
I I
~. = y ' f
\ \ \ \
= ! PR | N
— ' ~ ’
= ! 0, == « /
AR ¥ Y
-~ - / R ! /
[ v y s
=X N s /o / I
0 -\ .
- \ ‘ ~ \ /
~1_ . Zhe ~1 - o
| | | | i
1 1 ~ _
<A 20 - \
~ /v~ AN I
IS - = g
P A gD /N
- St - - /o \
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PSEUDORANDOM RIP MATRICES

In many applications can compute measurements of the form
Ax = SFx, where F is the Discrete Fourier Transform matrix
(what an FFT computes) and S is a subsampling matrix.

time

F decomposes x into different frequencies: [Fx]; is the
component with frequency j/n.

50



THE DISCRETE FOURIER MATRIX

If A= SFis a subset of rows from F, then Ax is a subset of
random frequency components from x's discrete Fourier
transform.

In many scientific applications, we can collect entries of Fx one
at a time for some unobserved data vector x.

51



APPLICATION: MEDICAL IMAGING

Warning: very cartoonish explanation of very complex problem.
Medical Imaging (MRI)

LSS

How do we measure entries of Fourier transform Fx? Blast the
body with sounds waves of varying frequency.

- Especially important when trying to capture something
moving (e.g. lungs, baby, child who can't sit still).

- Can also cut down on high power requirements. o



APPLICATION: GEOPHYSICS

Warning: very cartoonish explanation of very complex problem.

Understanding what material is beneath the crust:

53



APPLICATION: GEOPHYSICS

Vibrate the earth at different frequencies! And measure the
response.

Vibroseis Truck

Can also use airguns, controlled explorations, vibrations from
drilling, etc. The fewer measurements we need from Fx, the
cheaper and faster our data acquisition process becomes.

54



RESTRICTED ISOMETRY PROPERTY

Setting A to contain a random m ~ O hbgzew rows of the
discrete Fourier matrix F yields a matrix that with high
probability satisfies (R, €)-RIP. [Haviv, Regev, 2016].

Improves on a long line of work: Candes, Tao, Rudelson,
Vershynin, Cheraghchi, Guruswami, Velingker, Bourgain.

Proving this requires similar tools to analyzing subsampled
Hadamard transforms!

55



RESTRICTED ISOMETRY PROPERTY

Definition ((qg, €)-Restricted Isometry Property - Candes, Tao
'05)
A matrix A satisfies (g, €)-RIP if, for all x with ||x]jo < g,

(1= e)lIxllz < IAX[Iz < (1 + €)lIx]I3.

The vectors that can be written as Ax for g sparse x lie in a
union of g dimensional linear subspaces:

A A ee A

56



RESTRICTED ISOMETRY PROPERTY

Candes, Tao 2005: A random JL matrix with O(qlog(n/q)/e?)
rows satisfies (g, €)-RIP with high probability.

Ax
AX1 . sz . 50
Axln

Any ideas for how you might prove this? I.e. prove that a
random matrix preserves the norm of every x in this union of
subspaces?

57



RESTRICTED ISOMETRY PROPERTY FROM JL

Theorem (Subspace Embedding from JL)
LetUd C R" be a g-dimensional linear subspace in R". If

N € R™*" s chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1 — 6,

(1= alvliz < INvliz < (1 + €)lIvli3

forallveU, aslongasm =0 (%}Vﬂ)

Quick argument:

58



RESTRICTED ISOMETRY PROPERTY

Definition ((qg, ¢)-Restricted Isometry Property)
A matrix A satisfies (g, €)-RIP if, for all x with ||x]|p < g,

(1= e)lIxllz < IAX[Iz < (1+ €)lIx]I3.

Lots of other random matrices satisfy RIP as well.

One major theoretical question is if we can deterministically
construct good RIP matrices. Interestingly, if we want

(O(kR), O(1)) RIP, we can only do so with O(k?) rows (now very
slightly better — thanks to Bourgain et al.).

Whether or not a linear dependence on k is possible with a
deterministic construction is unknown,

59



FASTER SPARSE RECOVERY

Theorem (¢o-minimization)

Suppose we are given A € R™*" and b = Ax for an unknown
k-sparse x. If Ais (2R, €)-RIP for any e < 1then x is the unique
minimizer of:

min||z||o subject to Az =b.

Algorithm question: Can we recover x using a faster method?
Ideally in polynomial time.

60



BASIS PURSUIT

Convex relaxation of the /o minimization problem:

Problem (Basis Pursuit, i.e. ¢; minimization.)

mzin|\z||1 subject to Az = b.

- Objective is convex.

- Optimizing over convex set.

61



BASIS PURSUIT LINEAR PROGRAM

Equivalent formulation:

Problem (Basis Pursuit Linear Program.)

min1'w  subject to Az=b,w>0,—-w<z<w.
W,z

Can be solved using any algorithm for linear programming. An
Interior Point Method will run in ~ O(n3°) time.

62



BASIS PURSUIT ANALYSIS

Theorem

If Ais (3R, €)-RIP for e < 17 and ||X||o = R, then X is the unique
optimal solution of the Basis Pursuit LP).

Two surprising things about this result:

- Exponentially improve computational complexity with only
a constant factor overhead in measurement complexity.

- Typical “relax-and-round” algorithm, but rounding is not
even necessary! Just return the solution of the relaxed
problem.
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BASIS PURSUIT INTUITION

Suppose Ais 2 x 1,50 b isjust a scalarand x is a

2-dimensional vector.

. dz=b

z;=0
1z1,=1
121,=2
1z1,=4

z,=0

Vertices of level sets of ¢ norm
correspond to sparse solutions.

a0 Qﬁ\
e

1z1,=4

z,=0

This is not the case e.g. for the ¢,
norm.
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BASIS PURSUIT ANALYSIS

Theorem
If Ais (3R, €)-RIP for e < .17 and ||x||o = R, then x is the unique
optimal solution of the Basis Pursuit LP).

Similar proof to £g minimization:

- By way of contradiction, assume x is not the optimal
solution. Then there exists some non-zero A such that:
© x4+ Al < Ix]l
- A(x+ A) =Ax. le. AA =0.

Difference is that we can no longer assume that A is sparse.
We will argue that A is approximately sparse.
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TOOLS NEEDED

First tool:

For any g-sparse vector w, w2 < |lwll < +/qllwl|2

Second tool:

For any norm and vectors a, b, lla+ bl > |ja|| — ||b]|
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BASIS PURSUIT ANALYSIS

Some definitions:

Tn-k)/2k

> [
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BASIS PURSUIT ANALYSIS

Claim 1: ||As|r > ||Ag]s
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BASIS PURSUIT ANALYSIS

Claim 2: ||A5H2 > \/52122 HAT/”2

1 1 1
[Asl2 > WHASHW > ﬁHAdlw = ﬁz [7ASALE

j21

Claim: |A7 |l > V2R|| A7, II2
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BASIS PURSUIT ANALYSIS

Finish up proof by contradiction: Recall that A is assumed to
have the (3k,€) RIP property.

0= [|AA[; > |ADsur[l2 — > IAAT |2
j>2
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FASTER METHODS

A lot of interest in developing even faster algorithms that
avoid using the “heavy hammer” of linear programming and
run in even faster than O(n3?) time.

- Iterative Hard Thresholding: Looks a lot like projected
gradient descent. Solve min; ||Az — b|| with gradient
descent while continually projecting z back to the set of
k-sparse vectors. Runs in time ~ O(nklogn) for Gaussian

measurement matrices and O(n log n) for subsampled
Fourer matrices.

- Other “first order” type methods: Orthogonal Matching
Pursuit, CoSaMP, Subspace Pursuit, etc.
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FASTER METHODS

When A is a subsampled Fourier matrix, there are now
methods that run in O(klog® n) time [Hassanieh, Indyk,
Kapralov, Katabi, Price, Shi, etc. 2012+].

Hold up...
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SPARSE FOURIER TRANSFORM

Corollary: When x is k-sparse, we can compute the inverse
Fourier transform F*Fx of Fx in O(klog® n) time!

- Randomly subsample Fx.
- Feed that input into our sparse recovery algorithm to
extract x.

Fourier and inverse Fourier transforms in sublinear time when
the output Is sparse.

gl 1|10 T | M

100 200 300 400 500 600 700 800 900 1000
Normalized frequency

e

o

Applications in: Wireless communications, GPS, protein
imaging, radio astronomy, etc. etc. 7%



COMPRESSED SENSING FROM GENERATIVE MODELS

Compressed Sensing using Generative Models

Ashish Bora* Ajil Jalalt Eric Price} Alexandros G. Dimakis®

Abstract

The goal of compressed sensing s to estimate a vector from an underdetermined system of noisy linear measure-
ments, by making use of prior knowledge on the structure of vectors in the relevant domain. For almost all results
in this literature, the structure is represented by sparsity in a well-chosen basis. We show how to achieve guarantees
similar to standard compressed sensing but without employing sparsity at all. Instead, we suppose that vectors lie
near the range of a generative model G : R¥ — R™. Our main theorem is that, if G is L-Lipschitz, then roughly
O(klog L) random Gaussian measurements suffice for an £, /¢, recovery guarantee. We demonstrate our results
using generative models from published variational autoencoder and generative adversarial networks. Our method
can use 5-10x fewer measurements than Lasso for the same accuracy.
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COMPRESSED SENSING FROM GENERATIVE MODELS




