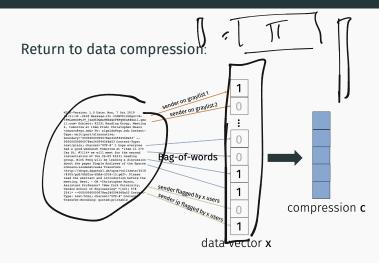
CS-GY 6763: Lecture 9 Low-rank approximation and singular value decomposition

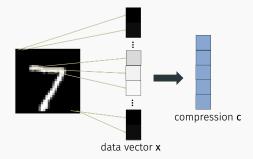
NYU Tandon School of Engineering, Prof. Christopher Musco

- Reading group tomorrow at 9:30am. **Pat and Hogyeong** are presenting on a method for the Frequent Items problem that improve on the CountMin method we learned in class in may scenarios.
- Midterms will be returned at the end of class.
- Problem Set 2 is being graded.

SPECTRAL METHODS

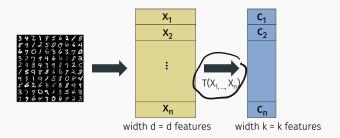


Return to data compression:



SPECTRAL METHODS

Main difference from randomized methods: $\sqrt{r} \times \sqrt{r} \times \sqrt{r}$



In this section, we will discuss <u>data dependent</u> transformations. Johnson-Lindenstrauss, MinHash, SimHash were all <u>data oblivious</u>. Advantages of data independent methods: - computationally ware "fight weight" - dou't regurne "full web" of data -streamen y - distributed

Advantages of data dependent methods:

LINEAR ALGEBRA REMINDER

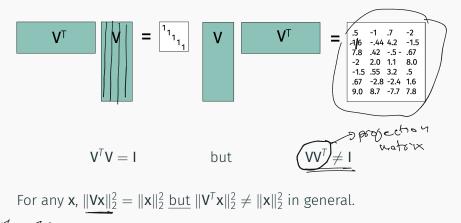
If a <u>square</u> matrix has orthonormal rows, it also have orthonormal columns: $\|A\|_{F}^{2} = \sum_{i=1}^{2} A_{i}^{2} = \sum_{i=1}^{2} \|a_{i}\|_{F}^{2}$

$$\underbrace{\mathbf{V}^{\mathsf{T}}\mathbf{V}}_{\mathbf{I}} = \mathbf{I} = \mathbf{V}\mathbf{V}^{\mathsf{T}}$$

Implies that for any vector \mathbf{x} , $\|\mathbf{V}\mathbf{x}\|_{2}^{2} = \|\mathbf{x}\|_{2}^{2}$ and $\|\mathbf{V}^{T}\mathbf{x}\|_{2}^{2}$. $\chi^{\tau} V^{\tau} V_{\mathbf{X}} = \chi^{\tau} \chi = \|\chi\|_{2}^{\tau}$ $\chi^{\tau} V V_{\mathbf{X}} = \chi^{\tau} \mathcal{I}_{\mathbf{X}} : \|\chi\|_{2}^{\tau}$ Same thing goes for Frobenius norm: for any matrix \mathbf{X} , $\|\mathbf{V}\mathbf{X}\|_{F}^{2} = \|\mathbf{X}\|_{F}^{2}$ and $\|\mathbf{V}^{T}\mathbf{X}\|_{F}^{2} = \|\mathbf{X}\|_{F}^{2}$.

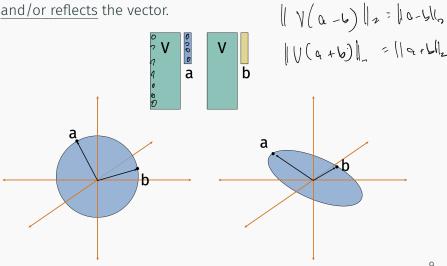
|| = ||)

The same is <u>not true</u> for rectangular matrices:

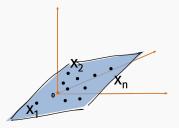


8

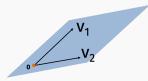
Multiplying a vector by V with orthonormal columns rotates and/or reflects the vector.



Suppose $\underline{\mathbf{x}}_1, \dots, \underline{\mathbf{x}}_n \in \mathbb{R}^d$ lie on a <u>low-dimensional</u> subspace *S* through the origin. I.e. our data set is rank *k* for k < d.



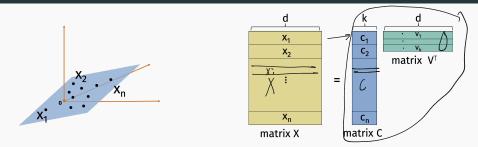
Let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be orthogonal unit vectors spanning S.



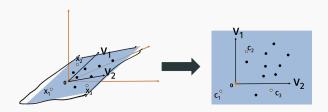
For all *i*, we can write:

$$\mathbf{X}_{i} = \underline{C_{i,1}}\mathbf{V}_{1} + \ldots + \underline{C_{i,k}}\mathbf{V}_{k}.$$

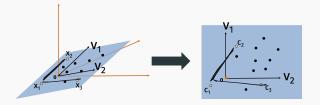
LOW-RANK DATA



What are $\mathbf{c}_1, \ldots, \mathbf{c}_n$?



LOW-RANK DATA

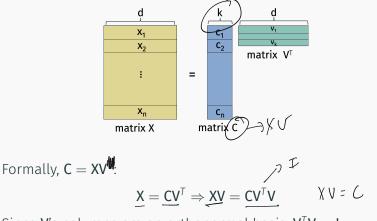


Lots of information preserved:

$$\cdot \|\mathbf{x}_i - \mathbf{x}_j\|_2 = \|\mathbf{c}_i - \mathbf{c}_j\|_2 \text{ for all } i, j.$$

- $\mathbf{x}_i^T \mathbf{x}_j = \mathbf{c}_i^T \mathbf{c}_j$ for all i, j.
- Norms preserved, linear separability preserved, $\label{eq:constraint} \min \|Xy - b\| = \min \|Cz - b\|, \, \text{etc.}, \, \text{etc.}$

LOW-RANK DATA

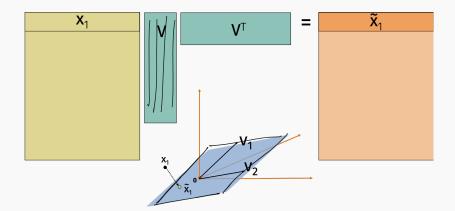


Since V's columns are an orthonormal basis, $V^T V = I$.

So $X = XVV^T$. for some V with k columns

PROJECTION MATRICES

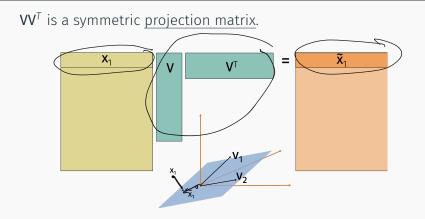
VV^{*T*} is a symmetric projection matrix.



19TV=I

When all data points already lie in the subspace spanned by V's columns, projection doesn't do anything. So $X = XVV^{T}$.

PROJECTION MATRICES



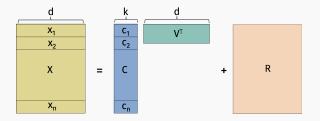
 $\begin{aligned} & \widehat{\mathbf{X}_1} : \quad \mathbf{X}_1^T \mathbf{V} \mathbf{V}^T \text{ is the projection of } \mathbf{x}_1^T \text{ onto the subspace.} \\ & \text{By pythagorean theorem, } \|\mathbf{x}_1^T - \mathbf{x}_1^T \mathbf{V} \mathbf{V}^T\|_2^2 = \|\mathbf{x}_1^T\|_2^2 - \|\mathbf{x}_1^T \mathbf{V} \mathbf{V}^T\|_2^2 \text{ and} \\ & \text{by apply to all rows, } \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2. \end{aligned}$

When **X**'s rows lie <u>close</u> to a *k* dimensional subspace, we can still approximate

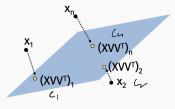
 $\underline{\mathbf{X}} \approx \underline{\mathbf{X}} \underline{\mathbf{V}} \underline{\mathbf{V}}^{\mathsf{T}}.$

 XVV^{T} is a <u>low-rank approximation</u> for X.

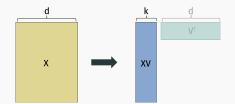
For a given subspace
$$\mathcal{V}$$
 spanned by the columns in \mathbf{V}
 $\mathbf{X}\mathbf{V}\mathbf{V}^{T} = \arg\min_{\mathbf{C}} \|\mathbf{X} - \mathbf{C}\mathbf{V}^{T}\|_{F}^{2} = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{C}\mathbf{V}^{T})_{i,j})^{2}.$



LOW-RANK APPROXIMATION

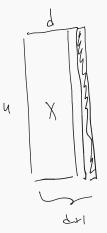


$$\|\mathbf{x}_i - \mathbf{x}_j\|_2 \approx \|\mathbf{x}_i^T \mathbf{V} \mathbf{V}^T - \mathbf{x}_j^T \mathbf{V} \mathbf{V}^T\|_2 = \|\mathbf{x}_i^T \mathbf{V} - \mathbf{x}_j^T \mathbf{V}\|_2$$

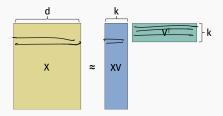


(XV) an be used as a compressed version of data matrix X.

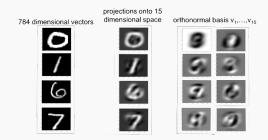
WHY IS DATA APPROXIMATELY LOW-RANK?



Rows of X (data points) are approximately spanned by *k* vectors. Columns of X (data features) are approximately spanned by *k* vectors.



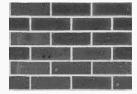
If a data set only had *k* unique data points, it would be exactly rank *k*. If it has *k* "clusters" of data points (e.g. the 10 digits) it's often very close to rank *k*.



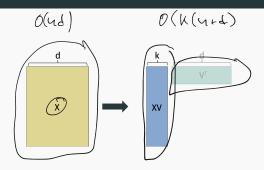
Colinearity/correlation of data features leads to a low-rank data matrix.

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
•	-		•			
•	•	•	•	•	·	·
	•	•	•	•	•	•
home n	5	3.5	3600	3	450,000	450,000

When encoded as a matrix, which image has lower approximate rank?



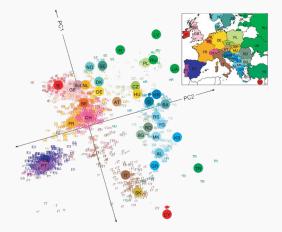
APPLICATIONS OF LOW-RANK APPROXIMATION



- $XV \cdot V^T$ takes O(k(n + d)) space to store instead of O(nd).
- Regression problems involving $XV \cdot V^T$ can be solved in $O(nk^2)$ instead of $O(nd^2)$ time.
- XV can be used for visualization when k = 2, 3.

APPLICATIONS OF LOW-RANK APPROXIMATION

"Genes Mirror Geography Within Europe" – Nature, 2008.



Each data vector \mathbf{x}_i contains genetic information for one person in Europe. Set k = 2 and plot (XV)_i for each *i* on a 2-d plane. Color points by what country they are from.

Note that $\|\underline{\mathbf{X}} - \underline{\mathbf{X}} \underline{\mathbf{V}}^T\|_F^2 = \|\underline{\mathbf{X}}\|_F^2 - \|\underline{\mathbf{X}} \underline{\mathbf{V}}^T\|_F^2$ for all orthonormal **V** (since $\mathbf{V} \mathbf{V}^T$ is a projection). Equivalent form:

$$\max_{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}} \| \mathbf{X} \mathbf{V}^{\mathsf{T}} \|_{F}^{2} = \| \mathbf{X} \mathbf{V} \|_{F}^{2}$$
(2)

If k = 1, want to find a single vector \mathbf{v}_1 which maximizes:

$$\|\mathbf{X}\mathbf{v}_{1}\mathbf{v}_{1}^{\mathsf{T}}\|_{F}^{2} = (\mathbf{X}\mathbf{v}_{1})\|_{F}^{2} = \|\mathbf{X}\mathbf{v}_{1}\|_{\mathcal{F}}^{2} = \mathbf{v}_{1}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{v}_{1}.$$

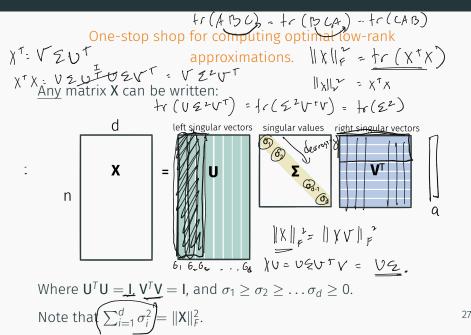
Choose \mathbf{v}_{1} to be the top eigenvector of $\mathbf{X}^{\mathsf{T}}\mathbf{X}$.

What about higher k?

$$W_{Q} \times V_{1}^{T} \times^{T} \times V_{1}$$

 $V_{1} : ||V_{1}||_{2} = 2$

SINGULAR VALUE DECOMPOSITION



CONNECTION TO EIGENDECOMPOSITION

V1,... V2

- + $V_{\it k}{}^{\prime}{\rm s}$ columns are called the "top right singular vectors of X"
- + $U_{\it k}{}^\prime s$ columns are called the "top left singular vectors of $X^{\prime\prime}$
- σ₁,..., σ_k are the "top singular values". σ₁,..., σ_d are sometimes called the "spectrum of X" (although this is more typically used to refer to eigenvalues).
- \cdot **U** contains the orthonormal eigenvectors of **XX**^T.
- V contains the orthonormal eigenvectors of $\mathbf{X}^T \mathbf{X}$ • $(\sigma_i^2) = \lambda_i (\mathbf{X} \mathbf{X}^T) = \lambda_i (\mathbf{X}^T \mathbf{X})$

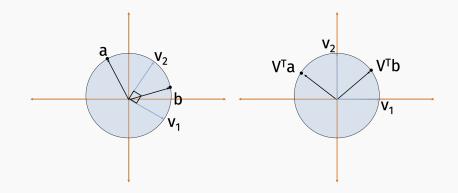
Exercise: Check this can be checked directly.

Important <u>take away</u> from singular value decomposition.

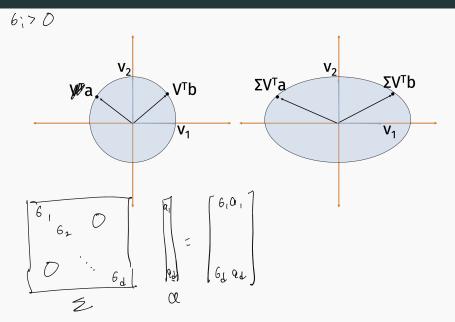
Multiplying any vector **a** by a matrix **X** to form **Xa** can be viewed as a composition of 3 operations:

- 1. Rotate/reflect the vector (multiplication by to \mathbf{V}^{T}).
- 2. Scale the coordinates (multiplication by Σ .
- 3. Rotate/reflect the vector again (multiplication by U).

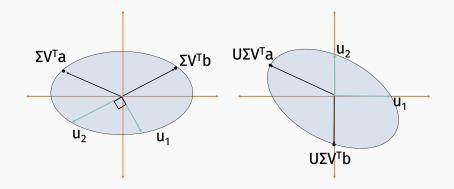
SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT



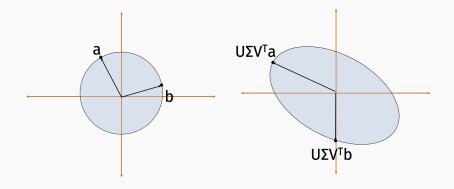
SINGULAR VALUE DECOMPOSITION: STRETCH



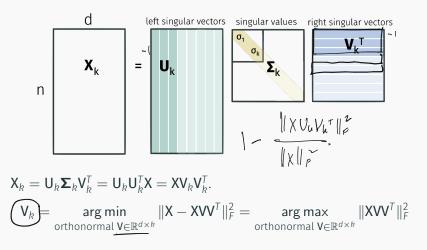
SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT



SINGULAR VALUE DECOMPOSITION



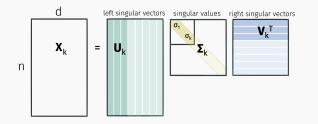
Can read off optimal low-rank approximations from the SVD:



Connection to Principal Component Analysis:

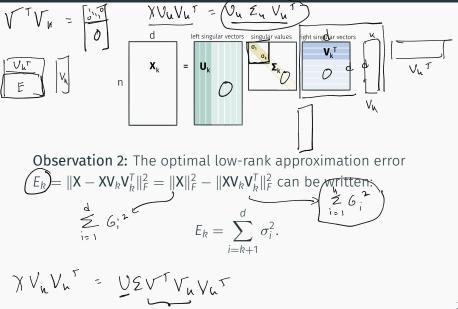
- Let $\bar{\mathbf{X}} = \mathbf{X} \mathbf{1}\boldsymbol{\mu}^{\mathsf{T}}$ where $\boldsymbol{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$. I.e. $\bar{\mathbf{X}}$ is obtained by mean centering X's rows.
- Let $\overline{U\Sigma}\overline{V}^{T}$ be the SVD of \overline{X} \overline{U} 's first columns are the "top principal components" of X. \overline{V} 's first columns are the "weight vectors" for these principal components.

USEFUL OBSERVATIONS



Observation 1: The optimal compression XV_k has orthogonal compression XV_k has orthogonal compression.

USEFUL OBSERVATIONS

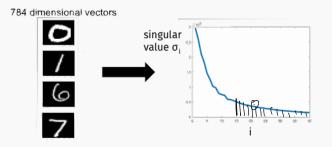


SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error $E_k = \|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2$ can be written:

$$E_k = \sum_{i=k+1}^d \sigma_i^2.$$

Can immediately get a sense of "how low-rank" a matrix is from it's spectrum:

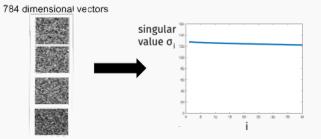


SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error $E_k = \|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2$ can be written:

$$E_k = \sum_{i=k+1}^d \sigma_i^2.$$

Can immediately get a sense of "how low-rank" a matrix is from it's spectrum:

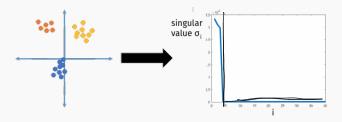


SPECTRAL PLOTS

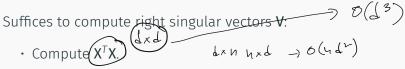
Observation 2: The optimal low-rank approximation error $E_k = \|\mathbf{X} - \mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X}\mathbf{V}_k\mathbf{V}_k^T\|_F^2$ can be written:

$$E_k = \sum_{i=k+1}^d \sigma_i^2.$$

Can immediately get a sense of "how low-rank" a matrix is from it's spectrum:



COMPUTING THE SVD



- Find eigendecomposition $V \Lambda V^T = X^T X$.
- Compute $\mathbf{L} = \mathbf{XV}$. Set $\sigma_i = \|\mathbf{L}_i\|_2$ and $\mathbf{U}_i = \mathbf{L}_i / \|\mathbf{L}_i\|_2$.

Total runtime $\approx \hat{D}(ud^{\nu}) + O(d^{\nu})$

XV=VE

 $\chi = U \Sigma V^T$

COMPUTING THE SVD (FASTER)

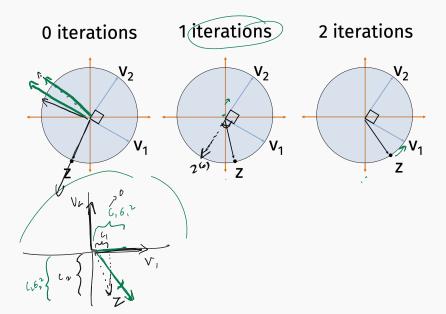
- Compute approximate solution.
- Only compute top k singular vectors/values. Runtime will depend on k. When k = d we can't do any better than classical algorithms based on eigendecomposition.
- <u>Iterative algorithms</u> achieve runtime $\approx O(ndk)$ vs. $O(nd^2)$ time.
 - Krylov subspace methods like the Lanczos method are most commonly used in practice.
 - **Power method** is the simplest Krylov subspace method, and still works very well.

What we won't discuss today: sketching methods and stochastic methods (which are faster in some settings).

POWER METHOD

XTX = VEUTUEUT = US211 **Today:** What about when k = 1? VEVTZ $V^{\mathsf{T}} Z \sim \begin{bmatrix} c_1 \\ i \\ c_2 \end{bmatrix}$ **Goal:** Find some $\mathbf{z} \approx \mathbf{v}_1$ **Input:** $\mathbf{X} \in \mathbb{R}^{n \times d}$ with SVD $\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$. 2= C1U1 + C2U2 + -- CdVd $S^{2} V^{T} Z = \begin{pmatrix} g_{1}^{\mu} c_{1} \\ g_{2}^{\mu} c_{2} \\ g_{3}^{\mu} c_{4} \end{pmatrix} Z^{(1+1)} = \underbrace{c_{1} G_{1}^{\mu} V_{1} + \dots + c_{4} G_{4}^{\mu} V_{4}}_{=}$ Power method: • Choose $\mathbf{z}^{(0)}$ randomly. E.g. $\mathbf{z}_0 \sim \mathcal{N}(0, \mathbf{1})$ • $\mathbf{z}^{(0)} = \mathbf{z}^{(0)} / \|\mathbf{z}^{(0)}\|_2$ • For i = 1, ..., T $Z^{(i)} = I(X^{\dagger}X)(X^{\dagger}X) \dots (X^{\dagger}X) Z^{\circ}$ $\cdot \mathbf{z}^{(i)} = \mathbf{X}^{\mathsf{T}} \cdot (\mathbf{X} \mathbf{z}^{(i-1)})$ • $n_i = \|\mathbf{z}^{(i)}\|_2$ • $z^{(i)} = z^{(i)}/n_i$ $(\lambda_{\iota} \chi)' Z_{(\circ)}$ Return $\mathbf{z}^{(T)}$

POWER METHOD INTUITION



Theorem (Basic Power Method Convergence)

Let $\gamma = \frac{\sigma_1 - \sigma_2}{\sigma_1}$ be parameter capturing the "gap" between the first and second largest singular values. If Power Method is initialized with a random Gaussian vector then, with high probability, after $T = O\left(\frac{\log d(Q)}{\gamma}\right)$ steps, we have either:

$$\|\underline{\mathbf{v}}_1 - \underline{\mathbf{z}}^{(T)}\|_2 \le \epsilon \qquad \text{or} \qquad \|\mathbf{v}_1 - (-\overline{\mathbf{z}}^{(T)})\|_2 \le \epsilon.$$

Total runtime:
$$O\left(nd \cdot \frac{\log d/\epsilon}{\gamma}\right) \bullet \mathbf{k}$$

$$O(hd^2)$$

Write $\mathbf{z}^{(i)}$ in the right singular vector basis:

$$z^{(0)} = c_1^{(0)} \mathbf{v}_1 + c_2^{(0)} \mathbf{v}_2 + \dots + c_d^{(0)} \mathbf{v}_d$$

$$z^{(1)} = c_1^{(1)} \mathbf{v}_1 + c_2^{(1)} \mathbf{v}_2 + \dots + c_d^{(1)} \mathbf{v}_d$$

$$\vdots$$

$$z^{(i)} = c_1^{(i)} \mathbf{v}_1 + c_2^{(i)} \mathbf{v}_2 + \dots + c_d^{(i)} \mathbf{v}_d$$

Note:
$$[c_1^{(i)}, \dots, c_d^{(i)}] = \mathbf{c}^{(i)} = \underline{\mathbf{V}^{\mathsf{T}} \mathbf{z}^{(i)}}$$

Also: $\sum_{j=1}^{d} (c_j^{(i)})^2 \neq 1$.

ONE STEP ANALYSIS OF POWER METHOD

Claim: After update
$$\underline{z}^{(i)} = \frac{1}{n!} X^T \underline{X} \underline{z}^{(i-1)}$$
,

$$c_{j}^{(i)} = \frac{1}{n_{1}}\sigma_{j}^{2}c_{j}^{(i-1)}$$

$$\mathbf{z}^{(i)} = \frac{1}{n_{1}^{o}} \left[c_{1}^{(i-1)} \underbrace{\sigma_{1}^{2}}_{\mathbf{v}_{1}} + c_{2}^{(i-1)} \underbrace{\sigma_{2}^{2}}_{\mathbf{v}_{2}} \cdot \mathbf{v}_{2} + \ldots + c_{d}^{(i-1)} \underbrace{\sigma_{d}^{2}}_{\mathbf{v}_{d}} \cdot \mathbf{v}_{d} \right]$$

MULTI-STEP ANALYSIS OF POWER METHOD

Let
$$\alpha_j = \frac{1}{\prod_{i=1}^{T} n_i} c_j^{(0)} \sigma_j^{2T}$$
. **Goal:** Show that $\alpha_j \ll \alpha_j$ for all $j \neq 1$.

POWER METHOD FORMAL CONVERGENCE

Since $\mathbf{z}^{(T)}$ is a unit vector, $\sum_{i=1}^{d} \alpha_i^2 = 1$. So $\alpha_1 \leq 1$. If we can prove that $\frac{\alpha_i}{\alpha_1} \leq \sqrt{\frac{\epsilon}{d}}$ then: $\alpha_j^2 \le \alpha_1^2 \cdot \frac{\epsilon}{d}$ $\underbrace{1} = \alpha_1^2 + \sum_{j=2}^d \alpha_j^2 \le \alpha_1^2 + \underline{\epsilon}$ $\alpha_1^2 \ge 1 - \epsilon$ $|\alpha_1| \ge 1 - \epsilon$

$$\|\mathbf{v}_1 - \mathbf{z}^{(T)}\|_2 = 2 - 2\langle \mathbf{v}_1, \mathbf{z}^{(T)} \rangle \le 2\epsilon$$

POWER METHOD FORMAL CONVERGENCE

Lets proves that
$$\alpha_j \leq \sqrt{\frac{\epsilon}{d}}$$
 where $\alpha_j = \prod_{i=1}^{1} n_i c_j^{(0)} \sigma_i^{2T}$
First observation: Starting coefficients are all roughly equal.
For all j $O(1/d^3) \leq c_j^{(0)} \leq 1$
with probability $1 - \frac{1}{d}$. This is a very loose bound, but it's all that we will need. Prove using Gaussian concentration.
 $\alpha_j = \sigma_j^{2T} [c_j^{(0)}] = 6 \cdot \frac{2\Gamma}{d}, \frac{1}{d} = 6 \cdot \frac{2\Gamma}{d}, O(d^3)$

$$\frac{\alpha_{j}}{\alpha_{1}} = \frac{\sigma_{j}^{2T}}{\sigma_{1}^{2T}} \left| \frac{c_{j}^{(0)}}{c_{1}^{(0)}} \right| \leq \frac{6}{G_{1}} \frac{2T}{\sigma_{1}^{2T}} \cdot \frac{1}{\sigma_{1}^{2T}} \cdot \frac{1}{\sigma_{1}^{2$$

Theorem (Gapless Power Method Convergence)

If Power Method is initialized with a random Gaussian vector then, with high probability, after $T = O\left(\frac{\log d/\epsilon}{\epsilon}\right)$ steps, we obtain a **z** satisfying:

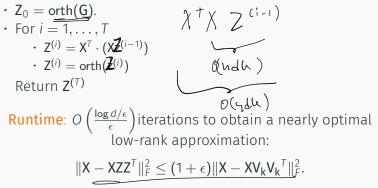
$$\|\mathbf{X} - \mathbf{X}\mathbf{z}\mathbf{z}^T\|_F^2 \leq (1+\epsilon) \|\mathbf{X} - \mathbf{X}\mathbf{v}_1\mathbf{v}_1^T\|_F^2$$

GENERALIZATIONS TO LARGER k

• Block Power Method aka Simultaneous Iteration aka Subspace Iteration aka Orthogonal Iteration

Power method:

- Choose $\mathbf{G} \in \mathbb{R}^{d \times k}$ be a random Gaussian matrix.



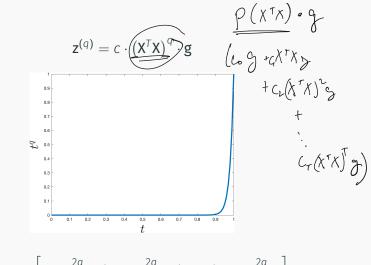
Possible to "accelerate" these methods.

Convergence Guarantee: $T = O\left(\frac{\log d/\epsilon}{\sqrt{\epsilon}}\right)$ iterations to obtain a nearly optimal low-rank approximation:

$$\|\mathbf{A} - \mathbf{A}\mathbf{Z}\mathbf{Z}^{\mathsf{T}}\|_{F}^{2} \leq (1+\epsilon)\|\mathbf{A} - \mathbf{A}\mathbf{V}_{\mathbf{k}}\mathbf{V}_{\mathbf{k}}^{\mathsf{T}}\|_{F}^{2}.$$

Runtime: $O(nnz(\mathbf{X}) \cdot k \cdot T) \leq O(ndk \cdot T)$.

KRYLOV SUBSPACE METHODS



$$\mathbf{z}^{(q)} = c \cdot \left[c_1 \cdot \sigma_1^{2q} \mathbf{v}_1 + c_2 \cdot \sigma_2^{2q} \mathbf{v}_2 + \ldots + c_n \cdot \sigma_n^{2q} \mathbf{v}_n \right]$$

54

$$\mathbf{z}^{(q)} = \underline{c} \cdot \left(\mathbf{X}^{\mathsf{T}} \mathbf{X}\right)^{q} \mathbf{g}$$

Along the way we computed:

$$\mathcal{K}_{q} = \left[\mathbf{g}, (\mathbf{X}^{\mathsf{T}} \mathbf{X}) \cdot \mathbf{g}, (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{2} \cdot \mathbf{g}, \dots, (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{q} \cdot \mathbf{g} \right]$$

 \mathcal{K} is called the <u>Krylov subspace of degree q</u>.

Idea behind Krlyov methods: Don't throw away everything before $(X^T X)^q \cdot g$. What you're using when you run svds or eigs in MATLAB or Python.

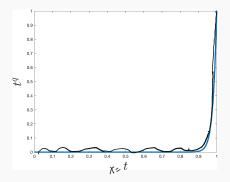
Want to find **v**, which minimizes $||\mathbf{X} - \mathbf{X}\mathbf{v}\mathbf{v}^T||_F^2$.

Lanczos method:

- Let $\mathbf{Q} \in \mathbb{R}^{d \times k}$ be an orthonormal span for the vectors in \mathcal{K} .
- Solve $\min_{v=Qw} \|\mathbf{X} \mathbf{X} \mathbf{v} \mathbf{v}^T\|_F^2$.
 - Find <u>best</u> vector in the Krylov subspace, instead of just using last vector.
 - Can be done in $O(nnz(X) \cdot k + dk^2)$ time.

LANCZOS METHOD ANALYSIS

Claim: There is an $O\left(\sqrt{q \log \frac{1}{\epsilon}}\right)$ degree polynomial \hat{p} approximating \mathbf{x}^{q} up to error $\epsilon \sigma_{1}^{2}$ on $[0, \sigma_{1}^{2}]$.



 $\begin{aligned} \|\mathbf{X} - \mathbf{X}\mathbf{v}_{p^*}\mathbf{v}_{p^*}^T\|_F^2 &\leq \|\mathbf{X} - \mathbf{X}\mathbf{v}_{\hat{p}}\mathbf{v}_{\hat{p}}^T\|_F^2 \approx \|\mathbf{X} - \mathbf{X}\mathbf{v}_{X^q}\mathbf{v}_{X^q}^T\|_F^2 \approx \|\mathbf{X} - \mathbf{X}\mathbf{v}_1\mathbf{v}_1^T\|_F^2 \\ \text{Runtime: } O\left(\frac{\log(d/\epsilon)}{\sqrt{\gamma}} \cdot \mathsf{nnz}(\mathbf{X})\right) \text{ vs. } O\left(\frac{\log(d/\epsilon)}{\gamma} \cdot \mathsf{nnz}(\mathbf{X})\right) \end{aligned}$

57

Convergence is slow when $\gamma = \frac{\sigma_1 - \sigma_2}{\sigma_1}$ is small. $\mathbf{z}^{(q)}$ has large components of both \mathbf{v}_1 and \mathbf{v}_2 . But in this case:

$$\|\mathbf{X} - \mathbf{X}\mathbf{v}_{1}\mathbf{v}_{1}^{\mathsf{T}}\|_{F}^{2} = \sum_{i \neq 1} \sigma_{i}^{2} \approx \sum_{i \neq 2} = \sigma_{i}^{2} \|\mathbf{X} - \mathbf{X}\mathbf{v}_{2}\mathbf{v}_{2}^{\mathsf{T}}\|_{F}^{2}.$$

So we don't care! Either \boldsymbol{v}_1 or \boldsymbol{v}_2 give good rank-1 approximations.

Claim: To achieve

$$\|\mathbf{X} - \mathbf{X}\mathbf{z}\mathbf{z}^{\mathsf{T}}\|_{F}^{2} \leq (1 + \epsilon)\|\mathbf{X} - \mathbf{X}\mathbf{v}_{1}\mathbf{v}_{1}^{\mathsf{T}}\|_{F}^{2}$$

we need $O\left(\frac{\log(d/\epsilon)}{\epsilon}\right)$ power method iterations or $O\left(\frac{\log(d/\epsilon)}{\sqrt{\epsilon}}\right)$
Lanczos iterations.

GENERALIZATIONS TO LARGER k

- Block Krylov methods
- Let $\mathbf{G} \in \mathbb{R}^{d \times k}$ be a random Gaussian matrix.

•
$$\mathcal{K}_{q} = \left[\mathbf{G}, \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \right) \cdot \mathbf{G}, \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \right)^{2} \cdot \mathbf{G}, \dots, \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \right)^{q} \cdot \mathbf{G} \right]$$

Runtime: $O\left(\operatorname{nnz}(X) \cdot k \cdot \frac{\log d/\epsilon}{\sqrt{\epsilon}}\right)$ to obtain a nearly optimal low-rank approximation.