CS-GY 6763: Lecture 9
Low-rank approximation and singular value
decomposition

NYU Tandon School of Engineering, Prof. Christopher Musco



ADMINISTRATIVE

- Reading group tomorrow at 9:30am. Pat and Hogyeong are
presenting on a method for the Frequent Items problem
that improve on the CountMin method we learned in class
in may scenarios.

+ Midterms will be returned at the end of class.
- Problem Set 2 is being graded.



SPECTRAL METHODS
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SPECTRAL METHODS

Return to data compression:
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data vector x



SPECTRAL METHODS

Main difference from randomized methods:
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In this section, we will discussidata dependent}




SPECTRAL METHODS

Advantages of data independent methods:
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LINEAR ALGEBRA REMINDER

co\veu

If @ square matrix has orthonormal rows, it also havev S ﬁ \‘1 ~
orthonormal columns: ‘(/Jf“: 2 \‘.Z A”‘J = @l
)
T 1 1
- 6 ",
. BV o - v o=,
— |l
J
ViV=1=w'"
S =1

Implies that for any vector x, ||Vx||3 = ||x]|5 and ||Vx]|3.

X" V/T\/'x s XK = S X TV =X"Ix : ]\K“:
Same thing goes for Frobenius norm: for any matrix X,
IVXII2 = X2 and [VTXI2 = X|2



LINEAR ALGEBRA REMINDER

The same is not true for rectangular matrices:

1
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VT - 111 Y \ = A]s -h4h 42 15
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Vx|[5 = [Ix]3 but [|V7x[|3 # [Ix]3 in general.
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LINEAR ALGEBRA REMINDER

Multiplying a vector by V with orthonormal columns rotates

and/or reflects the vector. ( /L,) |¢ - llo- \,\(
vl v W(w}h (Eey
q a b
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LOW-RANK DATA

Suppose Xy, ..., Xn € RY lie on a low-dimensional subspace S
through the origin. l.e. our data set is rank k for k < d.

Let vq,...,V, be orthogonal unit vectors spanning S.

For all i, we can write:




LOW-RANK DATA

X, G trix VT
matrix
X z S ——
2 . : =
© . X x ¢
0 .
X’; Xn Cn
matrix X atrix C
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LOW-RANK DATA

Lots of information preserved:
. ”X,‘ = X/'HZ = HC,‘ = CJ'HQ for all I,]
- xTx. — cle: - o
X Xj = ¢ ¢ for all i, ).

- Norms preserved, linear separability preserved,
min ||Xy — b|| = min ||Cz — b}, etc,, etc.
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LOW-RANK DATA

d m d
X, ——

% Q| % —
matrix VT
Xn Cn
matrix X matrix C ?%J
Formally, C = XVM: /7 T

X=CV =XV =cVv Xv=C

Since V's columns are an orthonormal basis, VTV = 1.

’};(‘ Sotne V \07»’\ 'S (o\\“«\« s/
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PROJECTION MATRICES

W/ is a symmetric projection matrix.

U1

X

VT

When all data points already lie in the subspace spanned by
V's columns, projection doesn’t do anything. So X = XVV'. 14
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PROJECTION MATRICES

W/ is a symmetric projection matrix.

— N
X v N N\ =; X, >

X

f;- xTWT is the projection of x] onto the subspace.

By pythagorean theorem, ||x] — x]WVT |2 = ||x] |3 — HX?VVTH% and
by apply to all rows, [|[X — XVVT||2 = ||X||2 — [[XVVT||2.



LOW-RANK APPROXIMATION

When X's rows lie close to a k dimensional subspace, we can

still approximate

Xn X',

XWV' is a low-rank approximation for X.
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LOW-RANK APPROXIMATION

Xn.
y S
."‘1 o (XVVT)n
a(XwV1),
° (XVVT), o X, (.

<

Ixi =2 2 XV = xP Wl =[xV =]V,

d k
—t— ——
X —)

@an be used as a compressed version of data matrix X. -



WHY IS DATA APPROXIMATELY LOW-RANK?
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DUAL VIEW

Rows of X (data points) are approximately spanned by k
vectors. Columns of X (data features) are approximately

spanned by k vectors.
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ROW REDUNDANCY

If a data set only had k unique data points, it would be exactly
rank k. If it has k “clusters” of data points (e.g. the 10 digits) it's
often very close to rank k.

projections onto 15
784 dimensional vectors ~ dimensional space  orthonormal basis v4,...,V1s

=280
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COLUMN REDUNDANCY

Colinearity/correlation of data features leads to a low-rank

data matrix.
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OTHER REASONS FOR LOW-RANK STRUCTURE

When encoded as a matrix, which image has lower
approximate rank?
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APPLICATIONS OF LOW-RANK APPROXIMATION

0ud ) AIC2S
d k

() | |-

+ XV - VT takes O(k(n + d)) space to store instead of O(nd).

- Regression problems involving XV - VT can be solved in
O(nk?) instead of O(nd?) time.
- XV can be used for visualization when kR = 2, 3.
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APPLICATIONS OF LOW-RANK APPROXIMATION

“Genes Mirror Geography Within Europe” — Nature, 2008.

Each data vector x; contains genetic information for one person in
Europe. Set k =2 and plot (XV); for each i on a 2-d plane. Color
points by what country they are from.
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COMPUTATIONAL QUESTION

Given a subspace V spanned by the k columns inV,

Upf 7‘“:

_ T2 /
XX I T\ g2

LS TN
We want to find the best V € RI*¥: _
Ixle - [xvelle
min XXV 2 0
orthonormal VeRdxk

Note that [[X — XWVT|[# = [IX||7 — [[XWVT]| for all orthonormal V
(since W' is a projection). Equivalent form:

max G2 = xv? )

orthonormal VeRdxk
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If k =1, want to find a single vector v; which maximizes:

X = (R = Il = vIXxvi
Choose v4 to be the top eigenvector

What about higher k?

VOIS v,m XKV
ViewLe1
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SR AV . XU = ke (XTx)
x x \) M@\( - YA\

Any matrix X can be written: sl = x7x
R (ugrvT) = {5V - ,Lf(i@
d left singularvectors singular values i vectors
(%
‘ o e T
@,
n &
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= lyvh,
616 P ) XULU%\J’T\/ < U(Z,
Where UTU =LV'V=1l,and 01 > 02 > ...04 > 0.

d
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CONNECTION TO EIGENDECOMPOSITION

V‘l/“* Vs

- Vi,'s columns are called the “top right singular vectors of X"
- U's columns are called the “top left singular vectors of X"

- 01,...,0p are the “top singular values”. o1,...,04 are
sometimes called the “spectrum of X" (although this is
more typically used to refer to eigenvalues).

» U contains the orthonormal eigenvectors of XX
- V contains the orthonormal eigenvectors

‘ NOXT) = A(XTX)

Exercise: Check this can be checked directly.
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SINGULAR VALUE DECOMPOSITION

Important take away from singular value decomposition.

Multiplying any vector a by a matrix X to form Xa can be viewed
as a composition of 3 operations:

1. Rotate/reflect the vector (multiplication by to V7).
2. Scale the coordinates (multiplication by X.
3. Rotate/reflect the vector again (multiplication by U).
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SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT

2 Va T T
Vaﬁ Vib
b Q
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SINGULAR VALUE DECOMPOSITION: STRETCH

6.7 0

VAR 4
L.

6& QL

<[

31



SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT

ZV;/ Vb UzVia Uy
QJ |
u, u,

UsV'b




SINGULAR VALUE DECOMPOSITION

-
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UsV'b
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SINGULAR VALUE DECOMPOSITION

Can read off optimal low-rank approximations from the SVD:

d

left singular vectors

singular values

right singular vectors

X,

U,

Xp = UpXpV], = ULULX = XV, V],

@: arg min
orthonormal VERA Xk

0,
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X — XWT|]2 =
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o et
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arg max XVVT |2

orthonormal VERAxk
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SINGULAR VALUE DECOMPOSITION

Connection to Principal Component Analysis:

s letX=X—1u" Wher@l.e. X is obtained by

mean centering X's rows:

- Let UZV! be the SVD O@U’s first columns are the “top
principal components” of X. V's first columns are the
“weight vectors” for these principal components.

o]
8? ‘
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USEFUL OBSERVATIONS

d left singular vectors  singular values  right singular vectors
(A T
0y vk
X | =Y %
n
seryatign 17T a B

S.
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USEFUL OBSERVATIONS

0
0 d ight sm@rveaors %
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Observation 2: The optimal low-rank approximation error

@: IX = XVeVE [ = [[X[[F — IXViVE|[f can bemrirren:
'¥/__. .
% (,,W/J d E‘é'
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SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er = [[X — XVLVL|[2 = [IX[|2 — [XVLVE |2 can be written:

d
Er = Z 0,2.

i=k+1
Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

784 dimensional vectors

E singular

) |
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SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er = [[X — XVLVL|[2 = [IX[|2 — [XVLVE |2 can be written:

d
E= Z U,-z.

i=k+1
Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

784 dimensional vectors

singular _
value g, .




SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er = [[X — XVLVL|[2 = [IX[|2 — [XVLVE |2 can be written:

d
E= Z a,-z.

i=k+1
Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

singular
value o,
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COMPUTING THE SVD

%
Suffices to computesmgu arve 2 ?@ >
: Comput ben uxd 5 OC‘“LV>

- Find eigendecomposition VAVT = XTX.
- Compute L = XV. Set g; = ||Lj||> and U; = L;/||Lj||-

Total runtime =~ p[lxzf/) ¥ OCL>>

= Lev "
IV :-02
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COMPUTING THE SVD (FASTER)

- Compute solution.
~_——

- Only compute top k singular vectors/values. Runtime will
depend on k. When k = d we can’t do any better than
classical algorithms based on eigendecomposition.

- Iterative algorithms achieve runtime ~ O(ndk) vs. Q(nd?)
time.

- Krylov subspace methods like the Lanczos method are
most commonly used in practice.

- Power method is the simplest Krylov subspace method,
and still works very well.

What we won’t discuss today: sketching methods and
stochastic methods (which are faster in some settings).
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POWER METHOD

TX - UTU iU’f _ T
Today: What about when kR =17 K'X-Vz V2

Ll
Goal: Find someiw@ @@L\FTZ vz, (ZJ
Input: X € R"*9 with SVD UZV'. -

oo, . GV, b -GNy

Power method: ﬁ/m vy e 20)

S VAR AN

- Choose z(9 randomly. E.g. o ~ N(O,
. 2(0) — Z(O)/HZ(O)H2

- Fori=1,...,T . , . .
ey 29 f0) (K - (KK
- ni =20 N
) :zU)/;,- WJ"V“

Return z(7 OST)\) | 2°)
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POWER METHOD INTUITION

0 iterations 1

2 iterations

p
.
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POWER METHOD FORMAL CONVERGENCE

Theorem (Basic Power Method Convergence)

Let y = #1222 be parameter capturing the “gap” between the
1

first and second largest singular values. If Power Method is

initialized with a random Gaussian vector then, with high

probability, after T = Q‘_(:f?) steps, we have either:
vi=zPlb<e  or  fvi—(-ZD)2<e
\
logd/e
0 (na-E£2) k)

o(hd?)
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ONE STEP ANALYSIS OF POWER METHOD

Write z() in the right singular vector basis:

20 = Oy, + Ovy + ..+ ijo)vd

20 = vy + vy + ..+ Py

200 = vy + Py + ...+ Wy,

Note: [c,..., )] = () = vTz().

Also: ZL (cj("))z @ o

"
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ONE STEP ANALYSIS OF POWER METHOD

Claim: After update z() = ni;XTXZ(M),

(i
— —

< 11 (-1y73 =17 (i1
20) = e {q,@\_@%-cz @-Vz+...+cd Vd]
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MULTI-STEP ANALYSIS OF POWER METHOD

\ s )
Claim: After T updates yeac ©
7
(
[[,,V‘,,O Ve + .. t...0-Vy
Let o = = - CJ(O)W;“'. Goal: Show that o <(ajforallj # 1.

/1/
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POWER METHOD FORMAL CONVERGENCE

Since z(M is a unit vector, >¢ 1 a? = 1. So aq < 1.

If we can prove th

o2 <
_J
d
&a%—i—Zaﬁga%—i—;
j=2

a$21—e
lon| > 1—¢

e

vi = 2D, = 2 = 2(vy,2(M) < 2¢
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POWER METHOD FORMAL CONVERGENCE

Lets proves tha here q; g

First observation: Starting coefﬁaents are all rous

For all j 0(1/d*) < c? <1

/
with probabilithls is a very oosg bound, but it's all

that we will ne PFove using Gau55|an concentration.

hly equal.




POWER METHOD — NO GAP DEPENDENCE

Theorem (Gapless Power Method Convergence)
If Power Method is initialized with a aussian vector

then, with high probability, aftef T = O ( €é> %
obtain a z satisfying:

IX = Xz2' |} < (14 )X = Xurv |

—_———
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GENERALIZATIONS TO LARGER R

- Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

Power method:

- Choose G € RY%*® be a random Gaussian matrix.

- Zo = orth(G). T+ Ci-
-Fori___%ﬁ)T )( % 2 )

(i) — XT . XZ(’ 1) e
[ = orth Z(’)) fudin >
Return z(D k/\/—‘
pqdk)

Runtime: O (%)iterations to obtain a nearly optimal
low-rank approximation:

X = X227 |2 < (1 + )X — XViWi I
—_——
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KRYLOV METHODS

Possible to “accelerate” these methods.

Convergence Guarantee: T = 0 "’gd/e iterations to obtain a

nearly optimal low- rank appro><|mat|on

IA = AZZT[]2 < (1+ €)[IA — AVY,T I

Runtime: O(nnz(X) - k- T) < O(ndk - T).
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KRYLOV SUBSPACE METHODS

pLs) -4

2V=¢ '@g (uf’a *d(”ﬁ»

o),
+

G 5

t4

4 05 06 07 08 09

2D — . [Cq -0'12qV1 +C - U§QV2 +...+Cp- O'%qvn]
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KRYLOV SUBSPACE METHODS

2(a) =c (xTx)q@

Along the way we computed:

Ky = [g@g@\

KC is called the Krylov subspace of degree g.

Idea behind Krlyov methods: Don't throw away everything
before (X'X)? - g What you're using when you run svds or
eigs in MATLAB or Python.
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KRYLOV SUBSPACE METHODS

Want to find v, which minimizes ||X — Xwv||2.

Lanczos method:

- Let Q € RY** be an orthonormal span for the vectors in K.
* Solve miny—qu [|[X — Xw|2.
- Find best vector in the Krylov subspace, instead of just

using last vector.
- Can be done in O (nnz(X) - k + dk?) time.
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LANCZOS METHOD ANALYSIS

2 0(g)

Claim: There isan O (, /qlog 1>degree polynomial p

Qs
approximating x4 up to error ec? on [0, g%]. 6,7 =1

Kt

IX = Xvpvp. ][ <

~ (X = XvxaVio |7 & 11X — Xvavi |7

Runtime: O (% . nnz(X)> vs. O (% . nnz(X)) 57



POWER METHOD — NO GAP DEPENDENCE

Convergence is slow when y = -2 is small. z(9 has large
components of both v4 and v,. But in this case:

T2 2 2 T2
IX=Xvavi[|E =D o &Y = of X — Xvavp If.
i#1 i#2

So we don't care! Either vy or v, give good rank-1
approximations.
Claim: To achieve

X —XezT |2 < (1 + )lIX — Xvov] |2

we need O (%) power method iterations or O ('°g(d/€)>

. . Ve
Lanczos Iterations.
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GENERALIZATIONS TO LARGER R

- Block Krylov methods

- Let G € RY%k be a random Gaussian matrix.
+ Kq =[G, (X'X) -6, (XX)* -G, ..., (X'X)" - 6]

Runtime: O (nnz(X) R %) to obtain a nearly optimal
low-rank approximation.
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