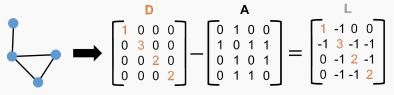
CS-GY 6763: Lecture 12 Stochastic Block Model, Randomized numerical linear algebra, ϵ -net arguments.

NYU Tandon School of Engineering, Prof. Christopher Musco

LAST CLASS

Represent undirected graph as symmetric matrix: $n \times n$ adjacency matrix A and graph Laplacian L = D - A where D is the diagonal degree matrix.



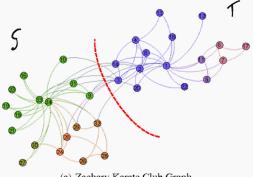
 $L = B^T B$ where B is the "edge-vertex incidence" matrix.

$$B = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

LAST CLASS

Balanced Cut: Partition nodes along a cut that:

- Has few crossing edges: $|\{(u, v) \in E : u \in S, v \in T\}|$ is small.
- Separates large partitions: |S|, |T| are not too small.



(a) Zachary Karate Club Graph

RELAX AND ROUND

We observed that $\underline{\mathbf{x}}^T L \mathbf{x} = \sum_{(i,j) \in E} (\mathbf{x}(i) - \mathbf{x}(j))^2$. If **c** is a "cut indicator vector" for a cut between node set *S* and *T* – i.e. $\mathbf{c}[i] = 1$ for all $i \in S$ and -1 for $i \in T$, then it followed that:

$$\mathbf{c}^{\mathsf{T}}\mathbf{L}\mathbf{c} = 4 \cdot \mathrm{cut}(\mathsf{S},\mathsf{T}).$$

Note: c often denote by $\chi_{S,T}$ to remind us what the cut is. And recall that we always have $S = V \setminus S$.

RELAX AND ROUND

"Relax and round" algorithm:

Perhatiz boloned cut problem

- Relax problem $\min \mathbf{c}^T \mathbf{L} \mathbf{c}$ by not requiring \mathbf{c} to be a binary cut-indicator vector.
- Showed that <u>sec</u>ond smallest eigenvector v_{n-1} of L solved the relaxed "perfectly balanced" cut problem.
- Round this vector to be a cut indicator vector: all negative entries rounded to -1, all positive entries rounded to 1.

Main theoretical result: This approach is hard to analyze in general, but can be proven to work well on random graphs drawn from a natural generative model!.

GENERATIVE MODELS

So far: Showed that spectral clustering partitions a graph along a small cut between large pieces.

- · No formal guarantee on the 'quality' of the partitioning.
- Difficult to analyze for general input graphs.

Common approach: Design a natural **generative model** that produces <u>random but realistic</u> inputs and analyze how the algorithm performs on inputs drawn from this model.

- Very common in algorithm design and analysis. Great way to start approaching a problem.
- This is also the whole idea behind Bayesian Machine Learning (can be used to justify ℓ_2 linear regression, k-means clustering, PCA, etc.)

STOCHASTIC BLOCK MODEL

Ideas for a generative model for **social network graphs** that would allow us to understand partitioning?

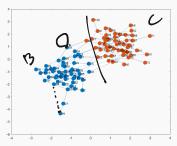
well-to uncled (our wenitres (dez; +1)(dez;+1)

STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model):

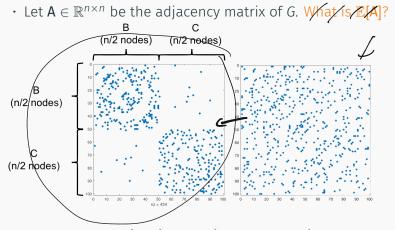
Let $G_n(p,q)$ be a distribution over graphs on n nodes, split equally into two groups B and C, each with n/2 nodes.

- Any two nodes in the same group are connected with probability <u>p</u> (including self-loops).
- Any two nodes in different groups are connected with prob. q < p.



LINEAR ALGEBRAIC VIEW

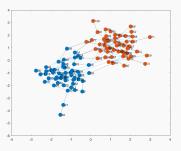
Let G be a stochastic block model graph drawn from $G_n(p,q)$.



Note that we are <u>arbitrarily</u> ordering the nodes in A by group. In reality A would look "scrambled" as on the right.

STOCHASTIC BLOCK MODEL

Goal is to find the "ground truth" balanced partition $\underline{B}, \underline{C}$ using our standard spectal method.

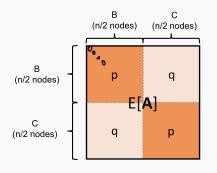


To do so, we need to understand the second smallest eigenvalue of $\underline{L} = D - A$. We will start by considering the expected value of these matrices:

$$\mathbb{E}[L] = \mathbb{E}[D] - \mathbb{E}[A]$$

EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[\mathbf{A}])_{i,j} = p$ for i,j in same group, $(\mathbb{E}[\mathbf{A}])_{i,j} = q$ otherwise.



We are going to determine the eigenvectors and eigenvalues of $\mathbb{E}[A]$.

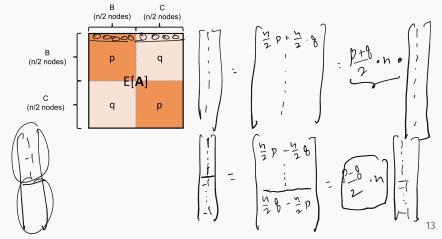
EXPECTED LAPLACIAN

What is the expected Laplacian of $G_n(p,q)$?

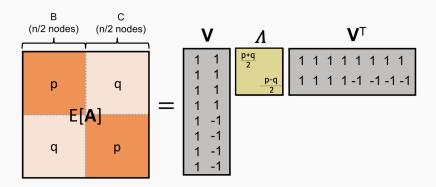
 $\mathbb{E}[A]$ and $\mathbb{E}[L]$ have the same eigenvectors and eigenvalues are equal up to a shift/inversion. So second largest eigenvector of $\mathbb{E}[A]$ is the same as the second smallest of $\mathbb{E}[L]$

EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{A}]$?



EXPECTED ADJACENCY SPECTRUM



- $\mathbf{v}_1 \sim \mathbf{1}$ with eigenvalue $\lambda_1 = \frac{(p+q)n}{2}$.
- $\mathbf{v}_2 \sim \boldsymbol{\chi}_{B,C}$ with eigenvalue $\lambda_2 = \frac{(p-q)n}{2}$.

If we compute v_2 then we recover the communities B and C!

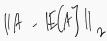
EXPECTED LAPLACIAN SPECTRUM

Upshot: The second smallest eigenvector of $\mathbb{E}[L]$, equivalently the second largest of $\mathbb{E}[A]$, is exactly $\chi_{B,C}$ – the indicator vector for the cut between the communities.

• If the random graph *G* (equivilantly **A** and **L**) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover communities *B* and *C*.

How do we show that a matrix (e.g., A) is close to its expectation? Matrix concentration inequalities.

 Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins.



MATRIX CONCENTRATION

Alon, Krivelevich, Vu, 2002:
$$\begin{bmatrix} 1+f & 0 \\ 0 & 1-f \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1+d-c \\ 0 & 1-g \end{bmatrix}$$

Matrix Concentration Inequality: If $p \ge O\left(\frac{\log^4 n}{n}\right)$, then with high probability

$$(A) - \mathbb{E}[A]\|_2 \le O(\sqrt{pn}).$$

where $\|\cdot\|_2$ is the matrix spectral norm (operator norm).

Recall that $\|\mathbf{X}\|_2 = \max_{z \in \mathbb{R}^d: \|z\|_2 = 1} \|\mathbf{X}z\|_2 = \sigma_1(\mathbf{X}).$

 $\|\mathbf{A}\|_2$ is on the order of $O(p\sqrt{p})$ so another way of thinking about the right hand side is $\frac{\|\mathbf{A}\|_2}{\sqrt{p}}$. e. get's better with p.

EIGENVECTOR PERTURBATION

For the stochastic block model application, we want to show that the second <u>eigenvectors</u> of **A** and $\mathbb{E}[A]$ are close. How does this relate to their difference in spectral norm?

Davis-Kahan Eigenvector Perturbation Theorem: Suppose $A, \overline{A} \in \mathbb{R}^{d \times d}$ are symmetric with $\|A - \overline{A}\|_2 \leq \underline{\epsilon}$ and eigenvectors $\underline{\mathbf{v}}_1, \underline{\mathbf{v}}_2, \dots, \underline{\mathbf{v}}_n$ and $\overline{\underline{\mathbf{v}}}_1, \overline{\mathbf{v}}_2, \dots, \overline{\underline{\mathbf{v}}}_n$. Letting $\theta(\mathbf{v}_i, \overline{\mathbf{v}}_i)$ denote the angle between \mathbf{v}_i and $\overline{\mathbf{v}}_i$, for all i:

$$\underline{\sin[\theta(\mathbf{v}_i,\bar{\mathbf{v}}_i)]} \leq \underline{\frac{\epsilon}{\min_{j\neq i}|\lambda_j - \lambda_j|}} \mathbf{)}$$

where $\lambda_1,\dots,\lambda_n$ are the eigenvalues of $\overline{\mbox{\bf A}}$

Claim 1 (Matrix Concentration): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \leq O(\sqrt{pn}).$$

Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\underbrace{\sin\theta(\mathbf{v}_2,\bar{\mathbf{v}}_2)} \leq \frac{O(\sqrt{pn})}{\min_{j\neq i}|\lambda_i-\lambda_j|} \leq \frac{O(\sqrt{pn})}{(p-q)n(2)} = O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$$

Recall: $\mathbb{E}[A]$, has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \geq 3$.

$$\min_{j\neq i} |\lambda_i - \lambda_j| = \min \left(\underbrace{qn}, \underbrace{\binom{p-qn}{2}} \right)$$

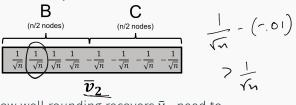
Assume $\frac{(p-q)n}{2}$ will be the minimum of these two gaps.

(A slightly trickier analysis can remove the qn term entirely.)

So far: $\sin \theta(v_2, \overline{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$. What does this give us?

• Can show that this implies $\|\mathbf{v}_2 - \bar{\mathbf{v}}_2\|_2^2 \ge O\left(\frac{p}{(p-q)^2n}\right)$ (exercise).

• $\bar{\mathbf{v}}_2$ is $\frac{1}{\sqrt{n}}\chi_{B,C}$: the community indicator vector.



• To understand how well rounding recovers \bar{v}_2 , need to understand how many locations v_2 and \bar{v}_2 can differ in sign.

Main argument:

- Every *i* where $\underline{v_2(i)}$, $\overline{v_2(i)}$ differ in sign contributes $\geq \frac{1}{n}$ to $\|\mathbf{v_2} \overline{\mathbf{v}_2}\|_2^2$.
- We know that $\|\underline{\mathbf{v}_2} \overline{\mathbf{v}_2}\|_2^2 \le O\left(\frac{p}{(p-q)^2n}\right)$.
- So v_2 and \bar{v}_2 differ in sign in at most $O\left(\frac{p}{(p-q)^2}\right)$ positions.

Upshot: If G is a stochastic block model graph with adjacency matrix A, if we compute its second large eigenvector \mathbf{v}_2 and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^2}\right)$ nodes.

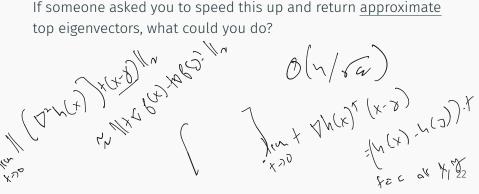
• Hard case: p = c/n for some factor c. Even when p - q = O(1/n), assign all but an O(n) fraction of nodes correctly. E.g., assign 99% of nodes to the right cluster.

RANDOMIZED NUMERICAL LINEAR ALGEBRA

Forget about the previous problem, but still consider the $matrix(M) \neq \mathbb{E}[A].$

- Dense $n \times n$ matrix.
- Computing top eigenvectors takes $\approx O(n^2/\sqrt{\epsilon})$ time.

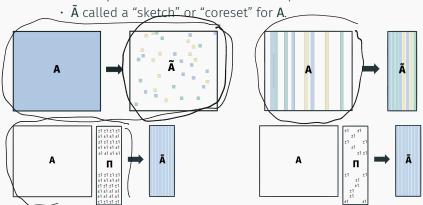
If someone asked you to speed this up and return approximate top eigenvectors, what could you do?



RANDOMIZED NUMERICAL LINEAR ALGEBRA

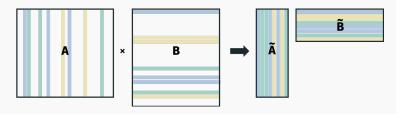
Main idea: If you want to compute singular vectors, multiply two matrices, solve a regression problem, etc.:

- 1. Compress your matrices using a randomized method (e.g. subsampling).
- 2. Solve the problem on the smaller or sparser matrix.

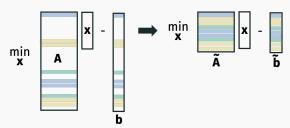


RANDOMIZED NUMERICAL LINEAR ALGEBRA

Approximate matrix multiplication:



Approximate regression:



SKETCHED REGRESSION

Today's example: Randomized approximate regression using a lobason-lindenstrauss Matrix $6(md^2)$ 0(md)Johnson-Lindenstrauss Matrix. Α Input: $A \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^n$. Goal: Let $\mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$. Let $\tilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\underline{\mathbf{\Pi}}\mathbf{A}\mathbf{x} - \underline{\mathbf{\Pi}}\tilde{\mathbf{b}}\|_2^2$

TARGET RESULT

Theorem (Randomized Linear Regression)

Let Π be a properly scaled JL matrix (random Gaussian, sign, sparse random, etc.) with $m = O\left(\frac{d}{\epsilon^2}\right)$ rows¹. Then with probability 9/10, for any $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{b} \in \mathbb{R}^n$,

$$\underbrace{\left\|\mathbf{A}\tilde{\mathbf{x}}-\mathbf{b}\right\|_{2}^{2}} \leq (1+\underline{\epsilon})\|\mathbf{A}\mathbf{x}^{*}-\mathbf{b}\|_{2}^{2}$$

where $\tilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{\Pi} \mathbf{A} \mathbf{x} - \mathbf{\Pi} \mathbf{b}\|_{2}^{2}$.

¹This can be improved to $O(d/\epsilon)$ with a tighter analysis

$$\|\vec{A}\vec{x} - \vec{b}\|_{2}^{2} \le \|\vec{A}\vec{x} - \vec{b}\|_{2}^{2} \le (1+\epsilon) \|\vec{A}\vec{x} - \vec{b}\|_{2}^{2}$$

Prove this theorem using an ϵ -net argument, which is a

- Prove this theorem using an $\underline{\epsilon}$ -net argument, which is a popular technique for applying our standard concentration inequality + union bound argument to an infinite number of events.
- These sort of arguments appear all the time in theoretical algorithms and ML research, so this part of lecture is as much about the technique as the final result.
- You will use an ϵ -net argument to prove a matrix concentration inequality on your last problem set.

SKETCHED REGRESSION

Claim: Suffices to prove that
$$\underbrace{(1-\epsilon)\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}} \leq \|\mathbf{\Pi}\mathbf{A}\mathbf{x} - \mathbf{\Pi}\mathbf{b}\|_{2}^{2} \leq (1+\epsilon)\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}$$

$$\|\mathbf{A}\hat{\mathbf{x}} - \mathbf{b}\|_{2}^{2} \leq \|\mathbf{\Pi}\mathbf{A}\mathbf{x} - \mathbf{\Pi}\mathbf{b}\|_{2}^{2} \leq (1+\epsilon)\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}$$

$$\leq \frac{1}{(1-\epsilon)} \|\mathbf{\Pi}\mathbf{A}\hat{\mathbf{x}} - \mathbf{\Pi}\mathbf{b}\|_{2}^{2}$$

DISTRIBUTIONAL JOHNSON-LINDENSTRAUSS REVIEW

Lemma (Distributional JL)

If Π is chosen to a properly scaled random Gaussian matrix, sign matrix, sparse random matrix, etc., with $O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ rows then for any fixed y,

$$(1 - \epsilon) \|\mathbf{y}\|_2^2 \le \|\mathbf{\Pi}\mathbf{y}\|_2^2 \le (1 + \epsilon) \|\mathbf{y}\|_2^2$$

with probability $(1 - \delta)$.

Corollary: For any fixed **x**, with probability $(1 - \delta)$,

$$(1-\epsilon)\|Ax - b\|_2^2 \le \|\Pi Ax - \Pi b\|_2^2 \le (1+\epsilon)\|Ax - b\|_2^2.$$

FOR ANY TO FOR ALL

How do we go from "for any fixed x" to "for all $x \in \mathbb{R}^d$ ".

This statement requires establishing a Johnson-Lindenstrauss type bound for an infinity of possible vectors (Ax – b), which can't be tackled directly with a union bound argument.

Note that all vectors of the form (Ax - b) lie in a low dimensional subspace: spanned by d + 1 vectors, where d is the width of A. So even though the set is infinite, it is "simple" in some way. Parameterized by just d + 1 numbers.

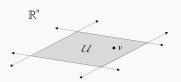
SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a <u>d-dimensional</u> linear subspace in \mathbb{R}^n . If $\mathbf{\Pi} \in \mathbb{R}^{m \times \mathbf{\ell}}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1-\epsilon)\|\mathbf{v}\|_2^2 \le \|\mathbf{\Pi}\mathbf{v}\|_2^2 \le (1+\epsilon)\|\mathbf{v}\|_2^2$$

for all $\mathbf{v} \in \mathcal{U}$, as long as $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)^2$.



²It's possible to obtain a slightly tighter bound of $O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$. It's a nice challenge to try proving this.

SUBSPACE EMBEDDING TO APPROXIMATE REGRESSION

Corollary: If we choose Π and properly scale, then with $O\left(d/\epsilon^2\right)$ rows, $\left(\frac{d}{d}\right)^2 = \|\Pi Ax - \Pi b\|_2^2 \leq (1+\epsilon) \|Ax - b\|_2^2$ for all \mathbf{x} and thus $\mathbf{x} = O\left(\frac{d}{d}\right)^2$

$$\|\mathbf{A}\tilde{\mathbf{x}} - \mathbf{b}\|_2^2 \le (1 + O(\epsilon)) \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2.$$
 . $O(d/a)$ l.e., our main theorem is proven.

Proof: Apply Subspace Embedding Thm. to the (d + 1) dimensional subspace spanned by **A**'s d columns and **b**. Every vector $\mathbf{A}\mathbf{x} - \mathbf{b}$ lies in this subspace.

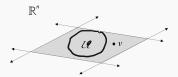
SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If $\Pi \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{v}\|_{2}^{2} \leq \|\Pi\mathbf{v}\|_{2}^{2} \leq (1 + \epsilon) \|\mathbf{v}\|_{2}^{2}$$

$$\text{for } \underline{\text{all }} \mathbf{v} \in \mathcal{U}, \text{ as long as } m = \left(0 \left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^{2}}\right)\right)$$



Subspace embeddings have tons of other applications!

SUBSPACE EMBEDDING PROOF

$$(1 - \epsilon) \|\mathbf{v}\|_2^2 \le \|\mathbf{\Pi}\mathbf{v}\|_2^2 \le (1 + \epsilon) \|\mathbf{v}\|_2^2 \tag{2}$$

First Observation: The theorem holds as long as (2) holds for all \mathbf{w} on the unit sphere in \mathcal{U} . Denote the sphere $S_{\mathcal{U}}$:

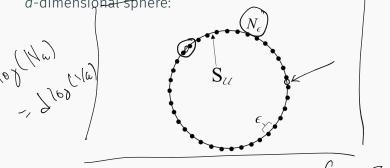
$$S_{\mathcal{U}} = \{ \mathbf{\underline{w}} \mid \mathbf{\underline{w}} \in \mathcal{U} \text{ and } \|\mathbf{\underline{w}}\|_2 = \underline{\mathbf{1}} \}.$$

Follows from linearity: Any point $\mathbf{v} \in \mathcal{U}$ can be written as $c\mathbf{w}$ for some scalar c and some point $\mathbf{w} \in S_{\mathcal{U}}$.

- If $(1 \epsilon) \|\mathbf{w}\|_2 \le \|\mathbf{\Pi}\mathbf{w}\|_2 \le (1 + \epsilon) \|\mathbf{w}\|_2$.
- then $c(1 \epsilon) \|\mathbf{w}\|_2 \le c \|\mathbf{\Pi}\mathbf{w}\|_2 \le c(1 + \epsilon) \|\mathbf{w}\|_2$,
- and thus $(1 \epsilon) \|c\mathbf{w}\|_2 \le \|\mathbf{\Pi} c\mathbf{w}\|_2 \le (1 + \epsilon) \|c\mathbf{w}\|_2$.

SUBSPACE EMBEDDING PROOF

Intuition: There are not too many "different" points on a d-dimensional sphere:



 N_{ϵ} is called an " ϵ "-net. if for all $y \in S_{u}$, $f \in \mathbb{N}_{\epsilon}$ If we can prove $S_{u}u \in \mathbb{N}_{\epsilon}$

$$(1 - \epsilon) \|\mathbf{w}\|_2 \le \|\Pi\mathbf{w}\|_2 \le (1 + \epsilon) \|\mathbf{w}\|_2$$

for all points $\mathbf{w} \in N_{\epsilon}$, we can hopefully extend to all of $S_{\mathcal{U}}$.

ϵ -NET FOR THE SPHERE

Lemma (ϵ -net for the sphere)

For any $\epsilon \leq 1$, there exists a set $N_{\epsilon} \subset S_{\mathcal{U}}$ with $|N_{\epsilon}| \leq {4 \choose 4}^d$ such that $\forall \mathbf{v} \in S_{\mathcal{U}}$,

$$\min_{\mathbf{w} \in N_{\epsilon}} \|\mathbf{v} - \mathbf{w}\|_2 \le \epsilon.$$

Take this claim to be true for now: we will prove later.

1. Preserving norms of all points in net N_{ϵ} .

 $(1 - \epsilon) \|\mathbf{w}\|_2 \le \|\Pi \mathbf{w}\|_2 \le (1 + \epsilon) \|\mathbf{w}\|_2.$

Set
$$\delta' = \frac{1}{|\mathcal{N}_{\epsilon}|} \cdot \delta = \left(\frac{\epsilon}{4}\right)^{d} \cdot \delta$$
. As long as Π has $O\left(\frac{\log(1/\delta')}{\epsilon^{2}}\right)$
= $O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^{2}}\right)$ rows, then by a union bound,

for all
$$\mathbf{w} \in N_{\epsilon}$$
 ,with probability $1 - \delta$.

$$| -8' + | + | -8' +$$

2. Writing any point in sphere as linear comb. of points in N_{ϵ} .

For some $\mathbf{w}_0, \mathbf{w}_1, \mathbf{w}_2 \dots \in N_{\epsilon}$, any $\mathbf{v} \in S_{\mathcal{U}}$ can be written:

$$\underbrace{\mathbf{v}} = \underbrace{\mathbf{w}}_0 + \underbrace{\mathbf{c}}_1 \underbrace{\mathbf{w}}_1 + \underbrace{\mathbf{c}}_2 \underbrace{\mathbf{w}}_2 + \dots$$

for constants c_1, c_2, \ldots where $|c_i| \leq \epsilon^i$. $|c_1| \leq \epsilon^j$.

$$(1-4) \le \| \| \| \|_{\mathcal{V}} \le (1+4)$$
3. Preserving norm of v. $\| \| \|_{\mathcal{V}} = 1$

Applying triangle inequality, we have that:

3. Preserving norm of v.

Similarly,

$$\|\mathbf{\Pi}\mathbf{v}\|_{2} = \|\mathbf{\Pi}\mathbf{w}_{0} + c_{1}\mathbf{\Pi}\mathbf{w}_{1} + c_{2}\mathbf{\Pi}\mathbf{w}_{2} + \dots \|$$

$$\geq \|\mathbf{\Pi}\mathbf{w}_{0}\| - \epsilon\|\mathbf{\Pi}\mathbf{w}_{1}\| - \epsilon^{2}\|\mathbf{\Pi}\mathbf{w}_{2}\| - \dots$$

$$\geq (1 - \epsilon) - \epsilon(1 + \epsilon) - \epsilon^{2}(1 + \epsilon) - \dots$$

$$\geq 1 - \underline{5\epsilon}.$$

So we have proven

$$(1 - O(\epsilon)) \|\mathbf{v}\|_2 \le \|\mathbf{\Pi}\mathbf{v}\|_2 \le (1 + O(\epsilon)) \|\mathbf{v}\|_2$$

for all $v \in S_{\mathcal{U}}$, which in turn implies,

$$(1 - O(\epsilon)) \|\mathbf{v}\|_2^2 \le \|\mathbf{\Pi}\mathbf{v}\|_2^2 \le (1 + O(\epsilon)) \|\mathbf{v}\|_2^2$$

Adjusting ϵ proves the Subspace Embedding theorem.

SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{v}\|_2^2 \le \|\mathbf{\Pi}\mathbf{v}\|_2^2 \le (1 + \epsilon) \|\mathbf{v}\|_2^2 \tag{3}$$

for all
$$\mathbf{v} \in \mathcal{U}$$
, as long as $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$

Subspace embeddings have many other applications!

For example, if $m = O(k/\epsilon)$, ΠA can be used to compute an approximate partial SVD, which leads to a $(1 + \epsilon)$ approximate low-rank approximation for A.

ϵ -NET FOR THE SPHERE

Lemma (ϵ -net for the sphere)

For any $\epsilon \leq 1$, there exists a set $N_{\epsilon} \subset S_{\mathcal{U}}$ with $|N_{\epsilon}| = \left(\frac{3}{\epsilon}\right)^d$ such that $\forall \mathbf{v} \in S_{\mathcal{U}}$,

$$\min_{\mathbf{W} \in N_{\epsilon}} \|\mathbf{V} - \mathbf{W}\| \leq \epsilon.$$

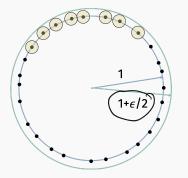
Imaginary algorithm for constructing N_{ϵ} :

- Set $N_{\epsilon} = \{\}$
- While such a point exists, choose an arbitrary point $\mathbf{v} \in S_{\mathcal{U}}$ where $\nexists \mathbf{w} \in N_{\epsilon}$ with $\|\mathbf{v} \mathbf{w}\| \le \epsilon$. Set $N_{\epsilon} = N_{\epsilon} \cup \{\mathbf{w}\}$.

After running this procedure, we have $N_{\epsilon} = \{\mathbf{w}_1, \dots, \mathbf{w}_{|N_{\epsilon}|}\}$ and $\min_{\mathbf{w} \in N_{\epsilon}} \|\mathbf{v} - \mathbf{w}\| \le \epsilon$ for all $\mathbf{v} \in S_{\mathcal{U}}$ as desired.

ϵ -NET FOR THE SPHERE

How many steps does this procedure take?



Can place a ball of radius $(\epsilon/2)$ around each \mathbf{w}_i without intersecting any other balls. All of these balls live in a ball of radius $1 + \epsilon/2$.

ϵ -NET FOR THE SPHERE

Volume of d dimensional ball of radius r is

$$vol(d,r) = c \cdot r^d$$

where c is a constant that depends on d, but not r. From

previous slide we have: $\frac{\operatorname{vol}(d,\epsilon/2)\cdot|N_{\epsilon}|\leq\operatorname{vol}(d,1+\epsilon/2)}{|N_{\epsilon}|\leq\frac{\operatorname{vol}(d,1+\epsilon/2)}{\operatorname{vol}(d,\epsilon/2)}} \xrightarrow{2} \underbrace{\left(\frac{1+\epsilon/2}{2}\right)}_{\mathsf{vol}(d,\epsilon/2)}^{\mathsf{L}}$ $\leq \left(\frac{1+\epsilon/2}{\epsilon/2}\right)^d \leq \left(\frac{3}{\epsilon}\right)^d$ 4 (2+a) + = (3)d

TIGHTER BOUND

You can actually show that $m = O\left(\frac{d + \log(1/\delta)}{\epsilon}\right)$ suffices to be a d dimensional subspace embedding, instead of the bound we proved of $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}\right)$.

The trick is to show that a <u>constant</u> factor net is actually all that you need instead of an ϵ factor.

RUNTIME CONSIDERATION

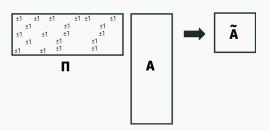
For $\epsilon, \delta = O(1)$, we need Π to have m = O(d) rows.

- Cost to solve $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$:
 - $O(nd^2)$ time for direct method. Need to compute $(A^TA)^{-1}A^Tb$.
 - O(nd) · (# of iterations) time for iterative method (GD, AGD, conjugate gradient method).
- Cost to solve $\|\mathbf{\Pi}\mathbf{A}\mathbf{x} \mathbf{\Pi}\mathbf{b}\|_2^2$:
 - $O(d^3)$ time for direct method.
 - $O(d^2)$ · (# of iterations) time for iterative method.

RUNTIME CONSIDERATION

But time to compute ΠA is an $(m \times n) \times (n \times d)$ matrix multiply: $O(mnd) = O(nd^2)$ time!

Goal: Develop faster Johnson-Lindenstrauss projections.



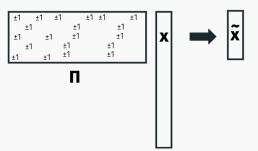
Typically using <u>sparse</u> and <u>structured</u> matrices.

Next class: We will describe a construction where ΠA can be computed in $O(nd \log n)$ time.

RETURN TO SINGLE VECTOR PROBLEM

Goal: Develop methods that reduce a vector $\mathbf{x} \in \mathbb{R}^n$ down to $m \approx \frac{\log(1/\delta)}{\epsilon^2}$ dimensions in o(mn) time and guarantee:

$$(1 - \epsilon) \|\mathbf{x}\|_2^2 \le \|\mathbf{\Pi}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2$$



There is a truly brilliant method that runs in $O(n \log n)$ time. **Preview:** Will involve Fast Fourier Transform in disguise.