
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 6763: Homework 3.
Due Tuesday, November 22th, 2022, 11:59pm.

Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list
collaborators for each problem separately, or write “No Collaborators” if you worked alone.

Problem 1: Differentially Private Odds Ratios.

(15 pts)When conducting private data release, we often want to calculate a given statistic with an ε-
differential privacy guarantee. In class, we saw one way that we can calculate a mean in a differentially
private manner. For this problem, we will consider calculating a differentially private odds ratio.

An odds ratio is a statistical measure that gives us a sense of the correlation between two events (usually
binary). It is often used to assess treatment effects. In this problem, we will consider the scenario where a
group of n individuals either were or were not vaccinated, and either did or did not contract COVID-19.

To be more concrete, consider a dataset X of individuals labeled with numbers 1, . . . , n. The dataset has
two binary dimensions, S ∈ {0, 1}n and V ∈ {0, 1}n. For some individual i, S(i) = 1 if individual i has had
COVID, and S(i) = 0 otherwise. Similarly, V (i) = 1 if individual i was vaccinated, and V (i) = 0 otherwise.

Consider the following scalar valued queries:

A =

n∑
i=1

1[S(i) = 1 and V (i) = 1}]

B =

n∑
i=1

1[S(i) = 0 and V (i) = 1}]

C =

n∑
i=1

1[S(i) = 1 and V (i) = 0}]

D =

n∑
i=1

1[S(i) = 0 and V (i) = 0}]

Then, an odds ratio τ can be calculated as:

τ =
A/C

B/D
(1)

Intuitively, if τ = 1, that suggests that S and V are uncorrelated, while a τ < 1 suggests that vaccines
are associated with lower “odds” of COVID, and a τ > 1 suggests that vaccines are associated with higher
“odds” of COVID.

(a) Show that the sensitivity of the τ statistic, which we denote ∆τ = maxX,X′ |τ(X) − τ(X ′)| can grow
as Ω(n), even if we assume say that A,B,C,D > c for some constant c.

(b) That the sensitivity of τ is unbounded makes it difficult to directly add Laplace noise to ensure privacy
without strong assumptions over our data. However, we can still calculate τ privately with a simple
algorithm, with reasonable error. Show that there exists an ε-differentially private estimator τ̂ such
that for a constant c:

Pr

[(
1− cε ln

1

ρ

)
≤ τ̂

τ
≤
(

1 + cε ln
1

ρ

)]
≥ 1− ρ. (2)

You may assume that ε is small – e.g. so that ε ln 1
ρ < 1. You can also assume that A,B,C,D is each

bigger than 1
ε2 .

Hint: Consider separate private estimators for the queries A,B,C and D.



Note: Previously we asked you to show the weaker bound:

Pr

[∣∣∣∣ τ̂τ
∣∣∣∣ > (1 + cε) · ln

(
1

ρ

)]
≤ ρ. (3)

If you already showed just that, then you will receive full credit.

(c) We’ve provided you with a synthetic X for a population of 100,000 people in covid data.csv. In
reality, it is often unfeasible to calculate a statistic like τ over the entire population (because we can’t
survey everyone), so let’s understand how subsampling here affects the accuracy of τ in practice. Please
implement each step yourself - no external libraries beyond numpy, pandas, etc. (or equivalents in your
language of choice).

(a) Calculate τ for the entire population. This is ground truth τ .

(b) Calculate τ̃m from random subsamples of sizem from the population, wherem ∈ {100, 1000, 10000}.
Run this over b = 10 random subsamples (specify a seed set of size b) for each m, and report the
average error between τ̃m and τ across these runs.

(c) Calculate an ε-differentially private estimate τ̂m for each m using the algorithm you designed in
(2) for ε = 0.01. Report on the relative errors between τ̂m, τ̃m and τ .

(d) Write 2-3 sentences of discussion on how well the the algorithm performs in this practical setting.
How does population size affect DP algorithm accuracy? Also, does having received the vaccine
increase or decrease your odds of having contracted COVID?

Problem 2: Separation Oracles

(12 pts) Describe efficient separation oracles for each of the following families of convex sets. Here, “efficient”
means linear time plus O(1) calls to any additional oracles provided to you.

(a) The set A ∩B, given separation oracles for A and B.

(b) The `1 ball: ‖x‖1 ≤ 1.

(c) Any convex set A, given a projection oracle for A. Recall that a projection oracle, given a point x,
returns

ProjA(x) = arg min
y∈A

‖x− y‖2.

(d) The ε-neighborhood of a convex set A:

{x | ∃y ∈ A, ‖x− y‖2 ≤ ε}

given a projection oracle for A.

Above you may wish to use the following fact that was stated but not proven in class: for any point x,
convex set A, and z ∈ A, ‖z− ProjA(x)‖2 ≤ ‖z− x‖2.

Problem 3: Approximating Eigenvalues Moments

(15 pts) Let A ∈ Rn×n be a square symmetric matrix, which means it it guaranteed to have an eigendecom-
position with real eigenvalues, λ1 ≥ . . . ≥ λn. While computing these eigenvalues naively takes O(n3) time,
it turns out that we can compute their sum much more quickly: with n operations. This is because

∑n
i=1 λi

is exactly equal to the trace of A, i.e. the sum of its diagonal entries tr(A) =
∑n
i=1 Aii. We can also compute

the sum of squared eigenvalues in O(n2) time by taking advantage of the fact that
∑n
i=1 λ

2
i = ‖A‖2F where

‖A‖2F is the Frobenius norm. What about
∑n
i=1 λ

3
i ? Or

∑n
i=1 λ

4
i ? It turns out that no exact algorithms

faster than a full eigendecomposition are known.
In this problem, however, we show how to approximate

∑n
i=1 λ

k
i for any positive integer k in O(n2k)

time. By the way, this is not a contrived problem – it has a ton of applications in machine learning and data
science that you can ask me about in office hours!



(a) Show that
∑n
i=1 λ

k
i = tr(Ak) where Ak denotes the chain of matrix products A ·A · . . . ·A, repeated

k times. For the remainder of the problem we use the notation B = Ak.

(b) Let x(1), . . . ,x(m) ∈ Rn be m independent random vectors, all with i.i.d. {+1,−1} uniform random
entries. Let Z = 1

m

∑m
i=1(x(i))TBx(i). We will show that Z is a good estimator for tr(B) and thus for∑n

i=1 λ
k
i . Give a short argument that Z can be computed in O(n2km) time (recall that B = Ak).

(c) Prove that:

E[Z] = tr(B) and Var[Z] ≤ 2

m
‖B‖2F

Hint: Use linearity of variance but be careful about what things are independent!

(d) Show that if m = O( 1
ε2 ) then, with probability 9/10,

| tr(B)− Z| ≤ ε‖B‖F .

(e) Argue that, when A is positive semidefinite, ε‖B‖F ≤ ε tr(B), so the above guarantee actually gives
the relative error bound,

(1− ε) tr(B) ≤ Z ≤ (1 + ε) tr(B),

all with just O(n2k/ε2) computation time.

Problem 4: Non-convex Optimization

(10 pts) Consider the problem of computing the top right singular vector v1 of a matrix A ∈ Rn×d.
As mentioned, it is possible to frame this problem as an optimization problem and solve it with gradient
descent. As discussed in class, a benefit of doing so is that it makes it easier to introduce stochastic and
online methods, and possible use projection to add additional constraints.

Recall that A’s right singular vectors are equal to the eigenvectors of ATA and the eigenvalues of ATA
are equal to λ1 = σ2

1 , . . . , λd = σ2
d, where σ1 > . . . σd > 0. You can assume there are no repeat singular

values for this problem, so these are strict inequalities.

1. Quick answer: Assume we have know some coarse upper bound λ̃ ≥ λ1. Let f(x) = λ̃ · xTx −
xTATAx. It is easy to check that v1 = arg minx∈S f(x) where S = {y : ‖y‖22 ≥ 1}. Prove that f(x)
is a convex function, but S is not a convex set.

Since S is not convex, our generic analysis of projected gradient descent will give no guarantees for
this problem. However, in class we will prove that the method actually does work for this problem –
with a correctly chosen step size, it is exactly exactly equivalent to power method which we analyze.

2. Consider an alternative approach through unconstrained optimization. Let g(x) = −xTATAx
xTx

. Now
we have that v1 ∈ arg min g(x). Prove that g is non-convex and derive an expression for its gradient
∇g(x). Show that c · vi is a statitionary point of g for any right singular vector vi and scaling c.

3. g’s non-convexity also rules out a direct convergence bound: in theory gradient descent could converge
to any singluar vector of A, not the top one. However, we can argue this is unlikely to happen. In
particular, we claim that for any i 6= 1, vi is actually just a saddle point of g, not a local minimum.
To prove this, show that for any such vi, and any t > 0,

There exists a perturbation z with ‖z‖2 ≤ t such that g(vi + z) < g(vi).

If you are interested, you can find a some work on proving gradient methods won’t get stuck at saddle
points here https://arxiv.org/abs/1703.00887.

https://arxiv.org/abs/1703.00887
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