
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 6763: Homework 1.
Due Tuesday, September 27th, 2022, 11:59pm ET.

Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list
collaborators for each problem separately, or write “No Collaborators” if you worked alone.

For just this first problem set, 10% extra credit will be given if solutions are typewritten (using LaTeX,
Markdown, or some other mathematical formatting program).

Problem 1: Short(er) problems.

(8 pts)

1. (4pts) Consider inserting m keys into a hash table of size n = 5m2 using a uniformly random hash
function. By the mark-and-recapture analysis from class, we know that the expected number of colli-

sions in the table is m·(m−1)
2·5m2 < 1/10. So, by Markov’s inequality, with probability > 9/10, the table

has no collisions (< 1 collisions). Thus, we can look up items from the table in worst-case O(1) time.

Give an alternative proof of the fact that we have no collisions with > 9/10 probability in a table of
size cm2 for some sufficiently large constant c. Specifically, to have no collisions, we must have the
following events all happen in sequence: the second item inserted into the hash table doesn’t collide
with an existing item, the third item inserted doesn’t collide with an existing item, ..., the mth item
inserted doesn’t collide with an existing item. Analyze the probability these events all happen. Hint:
You might want to use the standard fact that 1

2e ≤ (1− 1
n )n ≤ 1

e for any positive integer n ≥ 2.

2. (4pts) Consider a random walk on a d-dimensional grid. At each step, the walk chooses one of the
d-dimensions uniformly at random, and takes a step in that direction – up with probability 1/2 and
down with probability 1/2. Assume that the walk starts at the origin, takes n steps, and ends at
position x, where x is a d dimensional vector with integer values. Show that E[‖x‖22] = n, where

‖x‖22 =
∑d
i=1 x

2
i denotes the squared Euclidean norm of x.

I find this fact surprising. If a tourist starts at Washington Square Park and randomly wonders around
Manhattan, in expectation they don’t get any more lost than if they restrict their wondering to just
up and down 5th Avenue.

Problem 2: Why does Count-Min work well in practice?

(15 pts) We showed that Count-Min can estimate the frequency of any item in a stream of n items up to
additive error 1

mn using O(m) space. In practice it is often observed that this bound is pessimistic: the
algorithm performs better than expected. In this problem, you will establish one reason why.

For any positive integer m, let f1, . . . , fm be the frequencies of the m most frequent items in our stream.
Let C = n−

∑m
i=1 fi. In general, we can have that C � n. For example, it has been reported that up to 95%

of YouTube video views come from just 1% of videos. Prove that using O(m) space, Count-Min actually
returns an estimate f̃ to f(v) for any item v satisfying:

f(v) ≤ f̃ ≤ f(v) +
1

m
C

with 9/10 probability. This is strictly better than the 1
mn error bound shown in class.

Problem 3: Randomized methods for COVID-19 group testing.

(12 pts) One of the most important factors in controlling diseases like COVID-19 is testing. Before at-home
kits became available, testing was expensive and slow. One way to make it cheaper was to test patients in
groups. The biological samples from multiple patients (e.g., multiple nose swabs) are combined into single
test tube and tested for COVID-19 all at once. If the test comes back negative, we know everyone in the



group is negative. If the test comes back positive, we do not know which patients in the group actually had
COVID-19, so further testing would be necessary. There’s a trade-off here, but it turns out that, overall,
group testing can save on the total number of tests run.

1. Consider the following deterministic “two-level” testing scheme. We divide a population of n individuals
to be tested into C groups of the same size. We then test each of these groups. For any group that
comes back positive, we retest all members of the group individually. Show that there is a choice for C
such that, if k individuals in the population have COVID-19, we can find all of those individuals with
≤ 2
√
nk tests. You can assume k is known in advance (often it can be estimated accurately from the

positive rate of prior tests). This is already an improvement on the naive n tests when k < 25% · n.

2. We can use randomness to do better. Consider the following scheme: Collect q = O(log n) nose swabs
from each individual (I know... not pleasant). Then, repeat the following process q times: randomly
partition our set of n individuals into C groups, and test each group in aggregate. Once this process is
complete, report that an individual “has COVID” if the group they were part of tested positive all q
times. Report that an individual “is clear” if any of the groups they were part of tested negative. Show
that for C = O(k), with probability 9/10, this scheme finds all truly positive patients and reports no
false positives. Thus, we only require O(k log n) tests!

Hint: If your proof would also work for q < O(1) then it has a bug! See EC below.

3. Extra Credit – optional. Show that no scheme can use o(k log(n/k)) tests and succeed with prob-
ability > 2/3. So, for small k, the approach above is essentially optimal up to constant factors!

Problem 4: Exploring Concentration Bounds, Part 1

(8 pts) Let X be a random variable uniformly distributed in the interval [0, 1]. Since we know X’s distribu-
tion exacty, we can easily check that Pr[X ≥ 7/8] = 1/8. But let’s take a look at what various concentration
inequalities would predict about this probability using less information about X.

1. Given an upper bound on Pr[X ≥ 7/8] using Markov’s inequality.

2. Give an upper bound on Pr[X ≥ 7/8] using Chebyshev’s inequality.

3. Given an upper bound on Pr[X ≥ 7/8] by applying Markov’s inequality to the random variables X2

(the “raw” second moment). Note that this is slightly different than using Chebyshev’s inequality,
which applies Markov to “central” second moment (X − E[X])2.

4. What happens for higher moments? Applying Markov’s to Xq for q = 3, 4, . . . , 10. Describe what you
see in a sentence. What value of q gives the tightest bound?

5. One take-away here is that, depending on the random variable being studied, it is not always optimal
to use the variance as a deviation measure to show concentration. Markov’s can be used with any
monotonic function g, and as we see above, different choices might give better bounds. Exhibit a
monotonic function g so that applying Markov’s to g(X) gives as tight an upper bound on Pr[X ≥ 7/8]
as you can. Maximum points if you can get Pr[X ≥ 7/8] ≤ 1/8, which would be the best possible.

Problem 5: Exploring Concentration Bounds, Part 2

(8 pts) Using combinatorics, write down and evaluate (e.g., run some code) an explicit expression for the
probability of flipping 60 or more heads when flipping a fair coin 100 times independently. Do the same for
600 or more heads in 1000 flips. Compare your results to the upper bound given by the Chernoff bound
from Lecture 2:

Pr[S > (1 + ε)µ] ≤ e−
ε2µ
2+ε .

Also compare to this slightly different and less commonly used form of the bound from Wikipedia:

Pr[S > (1 + ε)µ] ≤
(

eε

(1 + ε)1+ε

)µ
.



Also compute what each Chernoff Bound would give if you wanted to bound the probability of flipping more
than 60 or 600 heads. Write a 1-2 sentence comment on how what your findings suggest about how “tight”
the Chernoff bound is.

Problem 6: Randomized Routing

(12 pts)Randomization is often used in designing protocols for efficiently routing information over a network
(e.g. the internet, or a network within a data center). Consider the following simplified model of a routing
problem under communication constraints: we have n nodes in a fully connected network (e.g. a data
center with n servers). Each node has n packets that it would like to deliver to n (not necessarily unique)
destinations. Also, for simplicity, we assume that each node is the intended recipient of exactly n packets.
In each round, a node can send at most one packet along each connection in the network. Assume that the
packet contains the id of its final intended recipient.

Naively, sending all packets could take n rounds of communication, if e.g., some node v wants to send
all n of its packets to some other node u. Design and analyze a randomized scheme that instead routes all
packets to their intended recipient in O(log n) rounds with high probability, i.e., with probability at least
99/100. Hint: Have each node initially send each of its n packets to a random recipient.


	Problem 1: Short(er) problems.
	Problem 2: Why does Count-Min work well in practice?
	Problem 3: Randomized methods for COVID-19 group testing.
	Problem 4: Exploring Concentration Bounds, Part 1
	Problem 5: Exploring Concentration Bounds, Part 2
	Problem 6: Randomized Routing

