
CS-GY 6763: Lecture 10
Singular value decomposition, low-rank
approximation, Krylov subspace methods

NYU Tandon School of Engineering, Prof. Christopher Musco
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LINEAR ALGEBRA REMINDER

If a square matrix has orthonormal rows, it also has
orthonormal columns:

VTV = I = VVT

−0.62 0.78 −0.11
−0.28 −0.35 −0.89
−0.73 −0.52 0.44

 ·

−0.62 −0.28 −0.73
0.78 −0.35 −0.52
−0.11 −0.89 0.44

 =

1 0 0
0 1 0
0 0 1


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LINEAR ALGEBRA REMINDER

Implies that for any vector x, ∥Vx∥22 = ∥x∥22 and ∥VTx∥22.

Same thing goes for Frobenius norm: for any matrix X,
∥VX∥2F = ∥X∥2F and ∥VTX∥2F = ∥X∥2F.
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LINEAR ALGEBRA REMINDER

The same is not true for rectangular matrices:

VTV = I but VVT ̸= I

For any x, ∥Vx∥22 = ∥x∥22 but ∥VTx∥22 ̸= ∥x∥22 in general.
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LINEAR ALGEBRA REMINDER

Multiplying a vector by V with orthonormal columns rotates
and/or reflects the vector.
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LINEAR ALGEBRA REMINDER

Multiplying a vector by a rectangular matrix VT with
orthonormal rows projects the vector (representing it as
coordinates in the lower dimensional space).

So we always have that ∥VTx∥2 ≤ ∥x∥2. 6



SINGULAR VALUE DECOMPOSITION

One of the most fundamental results in linear algebra.

Any matrix X can be written:

Where UTU = I, VTV = I, and σ1 ≥ σ2 ≥ . . . σd ≥ 0.

Singular values are unique. Factors are not. Would still get a
valid SVD by multiplying both ith column of V and U by −1. 7



SINGULAR VALUE DECOMPOSITION

Important take away from singular value decomposition.

Multiplying any vector a by a matrix X to form Xa can be viewed
as a composition of 3 operations:

1. Rotate/reflect the vector (multiplication by to VT).
2. Scale the coordinates (multiplication by Σ.
3. Rotate/reflect the vector again (multiplication by U).
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SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT
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SINGULAR VALUE DECOMPOSITION: STRETCH
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SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT
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SINGULAR VALUE DECOMPOSITION
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COMPARISON TO EIGENDECOMPOSITION

Recall that an eigenvalue of a square matrix X ∈ Rd×d is any
vector v such that Xv = λv. A matrix has at most d linearly
independent eigenvectors. If a matrix has a full set of d
eigenvectors v1, . . . , vd with eigenvalues λ1, . . . , λn it is called
“diagonalizable” and can be written as:

VΛV−1.
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COMPARISON TO EIGENDECOMPOSITION

Singluar value decomposition

• Exists for all matrices,
square or rectangular.

• Singular values are always
positive.

• Factors U and V are
orthogonal.

Eigendecomposition

• Exists for some square
matrices.

• Eigenvalues can be
positive or negative.

• Factor V is orthogonal if
and only if X is symmetric.
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CONNECTION TO EIGENDECOMPOSITION

• U contains the orthogonal eigenvectors of XXT.
• V contains the orthogonal eigenvectors of XTX.
• σ2

i = λi(XXT) = λi(XTX)
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SVD APPLICATIONS

Lots of applications.

• Compute pseudoinverse VΣ−1UT.
• Read off condition number of X, σ2

1/σ
2
d.

• Compute matrix norms. E.g. ∥X∥2 = σ1, ∥X∥F =
√∑d

i=1 σ
2
i .

• Compute matrix square root – i.e. find a matrix B such that
BBT = X. Used e.g. in sampling from Gaussian with
covariance X.

• Principal component analysis.

Killer app: Read off optimal low-rank approximations for X.
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LOW-RANK APPROXIMATION

Approximate X as the product of two rank k matrices:

Typically choose C and B to minimize:

min
B,C

∥X− CB∥

for some matrix norm. Common choice is ∥X− CB∥2F. 17



APPLICATIONS OF LOW-RANK APPROXIMATION

• CB takes O(k(n+ d)) space to store instead of O(nd).
• Regression problems involving CB can be solved in O(nk2)
instead of O(nd2) time.

• Will see a bunch more in a minute.
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LOW-RANK APPROXIMATION

Without loss of generality can assume that the right matrix is
orthogonal. I.e. WT with WTW = I

Then we should choose C to minimize:

min
C

∥X− CWT∥2F

This is just n least squares regression problems! 19



LOW-RANK APPROXIMATION

ci = argmin
c

∥Wc− xi∥22

ci = WTxi
C = XW

So our optimal low-rank approximation always has the form:

X ≈ XWWT
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PROJECTION MATRICES

WWT is a symmetric projection matrix.
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LOW-RANK APPROXIMATION

C = XW can be used as a compressed version of data matrix X.
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DATA COMPRESSION

Let C = XW. We have that:

∥xi − xj∥2 ≈ ∥xTiWWT − xTjWWT∥2 = ∥ci − ci∥2

Similarly, we expect that:

• ∥xi∥2 ≈ ∥ci∥2
• ⟨xi, xj⟩ ≈ ⟨ci, cj⟩
• etc.

How does this compare to Johnson-Lindenstrauss projection?
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WHY IS DATA APPROXIMATELY LOW-RANK?

Rows of X (data points) are approximately spanned by k
vectors. Columns of X (data features) are approximately
spanned by k vectors.
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ROW REDUNDANCY

If a data set only had k unique data points, it would be exactly
rank k. If it has k “clusters” of data points (e.g. the 10 digits) it’s
often very close to rank k.
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COLUMN REDUNDANCY

Colinearity/correlation of data features leads to a low-rank
data matrix.
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APPLICATIONS OF LOW-RANK APPROXIMATION

Fact that ∥xi − xj∥2 ≈ ∥xTiWWT − xTjWWT∥2 = ∥ci − ci∥2 leads to
lots of applications.

• Data compression. E.g. used in state-of-the-art data
dependence methods for nearest neighbor search.

• Data visualization when k = 2 or 3.

• Entity embeddings (next lecture). 27



APPLICATIONS OF LOW-RANK APPROXIMATION

• Reduced order modeling for solving physical equations.

• Constructing preconditioners in optimization.
• Many more.
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PARTIAL SVD

Can find the best projection from the singular value
decomposition.

Vk = argmin
orthogonal W∈Rd×k

∥X− XWWT∥2F
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OPTIMAL LOW-RANK APPROXIMATION

Claim: Xk = UkΣkVTk = XVkVTk.
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OPTIMALITY OF SVD

Claim 1:

argmin
rank k B

∥X− B|2F = U · argmin
rank k B

∥ΣVT − B∥2F
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OPTIMALITY OF SVD

Claim 2:

argmin
rank k B

∥ΣVT − B∥2F = argmin
rank k B

∥VΣ− BT∥2F

Claim 3:

argmin
rank k B

∥VΣ− BT∥2F = argmin
rank k B

∥Σ− VTBT∥2F

Chose BT so that VTBT = Σk.
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USEFUL OBSERVATIONS

Observation 1:

argmin
W∈Rd×k

∥X− XWWT∥2F = argmax
W∈Rd×k

∥XWWT∥2F

Follows from fact that for all orthogonal W:

∥X− XWWT∥2F = ∥X∥2F − ∥XWWT∥2F
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USEFUL OBSERVATIONS

Claim:

∥X− XWWT∥2F = ∥X∥2F − ∥XWWT∥2F
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USEFUL OBSERVATIONS

Observation 2: The optimal low-rank approximation error
Ek = ∥X− XVkVTk∥2F = ∥X∥2F − ∥XVkVTk∥2F can be written:

Ek =
d∑

i=k+1
σ2
i .
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SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Ek = ∥X− XVkVTk∥2F = ∥X∥2F − ∥XVkVTk∥2F can be written:

Ek =
d∑

i=k+1
σ2
i .

Can immediately get a sense of “how low-rank” a matrix is
from it’s spectrum:
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SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
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COMPUTING THE SVD

Suffices to compute right singular vectors V:

• Compute XTX.
• Find eigendecomposition VΛVT = XTX using e.g. QR
algorithm.

• Compute L = XV. Set σi = ∥Li∥2 and Ui = Li/∥Li∥2.

Total runtime ≈

39



COMPUTING THE SVD (FASTER)

• Compute approximate solution.
• Only compute top k singular vectors/values. Runtime will
depend on k. When k = d we can’t do any better than
classical algorithms based on eigendecomposition.

• Iterative algorithms achieve runtime ≈ O(ndk) vs. O(nd2)
time.

• Krylov subspace methods like the Lanczos method are
most commonly used in practice.

• Power method is the simplest Krylov subspace method,
and still works very well.

What we won’t discuss today: sketching methods and
stochastic methods (which are faster in some settings).
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POWER METHOD

Today: What about when k = 1?

Goal: Find some z ≈ v1.

Input: X ∈ Rn×d with SVD UΣVT.

Power method:

• Choose z(0) randomly. z0 ∼ N (0, 1).
• z(0) = z(0)/∥z(0)∥2
• For i = 1, . . . , T

• z(i) = XT · (Xz(i−1))

• ni = ∥z(i)∥2
• z(i) = z(i)/ni

Return z(T)
41



POWER METHOD INTUITION
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POWER METHOD FORMAL CONVERGENCE

Theorem (Basic Power Method Convergence)
Let γ = σ1−σ2

σ1
be parameter capturing the “gap” between the

first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after T = O

(
log d/ϵ

γ

)
steps, we have either:

∥v1 − z(T)∥2 ≤ ϵ or ∥v1 − (−z(T))∥2 ≤ ϵ.

Total runtime: O
(
nd · log d/ϵ

γ

)
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ONE STEP ANALYSIS OF POWER METHOD

Write z(i) in the right singular vector basis:

z(0) = c(0)1 v1 + c(0)2 v2 + . . .+ c(0)d vd
z(1) = c(1)1 v1 + c(1)2 v2 + . . .+ c(1)d vd

...

z(i) = c(i)1 v1 + c(i)2 v2 + . . .+ c(i)d vd

Note: [c(i)1 , . . . , c(i)d ] = c(i) = VTz(i).

Also: ∥c(i)∥22 =
∑d

j=1

(
c(i)j

)2
= 1.
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ONE STEP ANALYSIS OF POWER METHOD

Claim: After update z(i) = 1
niX

TXz(i−1),

c(i)j =
1
ni
σ2
j c

(i−1)
j

z(i) = 1
ni

[
c(i−1)
1 σ2

1 · v1 + c(i−1)
2 σ2

2 · v2 + . . .+ c(i−1)
d σ2

d · vd
]
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MULTI-STEP ANALYSIS OF POWER METHOD

Claim: After T updates:

z(T) = 1∏T
i=1 ni

[
c(0)1 σ2T

1 · v1 + c(0)2 σ2T
2 · v2 + . . .+ c(0)d σ2T

d · vd
]

Let αj =
1∏T

i=1 ni
c(0)j σ2T

j . Goal: Show that αj ≪ α1 for all j ̸= 1.
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POWER METHOD FORMAL CONVERGENCE

Since z(T) is a unit vector,
∑d

i=1 α
2
i = 1. So |α1| ≤ 1.

If we can prove that
∣∣∣αj
α1

∣∣∣ ≤ √
ϵ
d then:

α2
j ≤ α2

1 ·
ϵ

d

1 = α2
1 +

d∑
j=2

α2
d ≤ α2

1 + ϵ

α2
1 ≥ 1− ϵ

|α1| ≥ 1− ϵ

∥v1 − z(T)∥2 = 2− 2⟨v1, z(T)⟩ ≤ 2ϵ
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POWER METHOD FORMAL CONVERGENCE

Lets proves that
∣∣∣αj
α1

∣∣∣ ≤ √
ϵ
d where αj =

1∏T
i=1 ni

c(0)j σ2T
j

Assumption: Starting coefficients are all roughly equal.

For all j O(1/d1.5) ≤
∣∣∣c(0)j

∣∣∣ ≤ 1.

This is a very loose bound, but it’s all that we will need. We will
prove shortly that it holds with probability 99/100.

|αj|
|α1|

=
σ2T
j

σ2T
1

·
|c(0)j |

|c(0)1 |
≤

Need T =

48



STARTING COEFFICIENT ANALYSIS

Need to prove: Starting coefficients are all roughly equal.

For all j O(1/d1.5) ≤ |c(0)j | ≤ 1

with probability 99/100. Prove using Gaussian
(anti)-concentration.

Right hand side is immediate from fact that
∑

j(c
(0)
j )2 = 1.

To show the left hand side we first use rotational invariance of
Gaussian:

c(0) = VTz(0)
∥z(0)∥2

=
VTz(0)

∥VTz(0)∥2
∼ g

∥g∥2
,

where g ∼ N (0, 1)d.
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STARTING COEFFICIENT ANALYSIS

Need to show that with high probability, every entry of
g

∥g∥2 ≥ c · 1
d1.5 .

Part 1: With probablility 999/100,

∥g∥22 ≤
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STARTING COEFFICIENT ANALYSIS

Need to show that with high probability, the magnitude of
every entry of g ≥ c · 1

d .

Part 2: With probablility 1− c/d,

min
i

|gi| ≥ O
( c
d

)
.

Applying union bound completes the result. 51



POWER METHOD FORMAL CONVERGENCE

Theorem (Basic Power Method Convergence)
Let γ = σ1−σ2

σ1
be parameter capturing the “gap” between the

first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after T = O

(
log d/ϵ

γ

)
steps, we have either:

∥v1 − z(T)∥2 ≤ ϵ or ∥v1 − (−z(T))∥2 ≤ ϵ.

The method truly won’t converge if γ is very small. Consider
extreme case when γ = 0.

z(T) = 1∏T
i=1 ni

[
c(0)1 σ2T

1 · v1 + c(0)2 σ2T
2 · v2 + . . .+ c(0)d σ2T

d · vd
]
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POWER METHOD – NO GAP DEPENDENCE

Theorem (Gapless Power Method Convergence)
If Power Method is initialized with a random Gaussian vector
then, with high probability, after T = O

(
log d/ϵ

ϵ

)
steps, we

obtain a z satisfying:

∥X− XzzT∥2F ≤ (1+ ϵ)∥X− Xv1vT1∥2F

Intuition: For a good low-rank approximation, we don’t
actually need to converge to v1 if σ1 and σ2 are the same or
very close. Would suffice to return either v1 or v2, or some
linear combination of the two.
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GENERALIZATIONS TO LARGER k

• Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

Power method:

• Choose G ∈ Rd×k be a random Gaussian matrix.
• Z0 = orth(G).
• For i = 1, . . . , T

• Z(i) = XT · (XZ(i−1))

• Z(i) = orth(Z(i))
Return Z(T)

Runtime: O
(
log d/ϵ

ϵ

)
iterations to obtain a nearly optimal

low-rank approximation:

∥X− XZZT∥2F ≤ (1+ ϵ)∥X− XVkVkT∥2F.
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KRYLOV METHODS

Possible to “accelerate” these methods.

Convergence Guarantee: T = O
(
log d/ϵ√

ϵ

)
iterations to obtain a

nearly optimal low-rank approximation:

∥X− XZZT∥2F ≤ (1+ ϵ)∥X− XVkVkT∥2F.

Runtime: O(nnz(X) · k · T) ≤ O(ndk · T).
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KRYLOV SUBSPACE METHODS

z(q) = c ·
(
XTX

)q · g

z(q) = c ·
[
c1 · σ2q

1 v1 + c2 · σ2q
2 v2 + . . .+ cn · σ2q

n vn
]
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KRYLOV SUBSPACE METHODS

z(q) = c ·
(
XTX

)q · g
Along the way we computed:

Kq =
[
g,
(
XTX

)
· g,

(
XTX

)2 · g, . . . , (XTX)q · g]
K is called the Krylov subspace of degree q.

Idea behind Krlyov methods: Don’t throw away everything
before

(
XTX

)q · g. What you’re using when you run svds or
eigs in MATLAB or Python.

57



KRYLOV SUBSPACE METHODS

Want to find v, which minimizes ∥X− XvvT∥2F.

Lanczos method:

• Let Q ∈ Rd×k be an orthonormal span for the vectors in K.
• Solve minv=Qw ∥X− XvvT∥2F.

• Find best vector in the Krylov subspace, instead of just
using last vector.

• Can be done in O
(
ndk+ dk2

)
time.
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LANCZOS METHOD ANALYSIS

For a degree t polynomial p, let vp = p(XTX)g
∥p(XTX)g∥2 .

Power method returns:

vxt .

Lanczos method returns vp∗ where:

p∗ = argmin
degree t p

∥X− XvpvTp∥2F.
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LANCZOS METHOD ANALYSIS

Claim: There is a t = O
(√

q log 1
∆

)
degree polynomial p̂

approximating xq up to error ∆σ2
1 on [0, σ2

1 ].

∥X− Xvp∗vTp∗∥2F ≤ ∥X− Xvp̂vTp̂∥
2
F ≈ ∥X− XvxqvTxq∥2F ≈ ∥X− Xv1vT1∥2F

Runtime: O
(
log(d/ϵ)√

γ · nnz(X)
)
vs. O

(
log(d/ϵ)

γ · nnz(X)
)
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POWER METHOD – NO GAP DEPENDENCE

Again convergence is slow when γ = σ1−σ2
σ1

is small. z(q) has
large components of both v1 and v2. But in this case:

∥X− Xv1vT1∥2F =
∑
i ̸=1

σ2
i ≈

∑
i ̸=2

= σ2
i ∥X− Xv2vT2∥2F.

So we don’t care! Either v1 or v2 give good rank-1
approximations.

Claim: To achieve

∥X− XzzT∥2F ≤ (1+ ϵ)∥X− Xv1vT1∥2F

we need O
(
log(d/ϵ)

ϵ

)
power method iterations or O

(
log(d/ϵ)√

ϵ

)
Lanczos iterations.
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GENERALIZATIONS TO LARGER k

• Block Krylov methods

• Let G ∈ Rd×k be a random Gaussian matrix.
• Kq =

[
G,

(
XTX

)
· G,

(
XTX

)2 · G, . . . , (XTX)q · G]
Runtime: O

(
nnz(X) · k · log d/ϵ√

ϵ

)
to obtain a nearly optimal

low-rank approximation.
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