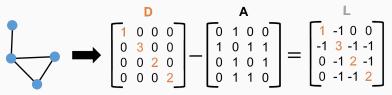
CS-GY 6763: Lecture 12 Stochastic Block Model, Randomized numerical linear algebra, ϵ -net arguments.

NYU Tandon School of Engineering, Prof. Christopher Musco

Represent undirected graph as symmetric matrix: $n \times n$ adjacency matrix A and graph Laplacian L = D - A where D is the diagonal degree matrix.



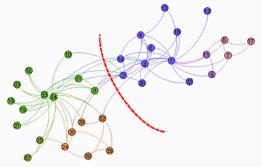
 $\mathbf{L} = \mathbf{B}^{\mathsf{T}}\mathbf{B}$ where B is the "edge-vertex incidence" matrix.

$$\mathbf{B} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

LAST CLASS

Balanced Cut: Partition nodes along a cut that:

- Has few crossing edges: $|\{(u, v) \in E : u \in S, v \in T\}|$ is small.
- Separates large partitions: |S|, |T| are not too small.



(a) Zachary Karate Club Graph

We observed that $\mathbf{x}^T L \mathbf{x} = \sum_{(i,j) \in E} (\mathbf{x}(i) - \mathbf{x}(j))^2$. If **c** is a "cut indicator vector" for a cut between node set *S* and *T* – i.e. $\mathbf{c}[i] = 1$ for all $i \in S$ and -1 for $i \in T$, then it followed that:

$$\mathbf{c}^{\mathsf{T}}\mathbf{L}\mathbf{c} = 4 \cdot cut(S, \mathsf{T}).$$

Note: c often denote by $\chi_{S,T}$ to remind us what the cut is. And recall that we always have $S = V \setminus S$.

"Relax and round" algorithm:

- Relax problem min c^TLc by not requiring c to be a binary cut-indicator vector.
- Showed that second smallest eigenvector v_{n-1} of L solved the relaxed "perfectly balanced" cut problem.
- Round this vector to be a cut indicator vector: all negative entries rounded to -1, all positive entries rounded to 1.

Main theoretical result: This approach is hard to analyze in general, but can be proven to work well on random graphs drawn from a natural generative model!.

So far: Showed that spectral clustering partitions a graph along a small cut between large pieces.

- No formal guarantee on the 'quality' of the partitioning.
- Difficult to analyze for general input graphs.

Common approach: Design a natural **generative model** that produces <u>random but realistic</u> inputs and analyze how the algorithm performs on inputs drawn from this model.

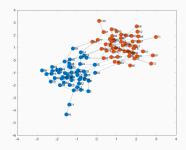
- Very common in algorithm design and analysis. Great way to start approaching a problem.
- This is also the whole idea behind Bayesian Machine Learning (can be used to justify l₂ linear regression, k-means clustering, PCA, etc.)

Ideas for a generative model for **social network graphs** that would allow us to understand partitioning?

Stochastic Block Model (Planted Partition Model):

Let $G_n(p,q)$ be a distribution over graphs on n nodes, split equally into two groups B and C, each with n/2 nodes.

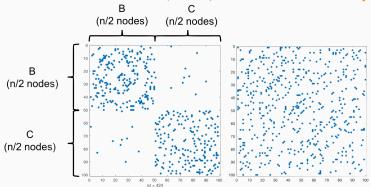
- Any two nodes in the **same group** are connected with probability *p* (including self-loops).
- Any two nodes in different groups are connected with prob. q < p.



LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from $G_n(p,q)$.

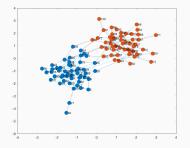
• Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be the adjacency matrix of *G*. What is $\mathbb{E}[\mathbf{A}]$?



Note that we are <u>arbitrarily</u> ordering the nodes in A by group. In reality A would look "scrambled" as on the right.

STOCHASTIC BLOCK MODEL

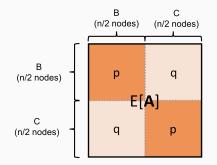
Goal is to find the "ground truth" balanced partition *B*, *C* using our standard spectal method.



To do so, we need to understand the second smallest eigenvalue of L = D - A. We will start by considering the expected value of these matrices:

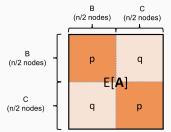
$$\mathbb{E}[\mathsf{L}] = \mathbb{E}[\mathsf{D}] - \mathbb{E}[\mathsf{A}].$$

Letting *G* be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[\mathbf{A}])_{i,j} = p$ for i, j in same group, $(\mathbb{E}[\mathbf{A}])_{i,j} = q$ otherwise.

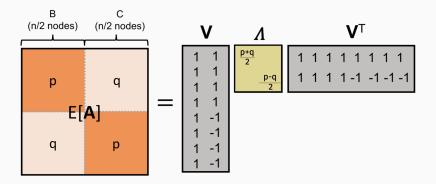


We are going to determine the eigenvectors and eigenvalues of $\mathbb{E}[A]$. What is the expected Laplacian of $G_n(p,q)$?

 $\mathbb{E}[A]$ and $\mathbb{E}[L]$ have the same eigenvectors and eigenvalues are equal up to a shift/inversion. So second largest eigenvector of $\mathbb{E}[A]$ is the same as the second smallest of $\mathbb{E}[L]$ Letting *G* be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{A}]$?



EXPECTED ADJACENCY SPECTRUM



- $\mathbf{v}_1 \sim \mathbf{1}$ with eigenvalue $\lambda_1 = \frac{(p+q)n}{2}$.
- $\mathbf{v}_2 \sim \boldsymbol{\chi}_{B,C}$ with eigenvalue $\lambda_2 = \frac{(p-q)n}{2}$.

If we compute \mathbf{v}_2 then we recover the communities B and C!

Upshot: The second smallest eigenvector of $\mathbb{E}[L]$, equivalently the second largest of $\mathbb{E}[A]$, is exactly $\chi_{B,C}$ – the indicator vector for the cut between the communities.

• If the random graph *G* (equivilantly **A** and **L**) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover communities *B* and *C*.

How do we show that a matrix (e.g., A) is close to its expectation? Matrix concentration inequalities.

• Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins.

Alon, Krivelevich, Vu, 2002:

Matrix Concentration Inequality: If $p \ge O\left(\frac{\log^4 n}{n}\right)$, then with high probability

$$\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$$

where $\|\cdot\|_2$ is the matrix spectral norm (operator norm).

Recall that $\|\mathbf{X}\|_2 = \max_{z \in \mathbb{R}^d : \|z\|_2 = 1} \|\mathbf{X}z\|_2 = \sigma_1(\mathbf{X}).$

 $\|\mathbf{A}\|_2$ is on the order of $O(p\sqrt{n})$ so another way of thinking about the right hand side is $\frac{\|\mathbf{A}\|_2}{\sqrt{p}}$. I.e. get's better with p.

For the stochastic block model application, we want to show that the second <u>eigenvectors</u> of A and $\mathbb{E}[A]$ are close. How does this relate to their difference in spectral norm?

Davis-Kahan Eigenvector Perturbation Theorem: Suppose $\mathbf{A}, \overline{\mathbf{A}} \in \mathbb{R}^{d \times d}$ are symmetric with $\|\mathbf{A} - \overline{\mathbf{A}}\|_2 \leq \epsilon$ and eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ and $\overline{\mathbf{v}}_1, \overline{\mathbf{v}}_2, \ldots, \overline{\mathbf{v}}_n$. Letting $\theta(\mathbf{v}_i, \overline{\mathbf{v}}_i)$ denote the angle between \mathbf{v}_i and $\overline{\mathbf{v}}_i$, for all *i*:

$$ext{sin}[heta(extbf{v}_i, ar{ extbf{v}}_i)] \leq rac{\epsilon}{\min_{j
eq i} |\lambda_i - \lambda_j|}$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of \overline{A} .

APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For $p \ge O\left(\frac{\log^4 n}{n}\right)$, $\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$

Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\sin\theta(\mathbf{v}_2, \mathbf{\bar{v}}_2) \le \frac{O(\sqrt{pn})}{\min_{j \ne i} |\lambda_i - \lambda_j|} \le \frac{O(\sqrt{pn})}{(p-q)n/2} = O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$$

Recall: $\mathbb{E}[\mathbf{A}]$, has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \ge 3$.

$$\min_{j\neq i} |\lambda_i - \lambda_j| = \min\left(qn, \frac{(p-q)n}{2}\right)$$

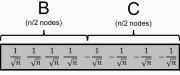
Assume $\frac{(p-q)n}{2}$ will be the minimum of these two gaps.

(A slightly trickier analysis can remove the *qn* term entirely.)

APPLICATION TO STOCHASTIC BLOCK MODEL

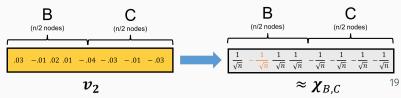
So far: $\sin \theta(\mathbf{v}_2, \bar{\mathbf{v}}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$. What does this give us?

- Can show that this implies $\|\mathbf{v}_2 \bar{\mathbf{v}}_2\|_2^2 \le O\left(\frac{p}{(p-q)^2n}\right)$ (exercise).
- $\bar{\mathbf{v}}_2$ is $\frac{1}{\sqrt{n}}\chi_{B,C}$: the community indicator vector.



 \overline{v}_2

• To understand how well rounding recovers \bar{v}_2 , need to understand how many locations v_2 and \bar{v}_2 can differ in sign.



Main argument:

- Every *i* where $v_2(i)$, $\bar{v}_2(i)$ differ in sign contributes $\geq \frac{1}{n}$ to $\|\mathbf{v}_2 \bar{\mathbf{v}}_2\|_2^2$.
- We know that $\|\mathbf{v}_2 \bar{\mathbf{v}}_2\|_2^2 \leq O\left(\frac{p}{(p-q)^2n}\right)$.
- So \mathbf{v}_2 and $\mathbf{\bar{v}}_2$ differ in sign in at most $O\left(\frac{p}{(p-q)^2}\right)$ positions.

Upshot: If *G* is a stochastic block model graph with adjacency matrix **A**, if we compute its second large eigenvector \mathbf{v}_2 and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^2}\right)$ nodes.

• Hard case: p = c/n for some factor c. Even when p - q = O(1/n), assign all but an O(n) fraction of nodes correctly. E.g., assign 99% of nodes to the right cluster.

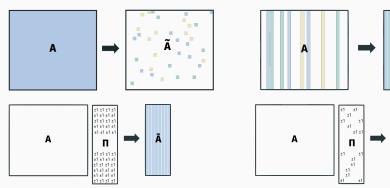
Forget about the previous problem, but still consider the matrix $M=\mathbb{E}[A].$

- Dense $n \times n$ matrix.
- Computing top eigenvectors takes $\approx O(n^2/\sqrt{\epsilon})$ time.

If someone asked you to speed this up and return <u>approximate</u> top eigenvectors, what could you do?

Main idea: If you want to compute singular vectors, multiply two matrices, solve a regression problem, etc.:

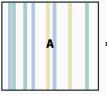
- 1. Compress your matrices using a randomized method (e.g. subsampling).
- 2. Solve the problem on the smaller or sparser matrix.
 - Ã called a "sketch" or "coreset" for A.



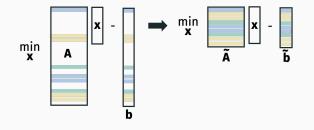
Ã

RANDOMIZED NUMERICAL LINEAR ALGEBRA

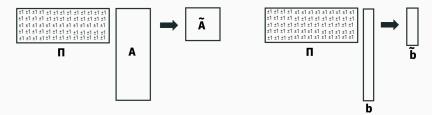
Approximate matrix multiplication:



Approximate regression:



Today's example: Randomized approximate regression using a Johnson-Lindenstrauss Matrix.



Input: $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{b} \in \mathbb{R}^{n}$. Goal: Let $\mathbf{x}^* = \arg \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$. Let $\mathbf{\tilde{x}} = \arg \min_{\mathbf{x}} \|\mathbf{\Pi}\mathbf{A}\mathbf{x} - \mathbf{\Pi}\mathbf{\tilde{b}}\|_2^2$ Want: $\|\mathbf{A}\mathbf{\tilde{x}} - \mathbf{b}\|_2^2 \le (1 + \epsilon) \|\mathbf{A}\mathbf{x}^* - \mathbf{b}\|_2^2$

TARGET RESULT

Theorem (Randomized Linear Regression)

Let Π be a properly scaled JL matrix (random Gaussian, sign, sparse random, etc.) with $m = O\left(\frac{d}{\epsilon^2}\right)$ rows¹. Then with probability 9/10, for any $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{b} \in \mathbb{R}^n$,

$$\|\mathbf{A}\mathbf{\tilde{x}} - \mathbf{b}\|_2^2 \le (1+\epsilon)\|\mathbf{A}\mathbf{x}^* - \mathbf{b}\|_2^2$$

where $\tilde{\mathbf{x}} = \arg \min_{\mathbf{x}} \|\mathbf{\Pi} \mathbf{A} \mathbf{x} - \mathbf{\Pi} \mathbf{b}\|_{2}^{2}$.

¹This can be improved to $O(d/\epsilon)$ with a tighter analysis

- Prove this theorem using an <u>e-net argument</u>, which is a popular technique for applying our standard concentration inequality + union bound argument to an <u>infinite number of events</u>.
- These sort of arguments appear all the time in theoretical algorithms and ML research, so this part of lecture is as much about the technique as the final result.
- You will use an ϵ -net argument to prove a matrix concentration inequality on your last problem set.

Claim: Suffices to prove that for all $\mathbf{x} \in \mathbb{R}^d$,

$$(1 - \epsilon) \|Ax - b\|_2^2 \le \|\Pi Ax - \Pi b\|_2^2 \le (1 + \epsilon) \|Ax - b\|_2^2$$

Lemma (Distributional JL)

If **Π** is chosen to a properly scaled random Gaussian matrix, sign matrix, sparse random matrix, etc., with $O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ rows then for any fixed **y**,

$$(1 - \epsilon) \|\mathbf{y}\|_2^2 \le \|\mathbf{\Pi}\mathbf{y}\|_2^2 \le (1 + \epsilon) \|\mathbf{y}\|_2^2$$

with probability $(1 - \delta)$.

Corollary: For any fixed **x**, with probability $(1 - \delta)$,

$$(1-\epsilon)\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \le \|\mathbf{\Pi}\mathbf{A}\mathbf{x} - \mathbf{\Pi}\mathbf{b}\|_2^2 \le (1+\epsilon)\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2.$$

How do we go from "for any fixed **x**" to "for all $\mathbf{x} \in \mathbb{R}^{d}$ ".

This statement requires establishing a Johnson-Lindenstrauss type bound for an <u>infinity</u> of possible vectors (Ax - b), which can't be tackled directly with a union bound argument.

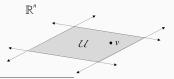
Note that all vectors of the form (Ax - b) lie in a low dimensional subspace: spanned by d + 1 vectors, where d is the width of A. So even though the set is infinite, it is "simple" in some way. Parameterized by just d + 1 numbers.

Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1-\epsilon) \|\mathbf{v}\|_2^2 \le \|\Pi \mathbf{v}\|_2^2 \le (1+\epsilon) \|\mathbf{v}\|_2^2$$

for all
$$\mathbf{v} \in \mathcal{U}$$
, as long as $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)^2$.



²It's possible to obtain a slightly tighter bound of $O\left(\frac{d+\log(1/\delta)}{\epsilon^2}\right)$. It's a nice challenge to try proving this.

SUBSPACE EMBEDDING TO APPROXIMATE REGRESSION

Corollary: If we choose Π and properly scale, then with $O\left(d/\epsilon^2\right)$ rows,

$$(1 - \epsilon) \|Ax - b\|_2^2 \le \|\Pi Ax - \Pi b\|_2^2 \le (1 + \epsilon) \|Ax - b\|_2^2$$

for all **x** and thus

$$\|\mathbf{A}\mathbf{\tilde{x}} - \mathbf{b}\|_{2}^{2} \le (1 + O(\epsilon)) \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}.$$

I.e., our main theorem is proven.

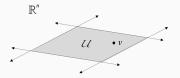
Proof: Apply Subspace Embedding Thm. to the (d + 1) dimensional subspace spanned by A's *d* columns and **b**. Every vector $\mathbf{Ax} - \mathbf{b}$ lies in this subspace.

Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1-\epsilon) \|\mathbf{v}\|_2^2 \le \|\mathbf{\Pi}\mathbf{v}\|_2^2 \le (1+\epsilon) \|\mathbf{v}\|_2^2 \tag{1}$$

for all
$$\mathbf{v} \in \mathcal{U}$$
, as long as $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$



Subspace embeddings have tons of other applications!

$$(1 - \epsilon) \|\mathbf{v}\|_2^2 \le \|\Pi \mathbf{v}\|_2^2 \le (1 + \epsilon) \|\mathbf{v}\|_2^2$$
(2)

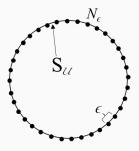
First Observation: The theorem holds as long as (2) holds for all **w** on the unit sphere in U. Denote the sphere S_U :

$$S_{\mathcal{U}} = \{ \mathbf{w} \, | \, \mathbf{w} \in \mathcal{U} \text{ and } \| \mathbf{w} \|_2 = 1 \}.$$

Follows from linearity: Any point $v \in U$ can be written as cw for some scalar c and some point $w \in S_U$.

- If $(1 \epsilon) \|\mathbf{w}\|_2 \le \|\mathbf{\Pi}\mathbf{w}\|_2 \le (1 + \epsilon) \|\mathbf{w}\|_2$.
- then $c(1-\epsilon) \|\mathbf{w}\|_2 \le c \|\mathbf{\Pi}\mathbf{w}\|_2 \le c(1+\epsilon) \|\mathbf{w}\|_2$,
- and thus $(1 \epsilon) \| c \mathbf{w} \|_2 \le \| \mathbf{\Pi} c \mathbf{w} \|_2 \le (1 + \epsilon) \| c \mathbf{w} \|_2$.

Intuition: There are not too many "different" points on a *d*-dimensional sphere:



 N_{ϵ} is called an " ϵ "-net.

If we can prove

$$(1-\epsilon) \|\mathbf{w}\|_2 \le \|\mathbf{\Pi}\mathbf{w}\|_2 \le (1+\epsilon) \|\mathbf{w}\|_2$$

for all points $\mathbf{w} \in N_{\epsilon}$, we can hopefully extend to all of $S_{\mathcal{U}}$.

$\epsilon\text{-}\mathsf{NET}$ for the sphere

Lemma (ϵ -net for the sphere)

For any $\epsilon \leq 1$, there exists a set $N_{\epsilon} \subset S_{\mathcal{U}}$ with $|N_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^{d}$ such that $\forall \mathbf{v} \in S_{\mathcal{U}}$,

$$\min_{\mathbf{v}\in\mathcal{N}_{\epsilon}}\|\mathbf{v}-\mathbf{w}\|_{2}\leq\epsilon.$$

ν

Take this claim to be true for now: we will prove later.

1. Preserving norms of all points in net N_{ϵ} .

Set
$$\delta' = \frac{1}{|\mathcal{N}_{\epsilon}|} \cdot \delta = \left(\frac{\epsilon}{4}\right)^{d} \cdot \delta$$
. As long as Π has $O\left(\frac{\log(1/\delta')}{\epsilon^{2}}\right)$
= $O\left(\frac{d\log(1/\epsilon) + \log(1/\delta)}{\epsilon^{2}}\right)$ rows, then by a union bound,

$$(1-\epsilon) \|\mathbf{w}\|_2 \le \|\mathbf{\Pi}\mathbf{w}\|_2 \le (1+\epsilon) \|\mathbf{w}\|_2.$$

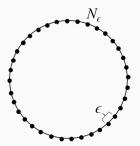
for <u>all</u> $\mathbf{w} \in N_{\epsilon}$, with probability $1 - \delta$.

2. Writing any point in sphere as linear comb. of points in N_{ϵ} .

For some $\mathbf{w}_0, \mathbf{w}_1, \mathbf{w}_2 \dots \in N_{\epsilon}$, any $\mathbf{v} \in S_{\mathcal{U}}$. can be written:

 $\mathbf{V} = \mathbf{W}_0 + c_1 \mathbf{W}_1 + c_2 \mathbf{W}_2 + \dots$

for constants c_1, c_2, \ldots where $|c_i| \leq \epsilon^i$.



3. Preserving norm of v.

Applying triangle inequality, we have that:

$$\begin{aligned} \|\mathbf{\Pi}\mathbf{v}\|_{2} &= \|\mathbf{\Pi}\mathbf{w}_{0} + c_{1}\mathbf{\Pi}\mathbf{w}_{1} + c_{2}\mathbf{\Pi}\mathbf{w}_{2} + \dots \| \\ &\leq \|\mathbf{\Pi}\mathbf{w}_{0}\| + c_{1}\|\mathbf{\Pi}\mathbf{w}_{1}\| + c_{2}\|\mathbf{\Pi}\mathbf{w}_{2}\| + \dots \\ &\leq \|\mathbf{\Pi}\mathbf{w}_{0}\| + \epsilon\|\mathbf{\Pi}\mathbf{w}_{1}\| + \epsilon^{2}\|\mathbf{\Pi}\mathbf{w}_{2}\| + \dots \\ &\leq (1+\epsilon) + \epsilon(1+\epsilon) + \epsilon^{2}(1+\epsilon) + \dots \\ &\leq 1+2\epsilon. \end{aligned}$$

3. Preserving norm of v.

Similarly,

$$\|\mathbf{\Pi}\mathbf{v}\|_{2} = \|\mathbf{\Pi}\mathbf{w}_{0} + c_{1}\mathbf{\Pi}\mathbf{w}_{1} + c_{2}\mathbf{\Pi}\mathbf{w}_{2} + \dots \|$$

$$\geq \|\mathbf{\Pi}\mathbf{w}_{0}\| - \epsilon\|\mathbf{\Pi}\mathbf{w}_{1}\| - \epsilon^{2}\|\mathbf{\Pi}\mathbf{w}_{2}\| - \dots$$

$$\geq (1 - \epsilon) - \epsilon(1 + \epsilon) - \epsilon^{2}(1 + \epsilon) - \dots$$

$$\geq 1 - 5\epsilon.$$

So we have proven

$$(1 - O(\epsilon)) \|\mathbf{v}\|_2 \le \|\mathbf{\Pi}\mathbf{v}\|_2 \le (1 + O(\epsilon)) \|\mathbf{v}\|_2$$

for all $\mathbf{v} \in S_{\mathcal{U}}$, which in turn implies,

$$(1 - O(\epsilon)) \|\mathbf{v}\|_2^2 \le \|\mathbf{\Pi}\mathbf{v}\|_2^2 \le (1 + O(\epsilon)) \|\mathbf{v}\|_2^2$$

Adjusting ϵ proves the Subspace Embedding theorem.

Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{v}\|_2^2 \le \|\mathbf{\Pi}\mathbf{v}\|_2^2 \le (1 + \epsilon) \|\mathbf{v}\|_2^2$$
(3)
for all $\mathbf{v} \in \mathcal{U}$, as long as $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$

Subspace embeddings have many other applications!

For example, if $m = O(k/\epsilon)$, **ΠA** can be used to compute an approximate partial SVD, which leads to a $(1 + \epsilon)$ approximate low-rank approximation for **A**.

$\epsilon\text{-}\mathsf{NET}$ for the sphere

Lemma (ϵ -net for the sphere)

For any $\epsilon \leq 1$, there exists a set $N_{\epsilon} \subset S_{\mathcal{U}}$ with $|N_{\epsilon}| = \left(\frac{3}{\epsilon}\right)^{d}$ such that $\forall \mathbf{v} \in S_{\mathcal{U}}$,

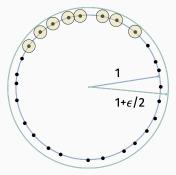
$$\min_{\mathbf{v}\in N_{\epsilon}}\|\mathbf{v}-\mathbf{w}\|\leq\epsilon.$$

Imaginary algorithm for constructing N_{ϵ} :

- Set $N_{\epsilon} = \{\}$
- While such a point exists, choose an arbitrary point $\mathbf{v} \in S_{\mathcal{U}}$ where $\nexists \mathbf{w} \in N_{\epsilon}$ with $\|\mathbf{v} - \mathbf{w}\| \le \epsilon$. Set $N_{\epsilon} = N_{\epsilon} \cup \{\mathbf{w}\}$.

After running this procedure, we have $N_{\epsilon} = \{\mathbf{w}_1, \dots, \mathbf{w}_{|N_{\epsilon}|}\}$ and $\min_{\mathbf{w}\in N_{\epsilon}} \|\mathbf{v} - \mathbf{w}\| \le \epsilon$ for all $\mathbf{v} \in S_{\mathcal{U}}$ as desired.

How many steps does this procedure take?



Can place a ball of radius $\epsilon/2$ around each \mathbf{w}_i without intersecting any other balls. All of these balls live in a ball of radius $1 + \epsilon/2$.

Volume of *d* dimensional ball of radius *r* is

$$\mathsf{vol}(d,r) = c \cdot r^d,$$

where c is a constant that depends on d, but not r. From

previous slide we have:

$$\begin{aligned} \operatorname{vol}(d, \epsilon/2) \cdot |N_{\epsilon}| &\leq \operatorname{vol}(d, 1 + \epsilon/2) \\ |N_{\epsilon}| &\leq \frac{\operatorname{vol}(d, 1 + \epsilon/2)}{\operatorname{vol}(d, \epsilon/2)} \\ &\leq \left(\frac{1 + \epsilon/2}{\epsilon/2}\right)^{d} \leq \left(\frac{3}{\epsilon}\right)^{c} \end{aligned}$$

You can actually show that $m = O\left(\frac{d + \log(1/\delta)}{\epsilon}\right)$ suffices to be a d dimensional subspace embedding, instead of the bound we proved of $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}\right)$.

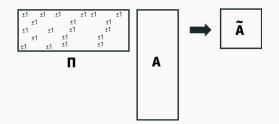
The trick is to show that a <u>constant</u> factor net is actually all that you need instead of an ϵ factor.

For $\epsilon, \delta = O(1)$, we need Π to have m = O(d) rows.

- Cost to solve $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$:
 - $O(nd^2)$ time for direct method. Need to compute $(A^TA)^{-1}A^Tb$.
 - *O*(*nd*) (# of iterations) time for iterative method (GD, AGD, conjugate gradient method).
- Cost to solve $\|\Pi Ax \Pi b\|_2^2$:
 - $O(d^3)$ time for direct method.
 - $O(d^2)$ (# of iterations) time for iterative method.

But time to compute **ΠA** is an $(m \times n) \times (n \times d)$ matrix multiply: $O(mnd) = O(nd^2)$ time!

Goal: Develop faster Johnson-Lindenstrauss projections.

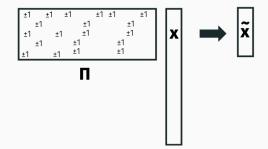


Typically using <u>sparse</u> and <u>structured</u> matrices.

Next class: We will describe a construction where ΠA can be computed in $O(nd \log n)$ time.

Goal: Develop methods that reduce a vector $\mathbf{x} \in \mathbb{R}^n$ down to $m \approx \frac{\log(1/\delta)}{\epsilon^2}$ dimensions in o(mn) time and guarantee:

$$(1-\epsilon)\|\mathbf{x}\|_{2}^{2} \leq \|\mathbf{\Pi}\mathbf{x}\|_{2}^{2} \leq (1+\epsilon)\|\mathbf{x}\|_{2}^{2}$$



There is a truly brilliant method that runs in $O(n \log n)$ time. **Preview:** Will involve Fast Fourier Transform in disguise.