CS-GY 6763: Lecture 12
Stochastic Block Model, Randomized numerical
linear algebra, e-net arguments.

NYU Tandon School of Engineering, Prof. Christopher Musco



LAST CLASS

Represent undirected graph as symmetric matrix: n x n
adjacency matrix A and graph Laplacian L =D — A where D is

the diagonal degree matrix.
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L = B'B where B is the “edge-vertex incidence” matrix.
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LAST CLASS

Balanced Cut: Partition nodes along a cut that:

- Has few crossing edges: |{(u,v) € E:u € S,v e T}| is small
- Separates large partitions: |S|,|T| are not too small.
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(a) Zachary Karate Club Graph



RELAX AND ROUND
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We observed that x'Lx = 37y (X()) — x(j))*. If ¢ is a “cut
indicator vector” for a cut between node setSand T - i.e.
c[il=1forallie Sand —1forie T, then it followed that:

@9-+ s,

Note: c often denote by xs r to remind us what the cut is. And
recall that we always have S=V\ S.
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RELAX AND ROUND
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“Relax and round” algorithm:

- Relax problem minc'Lc by not requiringc7to be a binary
cut-indicator vector.

- Showed that second smallest eigenvector Vn—; of L solved
the relaxed “perfectly balanced” cut problem.

- Round this vector to be a cut indicator vector: all negative
entries rounded to —1, all positive entries rounded to 1.

Main theoretical result: This approach is hard to analyze in
general, but can be proven to work well on random graphs
drawn from a natural generative model!.



GENERATIVE MODELS

So far: Showed that spectral clustering partitions a graph
along a small cut between large pieces.

- No formal guarantee on the ‘quality’ of the partitioning.
- Difficult to analyze for general input graphs.

Common approach: Design a natural generative model that
produces random but realistic inputs and analyze how the
algorithm performs on inputs drawn from this model.

- Very common in algorithm design and analysis. Great way
to start approaching a problem.

- This is also the whole idea behind Bayesian Machine
Learning (can be used to justify ¢, linear regression,
k-means clustering, PCA, etc.)



STOCHASTIC BLOCK MODEL

Ideas for a generative model for social network graphs that
would allow us to understand partitioning?
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STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model):

Let Gn(p, q) be a distribution over graphs on n nodes, split
equally into two groups B and/C, each with n/2 nodes.

- Any two nodes in the same group are connected with
probabilityg(including self-loops).

- Any two nodes in different groups are connected with
prob. g < p.




LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from Gn(p, q).

- Let A € R™" be the adjacency matrix of G. ME}MS/EM]?
B c

Note that we are arbitrarily ordering the nodes in A by group.
In reality A would look “scrambled” as on the right.



STOCHASTIC BLOCK MODEL

Goal is to find the “ground truth” balanced partition B, C using
our standard spectal method.

To do so, we need to understand the second smallest
eigenvalue of L = D — A. We will start by considering the
expected value of these matrices:

By ~ 5D
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EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R™" be its adjacency matrix. (E[A]);; = p for
I,j in same group, (E[A]);; = g otherwise.
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We are going to
determine the
eigenvectors and
eigenvalues of E[A].
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EXPECTED LAPLACIAN

What is the expected Laplacian of Gn(p, q)?
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E[A] and E[L] have the same eigenvectors and eigenvalues are
equal up to a shift/inversion. So second largest eigenvector of
E[A] is the same as the second smallest of E[L]
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EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R"™" be its adjacency matrix, what are the

eigenvectors and eigenvalues of E[A]?
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EXPECTED ADJACENCY SPECTRUM

B o]
(n/2 nodes)  (n/2 nodes) T
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E[A] 1 -1
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- v ~ 1 with eigenvalue A\ = (pJFZQ)”,

* vy ~ xg,c With eigenvalue A, = (b—q)n.

If we computeg then we recover the communities B and C!
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EXPECTED LAPLACIAN SPECTRUM

Upshot: The second smallest eigenvector of E[L], equivalently
the second largest of E[A], is exactly xg ¢ — the indicator vector
for the cut between the communities.

- If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this
eigenvector would exactly recover communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

- Analogous to scalar concentration inequalities like
Markovs, Chebyshevs, Bernsteins.

Ik - BN,
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MATRIX CONCENTRATION

|+ o
Alon, Krivelevich, Vu, 2002: 0

(-5

—_

Matrix Concentration Inequality: If p >0 ('°g;”>, then [6”1
with high probability ‘

(8)- ElAl < O(vpn).

where || - ||2 is the matrix spectral norm (operator norm).

Recall that [|X[|2 = max,cga. 7,=1 [IX2][2 = o1(X).
|All2 is on the order of O(pv/& another way of thinking

about the right hand side | %. .e. get's better with p.
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For the stochastic block model application, we want to show
that the second eigenvectors of A and E[A] are close. How
does this relate to their difference in spectral norm?

7

Davis-Kahan Eigenvector Perturbation Theorem: Sup-

1T eigenvectors Vi, Vo, ..., Vp and Vq,V, ..., V,. Letting
enote the angle between v; and v;, for all I
sin[0(v;, v
[ j —W, )

where A1,..., \, are the eigenvalues ofﬂ/.

pose A/A € R4 are symmetric with |[A — A, < e

< e

EIGENVECTOR PERTURBATION

17



APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For p > O (%)
|A —E[A][> < O(/pn).

Claim 2 (Davis-Kahan): For p > 0 (@)

oo <O @vpm
O(v2, V2) < minj | A — Xj| =0 (2 ) <(
—_—

p—a)h

Recall: E[A], has eigenvalues A, = (201 ), — (= ),
\—/ i

fori>3.
min |\ — \j| = min ‘i 57([9(7)”)
J#i 2

Assume @ will be the minimum of these two gaps.

(A slightly trickier analysis can remove the gn term entirely.)

18



APPLICATION TO STOCHASTIC BLOCK MODEL

So far: sinf(v,,v,) <O ( VP ) What does this give us?
—
——
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Dt (oW i oo
- Can show that this implies 0 (ﬁ) (exercise).
c Vs ﬁXB,cI the community mrdfcator vector.
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- To understand how well rounding recovers V,, need to
understand how many locations v, and v, can differ in sign.
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APPLICATION TO STOCHASTIC BLOCK MODEL

% )

P S G Yz

Main argument:

- Every i where vy(i), V(i) differ in sign contributes > 1to
Iv2 = Va5

- We know that |lv; — %5 < O (W).
- So viand \72/differ in signin at mostpositions.
dw ) _jﬁv\ y
@Q/v’ ¢ 1;; .\
M wewm N, 1°[s
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APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v, and
assign nodes to communities according to the sign pattern of

this vector, we will correctly assign all but O (ﬁ) nodes.

- Hard case: p = ¢/n for some factor c. Even when
p —qg = 0(1/n), assign all but an O(n) fraction of nodes
correctly. E.g., assign 99% of nodes to the right cluster.

21



RANDOMIZED NUMERICAL LINEAR ALGEBRA

Forget about the previous problem, but still consider the
matrix@: E[A].

« Dense n x n matrix.

- Computing top eigenvectors takes ~ O(n?/4/€) time.
—_—

If someone asked you to speed this up and return approximate
top eigenvectors, what could you do?
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Main idea: If you want to compute singular vectors, multiply
two matrices, solve a regression problem, etc.:

1. Compress your matrices using a randomized method (e.g.

subsampling).
2. Solve the problem on the smaller or sparser matrix.
- Acalled a “sk “coreset” for A,

EEEE
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Approximate matrix multiplication:

-~ 1]

Approximate regression:

3]~ R

min A

>t
o
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SKETCHED REGRESSION

Today's example: Randomized approxmat regressmn using a
Johnson-Lindenstrauss Matrix. O\l 0 wd

T 161 11 o1 2141 £1 1 o1 +1 21 21
A M IR "
e + +1
£1 41 #1 2121 2121 21 £1 2121 21 21
b

v
M \lfxﬁ ’\a\\”/
ke ol ) b
o(wé)
Input: A e R"™*9 b e R". VA x5

.

Goal: Let x* = arg min, ||Ax — b||3. Let X = arg min, [|[[1AX — Mb|3
= el ol

Want: (1+ ) |AX* — b2 v
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TARGET RESULT

Theorem (Randomized Linear Regression)

Let M be a properly scaled JL matrix (random Gaussian, sign,
sparse random, etc.) with m = O (g) rows'. Then with

probability 9/10, for any A € R™% and b € R”,
|AX — b|[/< (1+ €)||Ax* — b5

where X = arg min, ||[MMAX — Mb|[2.

- Y (1) VRGN
for b % Yoyl &0 il )
_ AN

"This can be improved to{O(d/e) ith a tighter analysis
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- Prove this theorem using an e-net argument, which is a
popular technique for applying our standard
concentration inequality + union bound argument to an
infinite number of events.

- These sort of arguments appear all the time in theoretical
algorithms and ML research, so this part of lecture is as
much about the technique as the final result.

- You will use an e-net argument to prove a matrix
concentration inequality on your last problem set.
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SKETCHED REGRESSION

Claim: Suffices to prove that@ %lijé

(1— ¢)llAx — bl|3 < ||[MAX — Mb[3 < (1 + ¢)[|Ax — bl}3
- —

AR < Lo ATyl
SR ) o
< L waxm TR
((-4)
< @ \Hx‘*—b\k;’ :G %O(@))\\Ax*-\a\\z
[\/a) .

/
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DISTRIBUTIONAL JOHNSON-LINDENSTRAUSS REVIEW

Lemma (Distributional JL)
If M is chosen to a properly scaled random Gaussian matrix,
sign matrix, sparse random matrix, etc., with O ("’iﬂ) rows

then for any fixed y, S
(T=e)llylls < [INyll3 < (1 + &)llyll3

with probability (1 — 6).

=

Corollary: For any fixed x, with probability (1 — ¢),

61 — €)[[Ax = b|3 < |[MAX — AIb||3 < (1+ €)[|Ax — b]5.

29



FOR ANY TO FOR ALL

How do we go from “for any fixed x” to “for all x € R%".

This statement reqi+
type bound for a
can't be tackled direc

establishing a Johnson-Lindenstrauss
y/of possible vectors (Ax — b), which

. ) L m——
with a union bound argument.

Note that all vectors of the form (Ax — b) lie in a low
dimensional subspace: spanned by d + 1 vectors, where d is
the width of A. So even though the set is infinite, it is “simple”
in some way. Parameterized by just d + 1 numbers.
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SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

LetU C K R" be a d-dimensional linear subspace in R". If
Ne Rmx“ Is chosen from any distribution D satisfying the
D/strlbutlona JL Lemma, then with probability 1 — 4,

(1= a)lvliz < INvliz < (1 + €)lIvli3

forallv e U, as long as m = O (M)_z

@

R

2It's possible to obtain a slightly tighter bound of O (M) It's a nice

challenge to try proving this. 3



SUBSPACE EMBEDDING TO APPROXIMATE REGRESSION

Corollary: If we choose M and properly scale, then with

O (d/€®) rows, (d> ))
(1= llAx = b3 < [IAX — MbJE < (1-+ €) [Ax — buz
for all x and thus y
A% = bJ}3 < (1+ O(e)) min |Ax— b3 - o(‘*/k)
L V4

l.e., our main theorem is proven.

Proof: Apply Subspace Embedding Thm. to the (d + 1)
dimensional subspace spanned by A’s d columns and b. Every
vector Ax — b lies in this subspace.

32



SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

LetU C R" be a d-dimensional linear subspace i If

w . . . . g
n c R™4s chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1 — 6,

(1= a)lvliz < INvliz < (1 + €)lIvli3 (1)

forallv e U, as long as m = (M)

R

- P
P . v
- @ v '///F ’
-,

-
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SUBSPACE EMBEDDING PROOF

(1= e)vii5 < IAv]lz < (14 €)]lvIl3 (2)
First Observation: The theorem holds as long as (2) holds for
all w on the unit sphere in U. Denote the sphere Sy
Su=A{wlw e U and [|w]; = 1}.

Follows from linearity: Any pointv € U/ can be written as cw
for some scalar c and some pointw € Sy,.

(1= e)flwllz < [[Awllz < (14 €)lwl]2.
- then c(1—¢€)|lwlz < c||Nw|; < c(1+ €)||w]2,
- and thus (1 — €)[jcw]|2 < |[Mcw]|2 < (1+ €)|lcw]l,.

34



SUBSPACE EMBEDDING PROOF

Intuition: There are not too many “different” points on a

d-dimensignat-sphere:

N is called an “e"-net. (4 JToe W\ 9 ¢ gb\/ % wel\y
If we can prove ESC
(1=e)llwlz < [[Mwll2 < (1+¢€)[wl|2

for all points w € N, we can hopefully extend to all of S. 35



€-NET FOR THE SPHERE

Lemma (e-net for the sphere)

For any e <1, there exists a set N. C Sy with |N| @d such
that W € Sy, -

min [[v—w|; <e.
weN,

Take this claim to be true for now: we will prove later.
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SUBSPACE EMBEDDING PROOF

1. Preserving norms of all points in net N..

Set ¢ = WI L5 = (g) - 6. As longasﬂhasO(bg(!%)
/

=0 (W) rows, then by a union bound,

(- lwle < Iwls < (1+ lwl. F =

for all w € N, ,with probability 1— 4.

A v . ¢ )d
A TR (&) &
le (K/au> / ~ L (%)
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SUBSPACE EMBEDDING PROOF

2. Writing any point in sphere as linear comb. of pointsin N..

For some wqg, Wy, W5 ... € N, ancan be written:

V= Wy + Wy + Wy + ..

for constants ¢y, ¢, ... where ]ﬂ\ g;/. 10, ¢ < ]C.V\ z i
N,
W :%w‘,‘/l “\I-"-V‘l\fv O - We -\
® welle =
I\, ¢ =
. R
W, = m;&:m l ST e vl
= Vo r 1A v he el
\lfo\\aw\ T P\ l £ ™
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SUBSPACE EMBEDDING PROOF

(a) € lovl, < Ge)

3. Preserving norm of v. \\l\/ I\

Applying triangle inequality, we have that:

|02 = ||Awo + ¢ Nwy + coMwy + .. |
T < mwll + Gl + oW |+
< IPwo | + ginwy)l + &M + ... &~
(1+e)+e(’l+6)+e (1+¢€)+

< VY% U@ (ua (uc =)
L

leGe

Qe rQiro)ae

>
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SUBSPACE EMBEDDING PROOF

3. Preserving norm of v.

Similarly,

INv]|2 = [|Mwo + ciMwy + Mw, + .. ||
> [|Mwol| — e[ Mwi | — [[Mws| — ...
([P e () P (e =
>1-— E_S;
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SUBSPACE EMBEDDING PROOF

So we have proven
(1=0(e) [Ivll2 < [[Mv]l2 < (14 O(e)) V]2
for all v e Sy, which in turn implies,

O—O@HM5SEMBSU+O@HMB

Adjusting e proves the Subspace Embedding theorem.

41



SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

Letd C R" be a d-dimensional linear subspace in R". If
N e R™*4 js chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1 — 6,

(1= a)lvliz < INvliz < (1 + €)lIvli3 (3)

forallvel, as longasm:O(M)

@

For example, if m = O(k/¢), MA can be used to compute an
approximate partial SVD, which leads to a (1+ €) approximate
low-rank approximation for A.

4



€-NET FOR THE SPHERE

Lemma (e-net for the sphere)
For any e < 1, there exists a set N, C Sy with [N¢| = (%)d such
that W € Sy,

min |[v —w| <e.
WeN

Imaginary algorithm for constructing N.:

- Set N ={}
- While such a point exists, choose an arbitrary pointv € Sy
where fw € N with [|v — w|| < e. Set No = No U {w}.

After running this procedure, we have Ne = {wjs,...,wy_} and

minwep, ||V — w| < eforallv e Sy as desired.
43



€-NET FOR THE SPHERE

How many steps does this procedure take?

@@@G@ ©Q 2 |
[ 1 K

Can place a ball of radiu@round each w; without
intersecting any other balls. All of these balls live in a ball of
radius 1+ ¢/2.
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€-NET FOR THE SPHERE

Volume of d dimensional ball of radius r is

voI!d,r)

where c is a constant that depends on d, but not r. From

previous slide we have: ~
vol(d,e/2) - [N¢| < vol(d, 1+ ¢/2) -1 4L

st - N
d d
(%) <()
<) &Y

45



TIGHTER BOUND

You can actually show that m =0 M suffices to be a d

dimensional subspace embedding, instead of the bound we
proved of m = 0 (M).

€

The trick is to show that a constant factor net is actually all
that you need instead of an e factor.
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RUNTIME CONSIDERATION

For e, 8 = O(1), we need M to have m = O(d) rows.

- Cost to solve ||Ax — b||2:
- O(nd?) time for direct method. Need to compute
(ATA)~"ATb.
- O(nd) - (# of iterations) time for iterative method (GD, AGD,
conjugate gradient method).
- Cost to solve ||[MAX — Mb||3:

- O(d’) time for direct method.
- O(d?) - (# of iterations) time for iterative method.

2
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RUNTIME CONSIDERATION

But time to compute MAis an (m x n) x (n x d) matrix
multiply: O(mnd) = O(nd?) time!

Goal: Develop faster Johnson-Lindenstrauss projections.

+ EE + +
3 + k3 ~

£1 +1 1 +1 ‘ A
* s *

" +

Typically using sparse and structured matrices.

Next class: We will describe a construction where MA can be

computed in O(nd logn) time. "



RETURN TO SINGLE VECTOR PROBLEM

Goal: Develop methods that reduce a vector x € R"” down to
m = "’giﬁ dimensions in o(mn) time and guarantee:

(1= e)lIxllz < )2 < (1+ €)|x]3

+1 1 £ 1 #] +1 |
+1 +1 +1
A+ 1 X ‘
+1
+

There is a truly brilliant method that runs in O(nlog n) time.
Preview: Will involve Fast Fourier Transform in disguise.
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