
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 6763: Homework 4.
Due Thursday, December 15th, 2022, 11:59pm.

Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list
collaborators for each problem separately, or write “No Collaborators” if you worked alone.

Problem 1: Accelerated Gradient Descent Through the Polynomial Lens

(15 pts) In Lecture 7, we saw how to analyze gradient descent for f(x) = ‖Ax − b‖22, which has gradient
∇f(x) = 2ATAx− 2ATb. The dominant cost for each gradient descent iteration is multiplying x by ATA
to compute the gradient, which takes O(nd) time when A is n× d.

We obtained a convergence bound depending on the largest and smallest eigenvalues of ATA, which we
denote λ1 and λd respectively. We did so by rearranging the gradient descent update rule:

x(i) = x(i−1) − η
(

2ATAx(i−1) − 2ATb
)

x(i) − x∗ = x(i−1) − η
(

2ATAx(i−1) − 2ATAx∗
)
− x∗ since ∇f(x∗) = 0, so ATAx∗ = ATb

x(i) − x∗ = (I− 2ηATA)(x(i−1) − x∗).

By induction, it follows that the error x(i) − x∗ equals x(i) − x∗ = (I − 2ηATA)i(x(0) − x∗). This allowed
us to obtain a convergence bound by arguing that, if we set η = 1/2λ1 where λ1 is the largest eigenvalue of
ATA, then (I − 1

λ1
ATA)i has top eigenvalue < ε after i = O(λ1

λd
log(1/ε)) iterations. In this problem you

will prove an “accelerated” version of this bound with a significantly improve condition number dependence

of O(
√

λ1

λd
log(1/ε)) iterations.

1. Let p be a degree q polynomial. I.e. p = c0+c1x+. . .+cqx
q. Show that, for any p with c0+c1+. . .+cq =

1 and any starting vector x(0), we can compute in q iterations (i.e., using q gradient computations and
up to O(ndq) additional runtime) a vector x(q) such that:

x(q) − x∗ = p

(
I− 1

λ1
ATA

)
(x(0) − x∗).

2. Prove that for q = O(
√

λ1

λd
log(1/ε)), there exists a polynomial p with coefficients c0 + c1 + . . .+ cq = 1

such that the top eigenvalue of p
(
I− 1

λ1
ATA

)
≤ ε. Hint: You might want to use Claim 4 in the

supplemental notes on the Lanczos method posted for Lecture 10.

By Part 2, above, it follows that ‖x(q) − x∗‖2 = ‖p
(
I− 1

λ1
ATA

)
(x(0) − x∗)‖2 ≤ ε‖x(0) − x∗‖22 as long

as we use degree q = O(
√

λ1

λd
log(1/ε)) – i.e. run for O(

√
λ1

λd
log(1/ε)) iterations.

Problem 2: Matrix Concentration from Scalar Concentration

(15 pts) This problem asks you to prove a simplified (and slightly weaker) version of the matrix concentration
result used in Lecture 10. Construct a random symmetric matrix R ∈ Rn×n by setting Rij = Rji to +1 or
−1, uniformly at random. Prove that, with high probability,

‖R‖2 ≤ c
√
n log n,

for some constant c. This is much better than the naive bound of ‖R‖2 ≤ ‖R‖F = n and it’s nearly tight:
we always have that ‖R‖22 ≥ ‖R‖2F /n (do you see why?) so ‖R‖2 ≥

√
n no matter what.

Here are a few hints that might help you along:

• Recall that for a matrix R, ‖R‖2 = maxx∈Rn
‖Rx‖2
‖x‖2 . When R is symmetric, it also holds that ‖R‖2 =

maxx∈Rn
|xTRx|
xT x

.

• Try to first bound |x
TRx|
xT x

for one particular x. You might want to use a Hoeffding bound.

• Then try to extend the result to hold for all x simultaneously, using an ε-net argument.

Problem 3: Spectral Methods for Cliques

(10 pts) A common tasks in data mining is to identify large cliques in a graph. For example, in social
networks, large cliques can be indicators of fraudulent accounts or networks of accounts designed to promote
certain content. In this problem, we consider a spectral heuristic for finding a large clique based on the top
eigenvector of the graph adjacency matrix A:

• Compute the leading eigenvector v1 of A.

• Let i1, . . . , ik ∈ {1, . . . , n} be the indices of the k entries in v1 with largest absolute value.

• Check if nodes i1, . . . , ik form a k-clique.

We will analyze this heuristic on a natural random graph model. Specifically, let G be an Erdos-Renyi
random graph: we start with n nodes, and for every pair of nodes (i, j), we add an edge between the pair
with probability p < 1. To simplify the math, also assume that we add a self-loop at every vertex i with
probability p. Then, choose a fixed subset S of k nodes to form a clique. Connect all nodes in S with edges
and add self-loops. We will argue that, for sufficiently large k, we can expect the heuristic above to identify
the nodes in the clique.

1. Let A be the adjacency matrix of a random graph generated as above. What is E[A]? Prove that the
rank of E[A] is 2. In other words, the matrix only has two non-zero eigenvalues.

2. Derive expressions for the two non-zero eigenvalues of E[A], and their corresponding eigenvectors.
Hint: First argue that, up to multiplying by a constant, any eigenvector v must have v[i] = 1 for all
i /∈ S and v[i] = α for all i ∈ S, where α is a constant. Then use some high school algebra 2!

3. Using your results from (2) above, argue that, up to a positive scaling, the top eigenvector v1 has
v[i] = 1 for all i /∈ S and v[i] = α for all i ∈ S, where α > 1. In other words, the largest entries of v1
exactly correspond to the nodes in the clique!

4. To prove the algorithm works, it is possible to use a matrix concentration inequality to argue that the
top eigenvector of A is close to that of E[A]. Instead of doing that, let’s verify things experimentally.
Generate a graph G according to the prescribed model with n = 900, k = |S| = 30, and p = .1.
Compute the top eigenvector of A and look at its 30 largest entries in magnitude. What fraction of
nodes in the clique S are among these 30 entries? Repeat the experiment and report the average
fraction recovered.

	Problem 1: Accelerated Gradient Descent Through the Polynomial Lens
	Problem 2: Matrix Concentration from Scalar Concentration
	Problem 3: Spectral Methods for Cliques

