
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 6763: Homework 2.
Due Tuesday, October 18th, 2022, 11:59pm ET.

Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list
collaborators for each problem separately, or write “No Collaborators” if you worked alone.

Problem 1: Analyzing Sign-JL and JL for Inner Products

(20 pts) Often practitioners prefer JL matrices with discrete random entries instead of Gaussians because
they take less space to store and are easier to generate. We analyze one construction below.

Suppose that Π is a “sign Johnson-Lindenstrauss matrix” with n columns, k rows, and i.i.d. ±1 entries
scaled by 1/

√
k. In other words, each entry in the matrix has values −1/

√
k with probability 1/2 and 1/

√
k

with probability 1/2.

1. Prove that for any vector x ∈ Rn, E[‖Πx‖22] = ‖x‖22 and that Var[‖Πx‖22] ≤ 2
k‖x‖

4
2. This is the meat

of the problem and will take some effort.

2. Use the above to prove that Pr
[∣∣‖Πx‖22 − ‖x‖22

∣∣ ≥ ε‖x‖22] ≤ δ as long as we choose k = O
(

1/δ
ε2

)
. Note

that this bound almost matches the distributed JL lemma proven in class, but with a worse failure
probability dependence of 1/δ in place of log(1/δ).

With more work, it’s possible to improve the dependence to log(1/δ) for the sign-JL matrix, but we
won’t do so here.

3. Generalize your analysis above to show that JL matrices are also useful in approximating inner products
between two vectors. For vectors x,y ∈ Rn prove that Pr [|〈Πx,Πy〉 − 〈x,y〉| ≥ ε‖x‖2‖y‖2] ≤ δ as

long as we choose k = O
(

1/δ
ε2

)
.

This result can also be improved to have a log(1/δ) dependence in place of 1/δ. .

Problem 2: Join Size Estimation

(15 pts) One powerful application of sketching is in database applications. For example, a common goal
is to estimate the inner join size of two tables without performing an actual inner join (which is expensive,
as it requires enumerating the keys of the tables). Formally, consider two sets of keys X = {x1, . . . , xm}
and Y = {y1, . . . , yn} which are subsets of 1, 2, . . . , U . Our goal is to estimate |X ∩ Y | based on small space
compressions of X and Y . We consider two approaches below.

1. Using your result from Problem 1, describe a method based on inner product estimation that constructs
independent sketches of X and Y of size k = O

(
1
ε2

)
and from these sketches can return an estimate Z

for |X ∩ Y | satisfying

|Z − |X ∩ Y || ≤ ε
√
|X||Y |

with probability 9/10.

2. Alternatively, consider compressing the sets as follows:

• Choose k uniform random hash functions h1, . . . , hk : {1, . . . , U} → [0, 1].

• Let CX = [CX1 , . . . , C
X
k] where CXi = minj=1,...,m hi(xj).

• Let CY = [CY1 , . . . , C
Y
k] where CYi = minj=1,...,n hi(yj).

Given the sketches CX and CY ., which each contain k numbers, we estimate join size as Z = k′

k ·(
1
S −1)

where k′ ≤ k equals k′ =
∑k
i=1 1[CXi = CYi] and

S =
1

k

k∑
i=1

min(CXi , C
Y
i).

Show that if we set k = O(1
ε2) then with probability 9/10,

|Z − |X ∩ Y || ≤ ε
√
|X ∩ Y ||X ∪ Y |.

Hint: Think about the two pieces of the estimator Z, k′/k and (1
S − 1), separately. What quantities

do we expect these random variables to be close to?

3. Which method give better accuracy? The JL based method or the hashing based method?

Problem 3: Concentration of sum of random vectors.

(10 pts) We have seen that several concentration inequalities apply to sums of bounded random variables
(Hoeffding, Chernoff, etc.). In this problem you will prove a basic concentration result for sums of bounded
random vectors. Let x1, . . . ,xk ∈ Rd be d dimensional i.i.d. random vectors (independent, drawn from the
same distribution) with mean µ – i.e. E[xi] = µ. Further suppose that, deterministically, ‖xi‖22 ≤ C for

some fixed constant C. Let s = 1
k

∑k
i=1 xi. Prove that if k ≥ O(1/δ

ε2) then

Pr [‖s− µ‖2 ≥ ε
√
C] ≤ δ.

Try solving the problem first under the assumption that µ = 0, then reduce the general problem to the mean
0 case.

COMPLETE EITHER PROBLEM 4 OR PROBLEM 5

Problem 4: Compressed classification.

(10 pts) In machine learning, the goal of many classification methods (like support vector machines) is to
separate data into classes using a separating hyperplane.

Recall that a hyperplane in Rd is defined by a unit vector a ∈ Rd (‖a‖2 = 1) and scalar c ∈ R. It contains
all h ∈ Rd such that 〈a, h〉 = c.

Suppose our dataset consists of n unit vectors in Rd (i.e., each data point is normalized to have norm
1). These points can be separated into two sets X,Y , with the guarantee that there exists a hyperplane
such that every point in X is on one side and every point in Y is on the other. In other words, for all
x ∈ X, 〈a, x〉 > c and for all y ∈ Y, 〈a, y〉 < c.

Furthermore, suppose that the `2 distance of each point in X and Y to this separating hyperplane is at
least ε. When this is the case, the hyperplane is said to have “margin” ε.

1. Show that this margin assumption equivalently implies that for all x ∈ X, 〈a, x〉 ≥ c + ε and for all
y ∈ Y, 〈a, y〉 ≤ c− ε.

2. Show that if we use a Johnson-Lindenstrauss map Π to reduce our data points to O(log n/ε2) dimen-
sions, then the dimension reduced data can still be separated by a hyperplane with margin ε/4, with
high probability (say > 9/10).

Problem 5: LSH in the Wild

This exercise does not involve formal proofs or analysis like more typical problem set problems. It will likely
involve some coding or spreadsheet work.

(10 pts) To support its largely visual platform, Pinterest runs a massive image de-duplication operation
built on Locality Sensitive Hashing for Cosine Similarity. You can read about the actual system here. All
information and numbers below are otherwise purely hypothetical.

https://medium.com/pinterest-engineering/detecting-image-similarity-using-spark-lsh-and-tensorflow-618636afc939

Pinterest has a database of N = 1 billion images. Each image in the database is pre-processed and
represented as a vector q ∈ Rd. When a new image is pinned, it is also processed to form a vector y ∈ Rd.
The goal is to check for any existing duplicates or near-duplicates to y in the database. Specifically, Pinterest
would like to flag an image q as a near-duplicate to y if cos(θ(q,y)) ≥ .98. We want to find any near-duplicate
with probability ≥ 99%.

Given this requirement, your job is to design a multi-table LSH scheme using SimHash to find candidate
near-duplicates, which can then be checked directly against y. To support this task, Pinterest has collected
data on the empirical distribution of cos(θ(q,y)) for a typical new image y. It roughly follows a bell-curve:

Pinterest wants to consider two possible computational targets for your LSH scheme, which will determine
the speed of the de-duplication algorithm:

1. Ensure that no more than 1 million candidate near-duplicates are checked on average when a new image
is pinned. Here “checked” means directly compared against the new image for high cosine similarity.

2. Ensure that no more than 200, 000 candidates are checked on average when a new image is pinned.

Based on the data above, describe how to set parameters for your LSH scheme to minimize the space (i.e.,
number of tables) used, while achieving each of the above goals. Justify your answers, and any assumptions
you make. If you code anything up to help calculate your answer, please attach the code. As in lecture, you
can assume that each hash table has m = O(N) slots and this is large enough to ignore lower order terms
depending on 1/m.

	Problem 1: Analyzing Sign-JL and JL for Inner Products
	Problem 2: Join Size Estimation
	Problem 3: Concentration of sum of random vectors.
	Problem 4: Compressed classification.
	Problem 5: LSH in the Wild

