CS-GY 6763: Lecture 10
Singular value decomposition, low-rank
approximation, Krylov subspace methods

NYU Tandon School of Engineering, Prof. Christopher Musco



If aatrix has orthonormal rows, it also has

orthonormal columns:

LINEAR ALGEBRA REMINDER
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LINEAR ALGEBRA REMINDER

Implies that for any vector x, [|Vx||2 = ||x|3 and ||V"x]|3. (Yl . ]
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LINEAR ALGEBRA REMINDER

The same is not true for rectangular matrices:
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For any x, ||Vx||3 = ||x||5 but |[VTx||3 # ||x||3 in general.
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LINEAR ALGEBRA REMINDER

Multiplying a vector by V with orthonormal columns rotates
and/or reflects the vector.
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LINEAR ALGEBRA REMINDER

Multiplying a vector by a rectangular matrix V7 with
orthonormal rows projects the vector (representing it as
coordinates in the lower dimensional space).
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SINGULAR VALUE DECOMPOSITION

v,/,\;.xé Ce™ Y a0
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Any matrix X can be written: \\9 ‘// I ﬁ_‘ @
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Where U'U=1,VIV=1land o1 >0, > ...04 > 0.
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Singular values are unique. Factors are not. Would still get a
valid SVD by multiplying both i column of V and U by —1. .




SINGULAR VALUE DECOMPOSITION

Important take away from singular value decomposition.

Multiplying any vector a by a matrix X to form Xa can be viewed
as a composition of 3 operations:

1. Rotate/reflect the vector (multiplication by to V7).
2. Scale the coordinates (multiplication by X.
3. Rotate/reflect the vector again (multiplication by U).
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SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT
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SINGULAR VALUE DECOMPOSITION: STRETCH
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SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT
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SINGULAR VALUE DECOMPOSITION
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COMPARISON TO EIGENDECOMPOSITION

> ‘ﬂﬁ’bh
Recall that an eigenvalue of a square matrix X € R%*9 is any
vector v such that Xv. = Av. A matrix has at most d linearly
independent eigenvectors. If a matrix has a full set of d
eigenvectors v, ..., Vg with eigenvalues Aq,..., Ay itis called
“diagonalizable” and can be written as: YT N
\I\ -~ t VI

yav_l

vtV T
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COMPARISON TO EIGENDECOMPOSITION

Singluar value decomposition

- Exists for all matrices,
square or rectangular.

- Singular values are always

positive.

- Factors U and V are
orthogonal.

\/ ~ -/\/'(

Eigendecomposition

- Exists for some square

matrices.

- Eigenvalues can be

positive or negative.

- Factor V is orthogonal if

and only if X is symmetric.

VAV
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CONNECTION TO EIGENDECOMPOSITION

. _ £
@ contains the orthogonal eigenvectors of XX'. o

- V_contains the orthogonal eigenvectors of X'X. ' S
= \(XTX) -2 67
6 h N

X: VsU" xTVz0T xkr:oz/{):/sm
T

Xk~ Os=0 " XX« -

h—d

o i <= i
T - °
7 6‘41’) - U S:G'.:Ip) = G‘} . "\t

C
N

S
C
‘.‘1

<
VA
¢
\




SVD APPLICATIONS

“"é{’ u x& -4 (\;’

- Compute pseudoinverse,\_lgfuf e \{ AX“—»
. U,

/~—~d
XHF— > i ‘7,‘2-

- Compute matrix square root — i.e. find a matrix B such that
?@T :@Jsed e.g. in sampling from Gaussian with
covariance X.

Lots of applications.

+ Read off condition number of X, o7 /o3

- Compute matrix norms. E.g. H |2 = o,

- Principal component analysis.

Killer app: Read off optimal low-rank approximations for_X.

16



LOW-RANK APPROXIMATION

Approximate X as the product of two rank k matrices:

d k q
I—‘% i . 1 [ |
X, C, o K
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matrix B
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(\A x\&> (kxd )
Xn G ':.(\/l xd >
matrix X matrix C

Typically chooseg and B to minimize:

min ||X — CB||
BC ——

for some matrix norm. Common choice is ||X — CB||Z 17
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APPLICATIONS OF LOW-RANK APPROXIMATION

[,/__q ‘)] r o 1 S{'\ \
{ Xq 1
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matrix B

&
]
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X, C,
matrix X matrix C
ad kWt gy

- CB takes O(R(n + d)) space to store instead of O(nd).

- Regression problems involving CB can be solved in 0(nk?)
instead of O(nd?) time. -

—

« Will see a bunch more in a minute.
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LOW-RANK APPROXIMATION

Without loss of generality can assume that the right matrix is

orthogonal. l.e. WT with W'W = 1 X, = 13
d k d A .
r . ) —— ! \ v {
X [ & 2, B =G
X [¢ Wi
. 2 matrix WT

% I, - Whr

X, C,
matrix X matrix C

Then we should choose C to minimize:

. T2
min X — CW

This is just n least squares regression problems! 19



LOW-RANK APPROXIMATION

f2-9\ 2% (A7 A
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©

(WQ;LD)—‘LJTK;/

W"\

2 /’rT(AL—Q =0

So our optimal low-rank approximation always has the form:
X
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PROJECTION MATRICES

WWT is a symmetric projection matrix.
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LOW-RANK APPROXIMATION

— o W \V
X - XVJ u
Vei-eily = NG -1

v

C = XW can be used as a compressed version of data matrix X.
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DATA COMPRESSION

/‘r Al

Let C = XW. We have that/ XJ

mgh

Similarly, we expect that:

(N A TS -g ),
- il = lcil
© ()~ (6. 0) ¢ G e m‘ﬁ By ey

- etc.

How does this compare to Johnson-Lindenstrauss projection?



WHY IS DATA APPROXIMATELY LOW-RANK?

Rows of X (data points) are approximately spanned by k
vectors. Columns of X (data features) are approximately
spanned by k vectors.

d
——

> EEﬂ

X

Z
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ROW REDUNDANCY

If a data set only had k unique data points, it would be exactly

rank k. If it has k “clusters” of data points (e.g. the 10 digits) it's
often very close to rank k.

projections onto 15

784 drs dimensional space  orthonormal basis v;,...,vss
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SESE
e
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COLUMN REDUNDANCY

Colinearity/correlation of data features leads to a low-rank

data matrix.
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APPLICATIONS OF LOW-RANK APPROXIMATION

Fact that [[x; — X[l & [[X/WW" — x"WW[); = ||c; — gil|> leads to
lots of applications.
- Data compression. E.g. used in state-of-the-art data

dependence methods for nearest neighbor search.
- Data visualization when k =2 or 3.

x0

-(Entity embeddings (next lecture). -



APPLICATIONS OF LOW-RANK APPROXIMATION

- Reduced order modeling for solving physical equations.

ulx,f) i+ Y p(x)ax(t)
k=1
POD 1 POD 2

awiPon3 LewPfoR4
ST ~esgy

- «PODS5 - « POD 6
=) 1 IR 1]

- Constructing preconditioners in optimization.

- Many more.
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PARTIAL SVD
v X

et o o dul)

(Can find the best projection from the singular valu

decomposition. Ku = XV T é((,\ik)

d left singular vectors  singular values right singular vectors
o, T
o, _,_Vk__

nJ@ = [ u, 5,
7

o\

@ arg min X — XWwT||2

orthogonal WeRdxk
_—
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OPTIMAL LOW-RANK APPROXIMATION

Claim: X, = UpX V], = XV, V],
— LS

XU = Oagy
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OPTIMALITY OF SVD

p_ ih. UuT ,_\)L\i\v\:\'

arg min x—32@ar min £V — BJI?
ra%khB H’ “F ra%kf?B H’ JHF
e —

Claim 1:

Rotated by U
on the left
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OPTIMALITY OF SVD

T
Claim 2: B W
s yr
O arg min ||V’ — BJ||2 = arg min ||VE — B||2 e
\/l\ o rankk—B//,_ rank L/_,_,/
z
Claim 3: T (v - g% e

o |lv

arg min |VE — B'||2 = arg min ||Z — V/B'||2
rankkB = rank k B )
[

T TRT _ %
Chose B' so thatV'B =3

—
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USEFUL OBSERVATIONS

k- ¥polle 7 MY Re

left singular vectors  singular values  right singular vectors

Al

]
Ok

X = | Uy 2

Observation 1: //“%/’)

arg min ||X — XWW'||Z =/arg max ||XWWT||%>
WeRdIXxR WeRdIXR

Follows from fact that for all orthogonal W:

X = XWWT 2 = X[ — [xww" )

W e
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USEFUL OBSERVATIONS

f\lx -qusﬂ

Claim:

X — XWWT||3 =

) \l\(“;: “ X, JX " \l; ¥ \\X,UUTU:
{

/
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USEFUL OBSERVATIONS

d left singular vectors ngu alues  right singular vectors

o T
o ) vk

Xk = | U S

n Pe

S 6"

RN
Observation 2: The optimal lovv7an%approximation error
Er = |[X — XVLVL||2 = [|X||z — [[XV,V}||# can be written:
7 —

/

A/ <
iG;V
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SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er = X — XVLVL[|2 = ||X||z — [[XV,V}||# can be written:

d
Er = Z 0,2.

i=k+1
Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

784 dimensional vectors

E singular
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SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er = X — XVLVL[|2 = ||X||z — [[XV,V}||# can be written:

Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

singular ~ {
value g, .




SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er = X — XVLVL[|2 = ||X||z — [[XV,V}||# can be written:

Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

L) singular
> value o,
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COMPUTING THE SVD

: . X=0sy T
Suffices to compute right singular vecto

XK=02
. Comput -

- Find eigendecomposition VAVT = X'X using e.g. QR
algorithm.
oo

- Compute L = XV. Set o; = ||Lj||> and U; = L;/||L;||2.

)( — V\Xcl
: ~ lz )
Total runtime & ) ¢ ! lbz(‘?(;/c/)
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COMPUTING THE SVD (FASTER)

- Compute approximate solution. j
- Only Comput@nqular vectors/values. Runtime will
depend on k. When k = d we can't do any better than

classical algorithms based on eigendecompaqsition.
- lterative algorithms achieve runtime s.
time.
(- Krylov subspace methods like the Lanczos method are
most commonly used in practice.

( Power method is the simplest Krylov subspace method,
and still works very well.

What we won’t discuss today: sketching methods and
stochastic methods (which are faster in some settings).

40



POWER METHOD

Power method:

Today: What about when k = 1? 2 \(; . <
Goal: Find some z ~ v;.
Input: X € R4 with SVD UZV. od) 7oa4¢)

MZG ‘))

+ Choose z(9 randomly. zg ~ N(0,1).

. 2(0) — Z(O)/HZ(O)H2
cFori=1,...,T—" T ik obhe

. 720 = XT. (Xz("—”)
- nj= ||Z(I')H2 '1

;(i) = z(/')/n’. {
Return z(N VN
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POWER METHOD INTUITION

0 iterations 1 iterations 2 iterations
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POWER METHOD FORMAL CONVERGENCE

6, = = O
Theorem (Basic Power Method Convergence) (* 6 7=

Let = g ”2 be parameter capturing the “gap” between thg Al
ﬁrst and second largest singular values. If Power Method is
initialized with a randomssian vector then, with high
probability, after T= O ( ) steps, we have either:

or (2D s«
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ONE STEP ANALYSIS OF POWER METHOD

_ £ €. xTx26 )
Write zU). in the right singular vector basis:

)
(0) (0) 0.~ > C
: C1 V’I+C2 V2+...+Cd Vg

1 1 1

VTcL‘u) @:g)V1+C§)V2+...+£§L)Vd

) \/ ' B @Cﬁi)v1+cg)v2+...+cg)vd

~—

Note: [c{”,...,c{)] = c() = yT20).

Also: ||c(|3 = Zjd:W (CJQ)) T

1
=
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ONE STEP ANALYSIS OF POWER METHOD

) ) ) C (v-1» G-
Claim: After update z() = ni/xTxZ(H)’ ' e Cy )

veotuevT . vy’ XAz T2
e

L(J-J) 45



MULTI-STEP ANALYSIS OF POWER METHOD

_ Gr2 6 >62 ...
Claim: After T updates: ? '

i=1 Ny J

Let :(ﬂ)c(o)rr”. Goal: Show that‘o‘ﬂ < aq forallj #1.
= / ‘ -
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POWER METHOD FORMAL CONVERGENCE

Since z(M is a unit vector, %, a? = 1. So |ay| < 1.

If we can prove tha

47



POWER METHOD FORMAL CONVERGENCE

_ c(0) 521 \(// G

Lets proves that ‘— < /5 where ¢; :‘ \

L—/L._—I
= _ gb
Assumption: Starting coefficients are all roughly equal. | e

For all j 0(1/d"™) < ‘c}(’)‘ <1.

This is a very loose bound, but it's all that we will need. We will
prove shortly that it holds with probability 99/100.

ﬂ/
|Ozj’ B UJZT ( ,} A“ > s A"(
_ Q—T' < i_
/ (\ < -{/Q\




STARTING COEFFICIENT ANALYSIS

Need to prove: Starting coefficients are all roughly equal.

For all j 0(1/d"%) < | <1
o
with probability 99/100. Prove using Gaussian 2,_0((
(anti)-concentration. 2"

Right hand side is immediate from fact that Z]-(C](O))2 =1

To show the left hand side we first use rotational invariance of

Gaussian:
200 IvZO, (gl

-

where g ~ N(0,1)4.
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STARTING COEFFICIENT ANALYSIS

Need to show that with high probability, every entry of

g >C- L
el = C
Part 1: With probablility 999 /100, I(%(Lp <6 )
gl < 2
J
= Z ?}Q

[[[{‘%((ﬁ] - i [ ()‘.01 = é—)
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STARTING COEFFICIENT ANALYSIS

Need to show that with high probability, the magnitude of
1
every entry of__g_za_i.‘ \— C

Part 2: With probablility 1—c/d,
R C
for oy %\Q_,'IZO<E>.

Standard I distributi S
'\1 L andard normal distribution _) %. 2 OC /dz)
03 >/ ‘ _ 6C (/(L}

02

0.1

0.0
3 ) = 0 ¢ 1 2 3
- =
4

e

Applying union bound completes the result. i



POWER METHOD FORMAL CONVERGENCE

Theorem (Basic Power Method Convergence)

Let v = 122 be parameter capturing the “gap” between the
first and second largest singular values. If Power Method is

initialized with a random_Gayssian vector then, with high
probability, after T = O ‘%’ steps, we have either: O("zl"‘)
lvi — 2D, < e or lvi — (=22 < e

The method truly won't converge if v is very small. Consider
extreme case when v = 0.

N [Cgm (0)
[Tizr ni

Z( -V1+C2 ‘Vz—i-...—l—C((jO) - Vqg
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POWER METHOD — NO GAP DEPENDENCE

Theorem (Gapless Power Method Convergence)
If Power Method is initialized with a random Gaussian vector

then, with high probability, after T = O <'°g(d/)> steps, we

obtain a z satisfying: }//(/([7/

X —XezT|[2 < (1 + €)X — Xuq] |2

Intuition: For a good low-rank approximation, we don't
actually need to converge to vq if o1 and o, are the same or
very close. Would suffice to return either v, or v,, or some

linear combination of the two.
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GENERALIZATIONS TO LARGER R

- Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

Power method:

- Choose G € R¥*k be a random Gaussian matrix.
- Zy = orth(G).
- Fori=1,...,T
.70 — xT. (xz(i—W))
- Z0) = orth(z()
Return z(D

Runtime: O (%)iterations to obtain a nearly optimal
low-rank approximation:

IX = X2ZZT[}2 < (1 + €)X — XVieVi |
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KRYLOV METHODS

(o, /¢

Possible to “accelerate” these methods. g% -
Convergence Guarantee:\ = 0 % iterations to obtain a

nearly optimal low-rank approximation:
IX —XZZT|[} < (1+ €)X — XV, V(|12
Runtime: O(nnz(X) - k- T) < O(ndk - T).
'EL)Q/@) [Db (é//q,\

/
y Oy
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KRYLOV SUBSPACE METHODS

X Tk KX XTx

N
—~
Re]

\\

)

09

08

07

06

05

04

03

02

01

2 2 2
=c-|c-ovi+ -0 Va + .+ cp oV
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KRYLOV SUBSPACE METHODS

(k)"
20) — . (xTx)q g

Along the way we computed:

|

g (X%) -8 (X%)"-g....(xX%) g
Jt X

KC is called the Krylov subspace of degree g.

ICq:

Idea behind Krlyov methods: Don't throw away everything
before (X'X)? - g. What you're using when you run svds or
eigs in MATLAB or Python.
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KRYLOV SUBSPACE METHODS

Want to find v, which minimizes ||X — Xwv||2.
A = >
I —Xwytle
Lanczos method: —
- letQe R%4 be an orthonormal span for the vectors in K.
- Solve miny—_qu [|X — Xw |12 v Qoo
- Find best vector in the Krylov subspace, instead of just

using last vector.
- Can be done in O (nd§ + Cﬂﬁz) time.

2l
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LANCZOS METHOD ANALYSIS

7 J‘,b(‘t_ %

~ _ _pX'X)g
For a degree t polynomlalg, letyi = TPl

Power method returns: 5
()(1_)( - Kx) IETKYT )
V4. /g

Lanczos method returns Vp- where:

*

p* = argmin [|X — Xv,V]||2.
= degree§ p P
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LANCZOS METHOD ANALYSIS

A= V”(&_@—
Claim: Thereisat=10 <w /qi og i )degree polynomial p v<a\4)

approximating x? up to error Agz on [0, o).

*a

TN N\
01 02 03 0% 05 06 07 08 09 1

X

X = Xpr V[ < X = XVpVDIE 2 X = XV 2 = [[X — Xviv] 2
s\ :—k

Runtime: O (% . nnz(X)) vs. O (% : nnz(X))
A L
e

w { 60
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POWER METHOD — NO GAP DEPENDENCE

Again convergence is slow when v = 22 is smalll. z(@ has
large components of both v; and v,. But in this case:

T2 2 2 T2
IX = Xvavi[[F = o7 = > = a7 [IX — Xvav] |7
i#1 i#2

So we don't care! Either vq or v, give good rank-1
approximations.
Claim: To achieve

IX = XezT|[2 < (1+ €)X — Xuq] |2

we need O (%) power method iterations or O <'°g(d/€))

. . Ve
Lanczos Iterations.
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GENERALIZATIONS TO LARGER R

+ Block Krylov methods ML@O(T/(\) . G>

- Let G € RY%k be a random Gaussian matrix. &)
+ Kq =[G, (XX) -6, (XX)*-G,...,(XX)T- G| vpprem b U
h =

Runtime: O (nnz(X) R %) to obtain a nearly optimal
low-rank approximation.
& (w+ y)

A A S
/\va ’/»ﬁ“?
N
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