
CS-GY 6763: Lecture 9
Low-rank approximation and singular value
decomposition

NYU Tandon School of Engineering, Prof. Christopher Musco
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administrative

• Reading group tomorrow at .am߿ࠂ:ࠈ Pat and Hogyeong are
presenting on a method for the Frequent Items problem
that improve on the CountMin method we learned in class
in may scenarios.

• Midterms will be returned at the end of class.
• Problem Set ࠁ is being graded.
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spectral methods

Return to data compression:
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spectral methods

Return to data compression:

ࠃ



spectral methods

Main difference from randomized methods:

In this section, we will discuss data dependent
transformations. Johnson-Lindenstrauss, MinHash, SimHash
were all data oblivious.
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spectral methods

Advantages of data independent methods:

Advantages of data dependent methods:

ࠅ
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linear algebra reminder

If a square matrix has orthonormal rows, it also have
orthonormal columns:

VTV = I = VVT

Implies that for any vector x, kVxkࠁࠁ = kxkࠁࠁ and kVTxkࠁࠁ.

Same thing goes for Frobenius norm: for any matrix X,
kVXkࠁF = kXkࠁF and kVTXkࠁF = kXkࠁF .
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linear algebra reminder

The same is not true for rectangular matrices:

VTV = I but VVT 6= I

For any x, kVxkࠁࠁ = kxkࠁࠁ but kVTxkࠁࠁ 6= kxkࠁࠁ in general.

ࠇ

"O11
1

¢r%¥¥
-

Ap,



linear algebra reminder

Multiplying a vector by V with orthonormal columns rotates
and/or reflects the vector.

ࠈ
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low-rank data

Suppose xࠀ, . . . , xn 2 Rd lie on a low-dimensional subspace S
through the origin. I.e. our data set is rank k for k < d.

Let vࠀ, . . . , vk be orthogonal unit vectors spanning S.

For all i, we can write:

xi = ci,ࠀvࠀ + . . .+ ci,kvk. ߿ࠀ
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low-rank data

What are cࠀ, . . . , cn?
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low-rank data

Lots of information preserved:

• kxi � xjkࠁ = kci � cjkࠁ for all i, j.
• xTi xj = cTi cj for all i, j.
• Norms preserved, linear separability preserved,
min kXy� bk = min kCz� bk, etc., etc.
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low-rank data

Formally, C = XVT :

X = CVT ) XV = CVTV

Since V’s columns are an orthonormal basis, VTV = I.

So X = XVVT .
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projection matrices

VVT is a symmetric projection matrix.

When all data points already lie in the subspace spanned by
V’s columns, projection doesn’t do anything. So X = XVVT . ࠃࠀ
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projection matrices

VVT is a symmetric projection matrix.

xTࠀVVT is the projection of xTࠀ onto the subspace.

By pythagorean theorem, kxTࠀ � xTࠀVVTkࠁࠁ = kxTࠀ kࠁࠁ � kxࠀࠁVVTkࠁࠁ and
by apply to all rows, kX� XVVTkࠁF = kXkࠁF � kXVVTkࠁF .
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low-rank approximation

When X’s rows lie close to a k dimensional subspace, we can
still approximate

X ⇡ XVVT .

XVVT is a low-rank approximation for X.

For a given subspace V spanned by the columns in V,

XVVT = argmin
C

kX� CVTkࠁF =
X

i,j

(Xi,j � (CVT)i,j)ࠁ.
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low-rank approximation

kxi � xjkࠁ ⇡ kxTi VV
T � xTj VV

Tkࠁ = kxTi V� xTj Vkࠁ

XV can be used as a compressed version of data matrix X. ࠆࠀ
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why is data approximately low-rank?
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dual view

Rows of X (data points) are approximately spanned by k
vectors. Columns of X (data features) are approximately
spanned by k vectors.
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row redundancy

If a data set only had k unique data points, it would be exactly
rank k. If it has k “clusters” of data points (e.g. the ߿ࠀ digits) it’s
often very close to rank k.

߿ࠁ



column redundancy

Colinearity/correlation of data features leads to a low-rank
data matrix.
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other reasons for low-rank structure

When encoded as a matrix, which image has lower
approximate rank?
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applications of low-rank approximation

• XV · VT takes O(k(n+ d)) space to store instead of O(nd).
• Regression problems involving XV · VT can be solved in
O(nkࠁ) instead of O(ndࠁ) time.

• XV can be used for visualization when k = ,ࠁ .ࠂ
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applications of low-rank approximation

“Genes Mirror Geography Within Europe” – Nature, .ࠇ߿߿ࠁ

Each data vector xi contains genetic information for one person in
Europe. Set k = ࠁ and plot (XV)i for each i on a d-ࠁ plane. Color
points by what country they are from.
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computational question

Given a subspace V spanned by the k columns in V,

kX� XVVTkࠁF = min
C

kX� CVTkࠁF

We want to find the best V 2 Rd⇥k:

min
orthonormal V2Rd⇥k

kX� XVVTkࠁF (ࠀ)

Note that kX� XVVTkࠁF = kXkࠁF � kXVVTkࠁF for all orthonormal V
(since VVT is a projection). Equivalent form:

max
orthonormal V2Rd⇥k

kXVVTkࠁF = kXVkࠁF (ࠁ)
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rank 1 case

If k = ,ࠀ want to find a single vector vࠀ which maximizes:

kXvࠀvTࠀ kࠁF = kXvࠀkࠁF = kXvࠀkࠁࠁ = vTࠀXTXvࠀ.

Choose vࠀ to be the top eigenvector of XTX.

What about higher k?
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singular value decomposition

One-stop shop for computing optimal low-rank
approximations.

Any matrix X can be written:

Where UTU = I, VTV = I, and ࠀ� � ࠁ� � . . .�d � .߿

Note that
Pd

i=ࠀ �
ࠁ
i = kXkࠁF . ࠆࠁ
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connection to eigendecomposition

• Vk’s columns are called the “top right singular vectors of X”
• Uk’s columns are called the “top left singular vectors of X”
• ,ࠀ� . . . ,�k are the “top singular values”. ,ࠀ� . . . ,�d are
sometimes called the “spectrum of X” (although this is
more typically used to refer to eigenvalues).

• U contains the orthonormal eigenvectors of XXT .
• V contains the orthonormal eigenvectors of XTX.
• ࠁ�

i = �i(XXT) = �i(XTX)

Exercise: Check this can be checked directly.
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singular value decomposition

Important take away from singular value decomposition.

Multiplying any vector a by a matrix X to form Xa can be viewed
as a composition of ࠂ operations:

.ࠀ Rotate/reflect the vector (multiplication by to VT).
.ࠁ Scale the coordinates (multiplication by ⌃.
.ࠂ Rotate/reflect the vector again (multiplication by U).
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singular value decomposition: rotate/reflect
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singular value decomposition: stretch
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singular value decomposition: rotate/reflect
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singular value decomposition
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singular value decomposition

Can read off optimal low-rank approximations from the SVD:

Xk = Uk⌃kVTk = UkUT
kX = XVkVTk .

Vk = argmin
orthonormal V2Rd⇥k

kX� XVVTkࠁF = argmax
orthonormal V2Rd⇥k

kXVVTkࠁF

ࠃࠂ
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singular value decomposition

Connection to Principal Component Analysis:

• Let X̄ = X� 1µT where µ = ࠀ
n
Pn

i=ࠀ xi. I.e. X̄ is obtained by
mean centering X’s rows.

• Let Ū⌃̄V̄T be the SVD of X̄. Ū’s first columns are the “top
principal components” of X. V’s first columns are the
“weight vectors” for these principal components.
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useful observations

Observation 1: The optimal compression XVk has orthogonal
columns.
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useful observations

Observation 2: The optimal low-rank approximation error
Ek = kX� XVkVTkk

ࠁ
F = kXkࠁF � kXVkVTkk

ࠁ
F can be written:

Ek =
dX

i=k+ࠀ

ࠁ�
i .
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spectral plots

Observation 2: The optimal low-rank approximation error
Ek = kX� XVkVTkk

ࠁ
F = kXkࠁF � kXVkVTkk

ࠁ
F can be written:

Ek =
dX

i=k+ࠀ

ࠁ�
i .

Can immediately get a sense of “how low-rank” a matrix is
from it’s spectrum:

ࠇࠂ
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spectral plots

Observation 2: The optimal low-rank approximation error
Ek = kX� XVkVTkk

ࠁ
F = kXkࠁF � kXVkVTkk

ࠁ
F can be written:

Ek =
dX

i=k+ࠀ

ࠁ�
i .

Can immediately get a sense of “how low-rank” a matrix is
from it’s spectrum:
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spectral plots

Observation 2: The optimal low-rank approximation error
Ek = kX� XVkVTkk

ࠁ
F = kXkࠁF � kXVkVTkk

ࠁ
F can be written:

Ek =
dX

i=k+ࠀ

ࠁ�
i .

Can immediately get a sense of “how low-rank” a matrix is
from it’s spectrum:

߿ࠃ
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computing the svd

Suffices to compute right singular vectors V:

• Compute XTX.
• Find eigendecomposition V⇤VT = XTX.
• Compute L = XV. Set �i = kLikࠁ and Ui = Li/kLikࠁ.

Total runtime ⇡
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computing the svd (faster)

• Compute approximate solution.
• Only compute top k singular vectors/values. Runtime will
depend on k. When k = d we can’t do any better than
classical algorithms based on eigendecomposition.

• Iterative algorithms achieve runtime ⇡ O(ndk) vs. O(ndࠁ)
time.

• Krylov subspace methods like the Lanczos method are
most commonly used in practice.

• Power method is the simplest Krylov subspace method,
and still works very well.

What we won’t discuss today: sketching methods and
stochastic methods (which are faster in some settings).
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power method

Today: What about when k = ?ࠀ

Goal: Find some z ⇡ vࠀ.

Input: X 2 Rn⇥d with SVD U⌃VT .

Power method:

• Choose z(߿) randomly. E.g. z߿ ⇠ N ,߿) .(ࠀ
• z(߿) = z(߿)/kz(߿)kࠁ
• For i = ,ࠀ . . . , T

• z(i) = XT · (Xz(iࠀ�))

• ni = kz(i)kࠁ
• z(i) = z(i)/ni

Return z(T)
ࠂࠃ
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power method intuition
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power method formal convergence

Theorem (Basic Power Method Convergence)
Let � = ࠁ��ࠀ�

ࠀ�
be parameter capturing the “gap” between the

first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after T = O

⇣
log d/✏

�

⌘
steps, we have either:

kvࠀ � z(T)kࠁ  ✏ or kvࠀ � (�z(T))kࠁ  ✏.

Total runtime: O
⇣
nd · log d/✏

�

⌘
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one step analysis of power method

Write z(i) in the right singular vector basis:

z(߿) = c(߿)ࠀ vࠀ + c(߿)ࠁ vࠁ + . . .+ c(߿)d vd
z(ࠀ) = c(ࠀ)ࠀ vࠀ + c(ࠀ)ࠁ vࠁ + . . .+ c(ࠀ)d vd

...

z(i) = c(i)ࠀ vࠀ + c(i)ࠁ vࠁ + . . .+ c(i)d vd

Note: [c(i)ࠀ , . . . , c(i)d ] = c(i) = VTz(i).

Also:
Pd

j=ࠀ

⇣
c(i)j

ࠁ⌘
= .ࠀ
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one step analysis of power method

Claim: After update z(i) = ࠀ
nࠀ
XTXz(iࠀ�),

c(i)j =
ࠀ
nࠀ

ࠁ�
j c

(iࠀ�)
j

z(i) = ࠀ
nࠀ

h
c(iࠀ�)
ࠀ ࠁ�

ࠀ · vࠀ + c(iࠀ�)
ࠁ ࠁ�

ࠁ · vࠁ + . . .+ c(iࠀ�)
d ࠁ�

d · vd
i
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multi-step analysis of power method

Claim: After T updates:

z(T) = ࠀ
QT

i=ࠀ ni

h
c(߿)ࠀ Tࠁ�

ࠀ · vࠀ + c(߿)ࠁ Tࠁ�
ࠁ · vࠁ + . . .+ c(߿)d Tࠁ�

d · vd
i

Let ↵j =
QTࠀ

i=ࠀ ni
c(߿)j Tࠁ�

j . Goal: Show that ↵j ⌧ ࠀ↵ for all j 6= .ࠀ

ࠇࠃ
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power method formal convergence

Since z(T) is a unit vector,
Pd

i=ࠀ ↵
ࠁ
i = .ࠀ So ࠀ↵  .ࠀ

If we can prove that ↵j
ࠀ↵


p ✏

d then:

ࠁ↵
j  ࠁ↵

ࠀ ·
✏

d

ࠀ = ࠁ↵
ࠀ +

dX

j=ࠁ

ࠁ↵
d  ࠁ↵

ࠀ + ✏

ࠁ↵
ࠀ � �ࠀ ✏

|ࠀ↵| � �ࠀ ✏

kvࠀ � z(T)kࠁ = �ࠁ ,ࠀhvࠁ z(T)i  ✏ࠁ
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power method formal convergence

Lets proves that ↵j
ࠀ↵


p ✏

d where ↵j =
QTࠀ

i=ࠀ ni
c(߿)j Tࠁ�

j

First observation: Starting coefficients are all roughly equal.

For all j O(ࠀ/dࠂ)  c(߿)j  ࠀ

with probability �ࠀ ࠀ
d . This is a very loose bound, but it’s all

that we will need. Prove using Gaussian concentration.

↵j
ࠀ↵

=
Tࠁ�
j

Tࠁ�
ࠀ

·
c(߿)j

c(߿)ࠀ



Need T =

߿ࠄ
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power method – no gap dependence

Theorem (Gapless Power Method Convergence)
If Power Method is initialized with a random Gaussian vector
then, with high probability, after T = O

⇣
log d/✏

✏

⌘
steps, we

obtain a z satisfying:

kX� XzzTkࠁF  +ࠀ) ✏)kX� XvࠀvTࠀ kࠁF

ࠀࠄ
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generalizations to larger k

• Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

Power method:

• Choose G 2 Rd⇥k be a random Gaussian matrix.
• Z߿ = orth(G).
• For i = ,ࠀ . . . , T

• Z(i) = XT · (Xz(iࠀ�))

• Z(i) = orth(z(i))
Return Z(T)

Runtime: O
⇣
log d/✏

✏

⌘
iterations to obtain a nearly optimal

low-rank approximation:

kX� XZZTkࠁF  +ࠀ) ✏)kX� XVkVkTkࠁF .
ࠁࠄ
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krylov methods

Possible to “accelerate” these methods.

Convergence Guarantee: T = O
⇣
log d/✏p

✏

⌘
iterations to obtain a

nearly optimal low-rank approximation:

kA� AZZTkࠁF  +ࠀ) ✏)kA� AVkVkTkࠁF .

Runtime: O(nnz(X) · k · T)  O(ndk · T).

ࠂࠄ



krylov subspace methods

z(q) = c ·
�
XTX

�q · g

z(q) = c ·
h
cࠀ · qࠁ�

ࠀ vࠀ + cࠁ · qࠁ�
ࠁ vࠁ + . . .+ cn · qࠁ�

n vn
i
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krylov subspace methods

z(q) = c ·
�
XTX

�q · g

Along the way we computed:

Kq =
h
g,
�
XTX

�
· g,

�
XTX

ࠁ� · g, . . . ,
�
XTX

�q · g
i

K is called the Krylov subspace of degree q.

Idea behind Krlyov methods: Don’t throw away everything
before

�
XTX

�q · g. What you’re using when you run svds or
eigs in MATLAB or Python.

ࠄࠄ
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krylov subspace methods

Want to find v, which minimizes kX� XvvTkࠁF .

Lanczos method:

• Let Q 2 Rd⇥k be an orthonormal span for the vectors in K.
• Solve minv=Qw kX� XvvTkࠁF .

• Find best vector in the Krylov subspace, instead of just
using last vector.

• Can be done in O
�
nnz(X) · k+ dkࠁ

�
time.

ࠅࠄ



lanczos method analysis

Claim: There is an O
✓q

q log ࠀ
✏

◆
degree polynomial p̂

approximating xq up to error ࠁ�✏
ࠀ on ࠁ�,߿]

ࠀ ].

kX� Xvp⇤vTp⇤kࠁF  kX� Xvp̂vTp̂k
ࠁ
F ⇡ kX� XvxqvTxqkࠁF ⇡ kX� XvࠀvTࠀ kࠁF

Runtime: O
⇣
log(d/✏)p

� · nnz(X)
⌘
vs. O

⇣
log(d/✏)

� · nnz(X)
⌘
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power method – no gap dependence

Convergence is slow when � = ࠁ��ࠀ�
ࠀ�

is small. z(q) has large
components of both vࠀ and vࠁ. But in this case:

kX� XvࠀvTࠀ kࠁF =
X

i ࠀ=6

ࠁ�
i ⇡

X

i ࠁ=6

= ࠁ�
i kX� XvࠁvTࠁkࠁF .

So we don’t care! Either vࠀ or vࠁ give good rank-ࠀ
approximations.

Claim: To achieve

kX� XzzTkࠁF  +ࠀ) ✏)kX� XvࠀvTࠀ kࠁF

we need O
⇣
log(d/✏)

✏

⌘
power method iterations or O

⇣
log(d/✏)p

✏

⌘

Lanczos iterations.
ࠇࠄ



generalizations to larger k

• Block Krylov methods

• Let G 2 Rd⇥k be a random Gaussian matrix.
• Kq =

h
G,

�
XTX

�
· G,

�
XTX

ࠁ� · G, . . . ,
�
XTX

�q · G
i

Runtime: O
⇣
nnz(X) · k · log d/✏p

✏

⌘
to obtain a nearly optimal

low-rank approximation.
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