
CS-GY :ࠂ676 Lecture ࠀࠀ
Spectral clustering, spectral graph theory.

NYU Tandon School of Engineering, Prof. Christopher Musco

ࠀ



SPECTRAL GRAPH THEORY

Main idea: Understand graph data by constructing natural
matrix representations, and studying that matrix’s spectrum
(eigenvalues/eigenvectors).

For now assume G = (V, E) is an undirected, unweighted graph
with n nodes.
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MATRIX REPRESENTATIONS OF GRAPHS

Two most common representations: n× n adjacency matrix A
and graph Laplacian L = D− A where D is the diagonal degree
matrix.

Also common to look at normalized versions of both of these:
Ā = D−ࠁ/ࠀAD−ࠁ/ࠀ and L̄ = I− D−ࠁ/ࠀAD−ࠁ/ࠀ.
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SPECTRAL GRAPH THEORY TIDBITS

• If L have k eigenvalues equal to ,߿ then G has k connected
components.

• Sum of cubes of A’s eigenvalues is equal to number of
triangles in the graph times .ࠅ

• Sum of eigenvalues to the power q is proportional to the
number of q cycles.
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THE LAPLACIAN VIEW

L = BTB where B is the signed “edge-vertex incidence” matrix.

B =
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THE LAPLACIAN VIEW

L = BTB = bࠀbTࠀ + bࠁbTࠁ + . . .+ bmbTm,

where bi is the ith row of B (each row corresponds to a single
edge).
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THE LAPLACIAN VIEW

Conclusions from L = BTB

• L is positive semidefinite: xTLx ≥ ߿ for all x.

• L = VΣࠁVT where UΣVT is B’s SVD. Columns of V are
eigenvectors of L.

• For any vector x ∈ Rn,

xTLx =
∑

(i,j)∈E

(x(i)− x(j))ࠁ.
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THE LAPLACIAN VIEW

xTLx =
∑

(i,j)∈E(x(i)− x(j))ࠁ. So xTLx is small if x is a “smooth”
function with respect to the graph.

Eigenvectors of the Laplacian with small eigenvalues
correspond to smooth functions over the graph.
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ANOTHER EXAMPLE OF A SMOOTH FUNCTION

Any function that only has a large change across a small cut in
the graph is also smooth.
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SMALLEST LAPLACIAN EIGENVECTOR

Courant–Fischer min-max principle

Let V = [vࠀ, . . . , vn] be the eigenvectors of L.

vn = argmin
‖v‖=ࠀ

vTLv

vn−ࠀ = argmin
‖v‖=ࠀ,v⊥vn

vTLv

vn−ࠁ = argmin
‖v‖=ࠀ,v⊥vn,vn−ࠀ

vTLv

...
vࠀ = argmin

‖v‖=ࠀ,v⊥vn,...,vࠁ
vTLv
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LARGEST LAPLACIAN EIGENVECTOR

Courant–Fischer min-max principle

Let V = [vࠀ, . . . , vn] be the eigenvectors of L.

vࠀ = argmax
‖v‖=ࠀ

vTLv

vࠁ = argmax
‖v‖=ࠀ,v⊥vࠀ

vTLv

vࠂ = argmax
‖v‖=ࠀ,v⊥vࠀ,vࠁ

vTLv

...
vn = argmax

‖v‖=ࠀ,v⊥vࠀ,...,vn−ࠀ

vTLv
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EXAMPLE APPLICATION OF SPECTRAL GRAPH THEORY

• Study graph partitioning problem important in (ࠀ
understanding social networks (ࠁ nonlinear clustering in
unsupervised machine learning (spectral clustering). (ࠂ
Graph visualization (ࠃ Mesh partitioning

• See how this problem can be solved heuristically using
Laplacian eigenvectors.

• Give a full analysis of the method for a common random
graph model.

• Use two tools: matrix concentration and eigenvector
perturbation bounds.
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BALANCED CUT

Common goal: Given a graph G = (V, E), partition nodes along
a cut that:

• Has few crossing edges: |{(u, v) ∈ E : u ∈ S, v ∈ T}| is small.
• Separates large partitions: |S|, |T| are not too small.

Important in understanding community structure in social
networks. ࠂࠀ
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SOCIAL NETWORKS IN THE S߿97ࠀ

Wayne W. Zachary .(ࠆࠆࠈࠀ) An Information Flow Model for
Conflict and Fission in Small Groups.

“The network captures ࠃࠂ members of a karate club, documenting
links between pairs of members who interacted outside the club.
During the study a conflict arose between the administrator ”John A”
and instructor ”Mr. Hi” (pseudonyms), which led to the split of the
club into two. Half of the members formed a new club around Mr. Hi;
members from the other part found a new instructor or gave up
karate. Based on collected data Zachary correctly assigned all but
one member of the club to the groups they actually joined after the
split.” – Wikipedia

Beautiful paper – definitely worth checking out!
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BALANCED CUT

Common goal: Given a graph G = (V, E), partition nodes along
a cut that:

• Has few crossing edges: |{(u, v) ∈ E : u ∈ S, v ∈ T}| is small.
• Separates large partitions: |S|, |T| are not too small.

Important in understanding community structure in social
networks. ࠄࠀ



SPECTRAL CLUSTERING

Idea: Construct synthetic graph for data that is hard to cluster.

Spectral Clustering, Laplacian Eigenmaps, Locally linear
embedding, Isomap, etc.

ࠅࠀ

¥ 0 . .
°f¥ i o ¥



SPECTRAL GRAPH PARTITIONING

There are many way’s to formalize Zachary’s problem:

β-Balanced Cut:

min
S

cut(S, V \ S) such that min (|S|, |V \ S|) ≥ β for β ≤ ࠄ.

Sparsest Cut:

min
S

cut(S, V \ S)
min (|S|, |V \ S|)

Most formalizations lead to NP-hard problems. Lots of interest
in designing polynomial time approximation algorithms, but
tend to be slow. In practice, much simpler methods based on
the graph spectrum are used.

Spectral methods run in at worst O(nࠂ) time (faster if you use
iterative methods). ࠆࠀ
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SPECTRAL GRAPH PARTITIONING

Basic spectral clustering method:

• Compute second smallest eigenvalue of graph, vn−ࠀ.
• vn−ࠀ has an entry for every node i in the graph.
• If the ith entry is positive, put node i in T.
• Otherwise if the ith entry is negative, put i in S.

This shouldn’t make much sense yet!
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THE LAPLACIAN VIEW

Another conclusion from L = BTB:

For a cut indicator vector c ∈ ,ࠀ−} n{ࠀ with c(i) = ࠀ− for i ∈ S
and c(i) = ࠀ for i ∈ T = V \ S:

cTLc =
∑

(i,j)∈E

(c(i)− c(j))ࠁ = ࠃ · cut(S, T). (ࠀ)
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THE LAPLACIAN VIEW

For a cut indicator vector c ∈ ,ࠀ−} n{ࠀ with c(i) = ࠀ− for i ∈ S
and c(i) = ࠀ for i ∈ T:

• cTLc = ࠃ · cut(S, T).
• cTࠀ = |T|− |S|.

Want to minimize both cTLc (cut size) and |cTࠀ| (imbalance).
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THE LAPLACIAN VIEW

Equivalent formulation if we divide everything by
√
n so that c

has norm .ࠀ Then c ∈ {− √ࠀ
n

√ࠀ
n}

n and:

• cTLc = ࠃ
n · cut(S, T).

• cTࠀ = √ࠀ
n(|T|− |S|).

Want to minimize both cTLc (cut size) and |cTࠀ| (imbalance).
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SMALLEST LAPLACIAN EIGENVECTOR

The smallest eigenvector/singular vector vn satisfies:

vn =
√ࠀ
n
· ࠀ = argmin

v∈Rn with ‖v‖=ࠀ
vTLv

with vTnLvn = .߿

What is v߿?
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SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, vn−ࠀ is given by:

vn−ࠀ = argmin
‖v‖=ࠀ, vTnv=߿

vTLv

If vn−ࠀ were binary {− √ࠀ
n ,

√ࠀ
n}

n it would have:

• vTn−ࠀLvn−ࠀ =
ࠀ
n cut(S, T) as small as possible given that

vTn−ࠀࠀ = |T|− |S| = .߿
• vn−ࠀ would indicate the smallest perfectly balanced cut.

vn−ࠀ ∈ Rn is not generally binary, but a natural approach is to
‘round’ the vector to obtain a cut.

ࠂࠁ

un= f!).#
|-O@_#t

1 = 0

-

V = f . . . . - 7 → V r = (Ya...-Ya-n.]



CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

vn−ࠀ = argmin
v∈Rn with ‖v‖=ࠀ, vT߿=ࠀ

vTLv

Set S to be all nodes with vn−ࠀ(i) < ,߿ and T to be all with
vn−ࠀ(i) ≥ .߿
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SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D−ࠁ/ࠀLD−ࠁ/ࠀ.

Important consideration: What to do when we want to split
the graph into more than two parts?
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SPECTRAL PARTITIONING IN PRACTICE

Spectral Clustering:

• Compute smallest k eigenvectors vn−ࠀ, . . . , vn−! of L.
• Represent each node by its corresponding row in V ∈ Rn×!

whose rows are vn−ࠀ, . . . vn−!.
• Cluster these rows using k-means clustering (or really any
clustering method).

• Often we choose " = k, but not necessarily.
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LAPLACIAN EMBEDDING

Original Data: (not linearly separable)

ࠆࠁ



LAPLACIAN EMBEDDING

k-Nearest Neighbors Graph:

ࠇࠁ
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LAPLACIAN EMBEDDING

Embedding with eigenvectors vn−ࠀ, vn−ࠁ: (linearly separable)

ࠈࠁ
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WHY DOES THIS WORK?

Intuitively, since v ∈ vࠀ, . . . vk are smooth over the graph,
∑

i,j∈E

(v[i]− v[j])ࠁ

is small for each coordinate. I.e. this embedding explicitly
encourages nodes connected by an edge to be placed in
nearby locations in the embedding.

Also useful e.g., in graph drawing.
߿ࠂ
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TONS OF OTHER APPLICATIONS!

Fast balanced partitioning algorithms are also use in
distributing data in graph databases, for partitioning finite
element meshes in scientific computing (e.g., that arise when
solving differential equations), and more.

Lots of good software packages (e.g. METIS).
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GENERATIVE MODELS

So far: Showed that spectral clustering partitions a graph
along a small cut between large pieces.

• No formal guarantee on the ‘quality’ of the partitioning.
• Difficult to analyze for general input graphs.

Common approach: Design a natural generative model that
produces random but realistic inputs and analyze how the
algorithm performs on inputs drawn from this model.

• Very common in algorithm design and analysis. Great way
to start approaching a problem.

• This is also the whole idea behind Bayesian Machine
Learning (can be used to justify ࠁ" linear regression,
k-means clustering, PCA, etc.)
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STOCHASTIC BLOCK MODEL

Ideas for a generative model for social network graphs that
would allow us to understand partitioning?
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STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model):

Let Gn(p,q) be a distribution over graphs on n nodes, split
equally into two groups B and C, each with n/ࠁ nodes.

• Any two nodes in the same group are connected with
probability p (including self-loops).

• Any two nodes in different groups are connected with
prob. q < p.
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LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from Gn(p,q).

• Let A ∈ Rn×n be the adjacency matrix of G. What is E[A]?

Note that we are arbitrarily ordering the nodes in A by group.
In reality A would look “scrambled” as on the right.

ࠄࠂ



EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A ∈ Rn×n be its adjacency matrix. (E[A])i,j = p for
i, j in same group, (E[A])i,j = q otherwise.

We are going to
determine the
eigenvectors and
eigenvalues of E[A].
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EXPECTED LAPLACIAN

What is the expected Laplacian of Gn(p,q)?

E[A] and E[L] have the same eigenvectors and eigenvalues are
equal up to a shift/inversion. So second largest eigenvector of

E[A] is the same as the second smallest of E[L] ࠆࠂ



EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A ∈ Rn×n be its adjacency matrix, what are the
eigenvectors and eigenvalues of E[A]?
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EXPECTED ADJACENCY SPECTRUM

• vࠀ ∼ ࠀ with eigenvalue λࠀ =
(p+q)n

ࠁ .
• vࠁ ∼ χB,C with eigenvalue λࠁ =

(p−q)n
ࠁ .

• χB,C(i) = ࠀ if i ∈ B and χB,C(i) = ࠀ− for i ∈ C.

If we compute vࠁ then we recover the communities B and C!
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EXPECTED LAPLACIAN SPECTRUM

Upshot: The second smallest eigenvector of E[L], equivalently
the second largest of E[A], is χB,C – the indicator vector for the
cut between the communities.

• If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this
eigenvector would exactly recover communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

• Analogous to scalar concentration inequalities like
Markovs, Chebyshevs, Bernsteins.
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MATRIX CONCENTRATION

Matrix Concentration Inequality: If p ≥ O
(
logࠃ n
n

)
, then

with high probability

‖A− E[A]‖ࠁ ≤ O(
√
pn).

where ‖ · ࠁ‖ is the matrix spectral norm (operator norm).

For X ∈ Rn×d, ‖X‖ࠁ = maxz∈Rd:‖z‖ࠀ=ࠁ ‖Xz‖ࠁ.

For the stochastic block model application, we want to show
that the second eigenvectors of A and E[A] are close. How
does this relate to their difference in spectral norm?
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EIGENVECTOR PERTURBATION

Davis-Kahan Eigenvector Perturbation Theorem: Sup-
pose A,A ∈ Rd×d are symmetric with ‖A − A‖ࠁ ≤ ε

and eigenvectors vࠀ, vࠁ, . . . , vd and v̄ࠀ, v̄ࠁ, . . . , v̄vd. Letting
θ(vi, v̄i) denote the angle between vi and v̄i, for all i:

sin (θ(vi, v̄i)) ≤
ε

minj '=i |λi − λj|

where λࠀ, . . . ,λd are the eigenvalues of A.

The error gets larger if there are eigenvalues with similar
magnitudes.
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EIGENVECTOR PERTURBATION
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APPLICATION TO STOCHASTIC BLOCK MODEL

Claim ࠀ (Matrix Concentration): For p ≥ O
(

logࠃ n
n

)
,

‖A− E[A]‖ࠁ ≤ O(
√
pn).

Claim ࠁ (Davis-Kahan): For p ≥ O
(

logࠃ n
n

)
,

sin θ(vࠁ, v̄ࠁ) ≤
O(√pn)

minj !=i |λi − λj|
≤ O(√pn)

(p− q)n/ࠁ
= O

( √p
(p− q)

√
n

)

Recall: E[A], has eigenvalues λࠀ =
(p+q)n

ࠁ , λࠁ =
(p−q)n

ࠁ , λi = ߿ for i ≥ .ࠂ

min
j !=i

|λi − λj| = min

(
qn, (p− q)n

ࠁ

)
.

Assume
∣∣∣ (p−q)n

ࠁ − ߿
∣∣∣ will be the minimum of the two gaps. I.e.

smaller than
∣∣∣ (p+q)n

ࠁ − (p−q)n
ࠁ

∣∣∣ = qn.
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APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: sin θ(vࠁ, v̄ࠁ) ≤ O
( √p

(p−q)
√
n

)
. What does this give us?

• Can show that this implies ‖vࠁ − v̄vࠁࠁ‖ࠁ ≤ O
(

p
(p−q)ࠁn

)
(exercise).

• v̄ࠁ is √ࠀ
nχB,C: the community indicator vector.

• Every i where vࠁ(i) and v̄ࠁ(i) differ in sign contributes ≥ ࠀ
n to

‖vࠁ − v̄ࠁࠁ‖ࠁ.

• So they differ in sign in at most O
(

p
(p−q)ࠁ

)
positions.

ࠄࠃ



APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector vࠁ and
assign nodes to communities according to the sign pattern of
this vector, we will correctly assign all but O

(
p

(p−q)ࠁ

)
nodes.

• Why does the error increase as q gets close to p?
• Even when p−q = O(ࠀ/

√
n), assign all but an O(n) fraction

of nodes correctly. E.g., assign %ࠈࠈ of nodes correctly.
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Forget about the previous problem, but still consider the
matrix M = E[A].

• Dense n× n matrix.
• Computing top eigenvectors takes ≈ O(nࠁ/

√
ε) time.

If someone asked you to speed this up and return approximate
top eigenvectors, what could you do?

We will discuss this more next class!
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