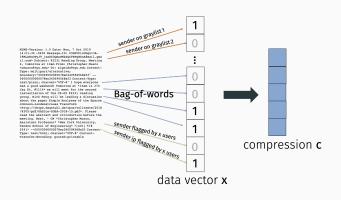
CS-GY 6763: Lecture 9 Low-rank approximation and singular value decomposition

NYU Tandon School of Engineering, Prof. Christopher Musco

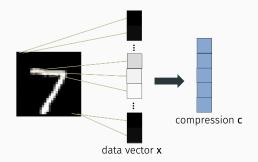
ADMINISTRATIVE

- Reading group tomorrow at 9:30am. Pat and Hogyeong are presenting on a method for the Frequent Items problem that improve on the CountMin method we learned in class in may scenarios.
- Midterms will be returned at the end of class.
- · Problem Set 2 is being graded.

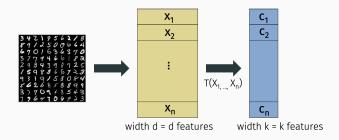
Return to data compression:



Return to data compression:



Main difference from randomized methods:



In this section, we will discuss <u>data dependent</u> transformations. Johnson-Lindenstrauss, MinHash, SimHash were all data oblivious.

Advantages of data independent methods:

Advantages of data dependent methods:

LINEAR ALGEBRA REMINDER

If a <u>square</u> matrix has orthonormal rows, it also have orthonormal columns:

$$V^TV = I = VV^T$$

Implies that for any vector \mathbf{x} , $\|\mathbf{V}\mathbf{x}\|_2^2 = \|\mathbf{x}\|_2^2$ and $\|\mathbf{V}^T\mathbf{x}\|_2^2$.

Same thing goes for Frobenius norm: for any matrix X, $\|\mathbf{V}\mathbf{X}\|_F^2 = \|\mathbf{X}\|_F^2$ and $\|\mathbf{V}^T\mathbf{X}\|_F^2 = \|\mathbf{X}\|_F^2$.

LINEAR ALGEBRA REMINDER

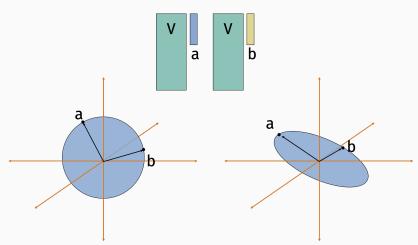
The same is <u>not true</u> for rectangular matrices:

$$\mathbf{V}^{\mathsf{T}}\mathbf{V} = \mathbf{I}$$
 but $\mathbf{V}\mathbf{V}^{\mathsf{T}} \neq \mathbf{I}$

For any **x**, $\|\mathbf{V}\mathbf{x}\|_2^2 = \|\mathbf{x}\|_2^2 \underline{\text{but}} \|\mathbf{V}^T\mathbf{x}\|_2^2 \neq \|\mathbf{x}\|_2^2$ in general.

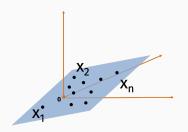
LINEAR ALGEBRA REMINDER

Multiplying a vector by ${\bf V}$ with orthonormal columns <u>rotates</u> and/or reflects the vector.

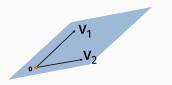


LOW-RANK DATA

Suppose $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ lie on a <u>low-dimensional</u> subspace S through the origin. I.e. our data set is <u>rank</u> k for k < d.



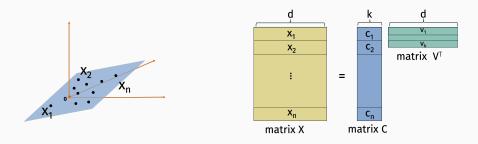
Let $\mathbf{v}_1, \dots, \mathbf{v}_k$ be orthogonal unit vectors spanning S.



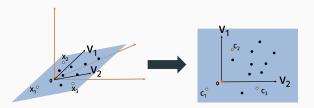
For all *i*, we can write:

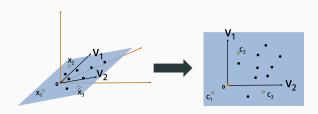
$$\mathbf{x}_i = c_{i,1}\mathbf{v}_1 + \ldots + c_{i,k}\mathbf{v}_k.$$

LOW-RANK DATA



What are $\mathbf{c}_1, \dots, \mathbf{c}_n$?

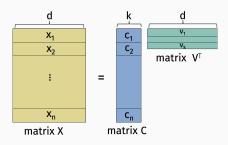




Lots of information preserved:

- $\|\mathbf{x}_{i} \mathbf{x}_{i}\|_{2} = \|\mathbf{c}_{i} \mathbf{c}_{i}\|_{2}$ for all i, j.
- $\mathbf{x}_i^T \mathbf{x}_j = \mathbf{c}_i^T \mathbf{c}_j$ for all i, j.
- Norms preserved, linear separability preserved, $\min \|Xy b\| = \min \|Cz b\|, \, \text{etc.}, \, \text{etc.}$

LOW-RANK DATA



Formally, $C = XV^T$:

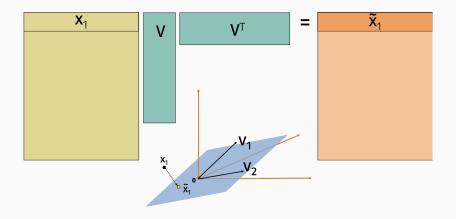
$$X = CV^T \Rightarrow XV = CV^TV$$

Since V's columns are an orthonormal basis, $V^TV = I$.

So
$$X = XVV^T$$
.

PROJECTION MATRICES

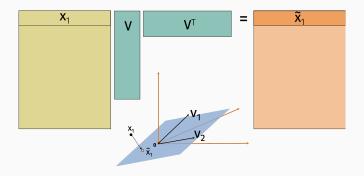
 VV^T is a symmetric projection matrix.



When all data points already lie in the subspace spanned by V's columns, projection doesn't do anything. So $X = XVV^T$.

PROJECTION MATRICES

 VV^T is a symmetric projection matrix.



 $\mathbf{x}_{1}^{T}\mathbf{V}\mathbf{V}^{T}$ is the projection of \mathbf{x}_{1}^{T} onto the subspace.

By pythagorean theorem, $\|\mathbf{x}_1^T - \mathbf{x}_1^T \mathbf{V} \mathbf{V}^T\|_2^2 = \|\mathbf{x}_1^T\|_2^2 - \|\mathbf{x}_1^2 \mathbf{V} \mathbf{V}^T\|_2^2$ and by apply to all rows, $\|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2$.

LOW-RANK APPROXIMATION

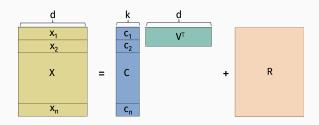
When X's rows lie <u>close</u> to a k dimensional subspace, we can still approximate

$$X \approx XVV^T$$
.

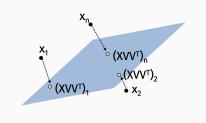
 XVV^T is a low-rank approximation for X.

For a given subspace ${\cal V}$ spanned by the columns in ${
m V}$,

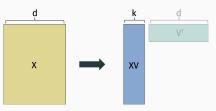
$$\mathbf{X}\mathbf{V}\mathbf{V}^{T} = \underset{\mathbf{C}}{\text{arg min}} \, \|\mathbf{X} - \mathbf{C}\mathbf{V}^{T}\|_{F}^{2} = \sum_{i,j} (\mathbf{X}_{i,j} - (\mathbf{C}\mathbf{V}^{T})_{i,j})^{2}.$$



LOW-RANK APPROXIMATION



$$\|\mathbf{x}_i - \mathbf{x}_j\|_2 \approx \|\mathbf{x}_i^\mathsf{T} \mathbf{V} \mathbf{V}^\mathsf{T} - \mathbf{x}_j^\mathsf{T} \mathbf{V} \mathbf{V}^\mathsf{T}\|_2 = \|\mathbf{x}_i^\mathsf{T} \mathbf{V} - \mathbf{x}_j^\mathsf{T} \mathbf{V}\|_2$$

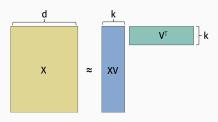


XV can be used as a compressed version of data matrix X.

WHY IS DATA APPROXIMATELY LOW-RANK?

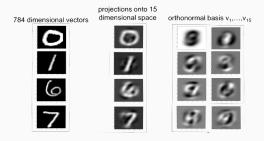
DUAL VIEW

Rows of **X** (data points) are approximately spanned by *k* vectors. Columns of **X** (data features) are approximately spanned by *k* vectors.



ROW REDUNDANCY

If a data set only had k unique data points, it would be exactly rank k. If it has k "clusters" of data points (e.g. the 10 digits) it's often very close to rank k.



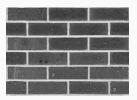
COLUMN REDUNDANCY

Colinearity/correlation of data features leads to a low-rank data matrix.

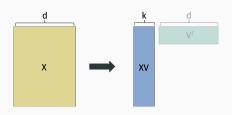
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
					_	
•	•	•	•	٠. ا	•	•
		•	•	•	•	•
		•	•		•	•
home n	5	3.5	3600	3	450,000	450,000

OTHER REASONS FOR LOW-RANK STRUCTURE

When encoded as a matrix, which image has lower approximate rank?



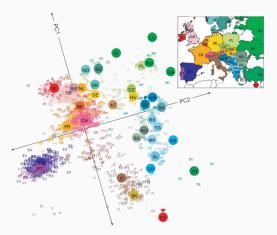
APPLICATIONS OF LOW-RANK APPROXIMATION



- XV · V^T takes O(k(n+d)) space to store instead of O(nd).
- Regression problems involving $XV \cdot V^T$ can be solved in $O(nk^2)$ instead of $O(nd^2)$ time.
- XV can be used for visualization when k = 2, 3.

APPLICATIONS OF LOW-RANK APPROXIMATION

"Genes Mirror Geography Within Europe" – Nature, 2008.



Each data vector \mathbf{x}_i contains genetic information for one person in Europe. Set k=2 and plot $(XV)_i$ for each i on a 2-d plane. Color points by what country they are from.

COMPUTATIONAL QUESTION

Given a subspace $\mathcal V$ spanned by the k columns in V,

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}\|_{F}^{2} = \min_{\mathbf{C}} \|\mathbf{X} - \mathbf{C}\mathbf{V}^{\mathsf{T}}\|_{F}^{2}$$

We want to find the best $\mathbf{V} \in \mathbb{R}^{d \times k}$:

$$\min_{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 \tag{1}$$

Note that $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ for all orthonormal **V** (since $\mathbf{W}\mathbf{V}^T$ is a projection). Equivalent form:

$$\max_{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times h}} \|\mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 = \|\mathbf{X} \mathbf{V}\|_F^2$$
 (2)

RANK 1 CASE

If k = 1, want to find a single vector \mathbf{v}_1 which maximizes:

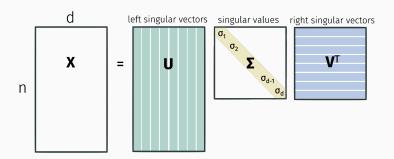
$$\|X v_1 v_1^T\|_F^2 = \|X v_1\|_F^2 = \|X v_1\|_2^2 = v_1^T X^T X v_1.$$

Choose \mathbf{v}_1 to be the top eigenvector of $\mathbf{X}^T \mathbf{X}$.

What about higher k?

One-stop shop for computing optimal low-rank approximations.

Any matrix X can be written:



Where $\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}$, $\mathbf{V}^{\mathsf{T}}\mathbf{V} = \mathbf{I}$, and $\sigma_1 \geq \sigma_2 \geq \ldots \sigma_d \geq 0$.

Note that
$$\sum_{i=1}^{d} \sigma_i^2 = \|\mathbf{X}\|_F^2$$
.

CONNECTION TO EIGENDECOMPOSITION

- · V_k 's columns are called the "top right singular vectors of X"
- · U_k 's columns are called the "top left singular vectors of X"
- $\sigma_1, \ldots, \sigma_k$ are the "top singular values". $\sigma_1, \ldots, \sigma_d$ are sometimes called the "spectrum of X" (although this is more typically used to refer to eigenvalues).
- **U** contains the orthonormal eigenvectors of XX^T .
- V contains the orthonormal eigenvectors of X^TX .
- $\cdot \ \sigma_i^2 = \lambda_i(XX^T) = \lambda_i(X^TX)$

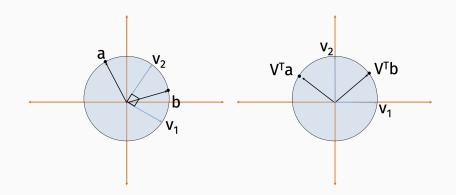
Exercise: Check this can be checked directly.

Important <u>take away</u> from singular value decomposition.

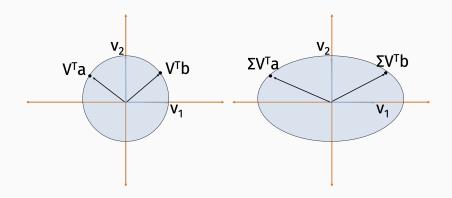
Multiplying any vector **a** by a matrix **X** to form **Xa** can be viewed as a composition of 3 operations:

- 1. Rotate/reflect the vector (multiplication by to V^T).
- 2. Scale the coordinates (multiplication by Σ .
- 3. Rotate/reflect the vector again (multiplication by **U**).

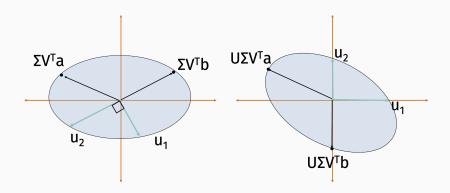
SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT

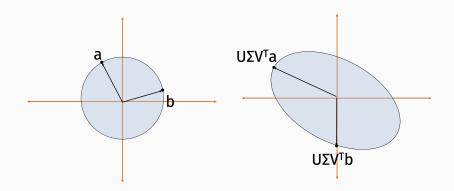


SINGULAR VALUE DECOMPOSITION: STRETCH

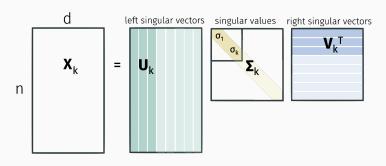


SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT





Can read off optimal low-rank approximations from the SVD:

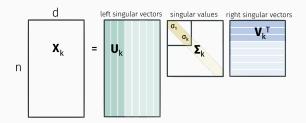


$$\begin{split} \mathbf{X}_k &= \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T = \mathbf{U}_k \mathbf{U}_k^T \mathbf{X} = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T. \\ \mathbf{V}_k &= \underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg min}} \|\mathbf{X} - \mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 = \underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\text{arg max}} \|\mathbf{X} \mathbf{V} \mathbf{V}^T\|_F^2 \end{split}$$

Connection to Principal Component Analysis:

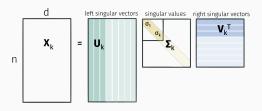
- Let $\bar{\mathbf{X}} = \mathbf{X} \mathbf{1} \boldsymbol{\mu}^T$ where $\boldsymbol{\mu} = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$. I.e. $\bar{\mathbf{X}}$ is obtained by mean centering X's rows.
- Let $\bar{\mathbf{U}}\bar{\mathbf{\Sigma}}\bar{\mathbf{V}}^T$ be the SVD of $\bar{\mathbf{X}}$. $\bar{\mathbf{U}}$'s first columns are the "top principal components" of \mathbf{X} . \mathbf{V} 's first columns are the "weight vectors" for these principal components.

USEFUL OBSERVATIONS



Observation 1: The optimal compression XV_k has orthogonal columns.

USEFUL OBSERVATIONS



Observation 2: The optimal low-rank approximation error $E_k = \|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2$ can be written:

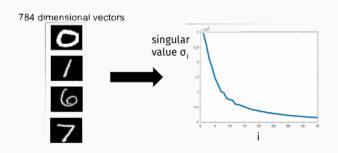
$$E_k = \sum_{i=k+1}^d \sigma_i^2.$$

SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error $E_k = \|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2$ can be written:

$$E_k = \sum_{i=k+1}^d \sigma_i^2.$$

Can immediately get a sense of "how low-rank" a matrix is from it's spectrum:

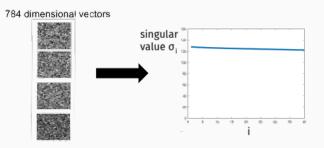


SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error $E_k = \|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2$ can be written:

$$E_k = \sum_{i=k+1}^d \sigma_i^2.$$

Can immediately get a sense of "how low-rank" a matrix is from it's spectrum:

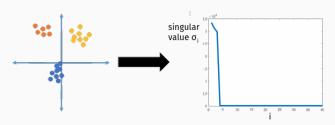


SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error $E_k = \|\mathbf{X} - \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2 = \|\mathbf{X}\|_F^2 - \|\mathbf{X} \mathbf{V}_k \mathbf{V}_k^T\|_F^2$ can be written:

$$E_k = \sum_{i=k+1}^d \sigma_i^2.$$

Can immediately get a sense of "how low-rank" a matrix is from it's spectrum:



COMPUTING THE SVD

Suffices to compute right singular vectors **V**:

- Compute $\mathbf{X}^T \mathbf{X}$.
- Find eigendecomposition $V\Lambda V^T = X^T X$.
- Compute L = XV. Set $\sigma_i = ||L_i||_2$ and $U_i = L_i/||L_i||_2$.

Total runtime \approx

COMPUTING THE SVD (FASTER)

- · Compute approximate solution.
- Only compute $\underline{\text{top } k \text{ singular vectors/values}}$. Runtime will depend on k. When k = d we can't do any better than classical algorithms based on eigendecomposition.
- Iterative algorithms achieve runtime $\approx O(ndk)$ vs. $O(nd^2)$ time.
 - Krylov subspace methods like the Lanczos method are most commonly used in practice.
 - Power method is the simplest Krylov subspace method, and still works very well.

What we won't discuss today: sketching methods and stochastic methods (which are faster in some settings).

POWER METHOD

Today: What about when k = 1?

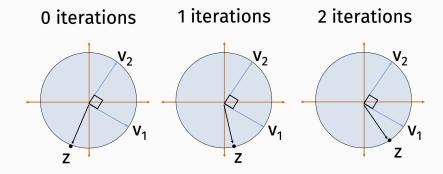
Goal: Find some $z \approx v_1$.

Input: $X \in \mathbb{R}^{n \times d}$ with SVD $U\Sigma V^T$.

Power method:

- Choose $\mathbf{z}^{(0)}$ randomly. E.g. $\mathbf{z}_0 \sim \mathcal{N}(0,1)$.
- $\cdot z^{(0)} = z^{(0)} / ||z^{(0)}||_2$
- For $i = 1, \dots, T$
 - $\cdot z^{(i)} = X^T \cdot (Xz^{(i-1)})$
 - $n_i = ||\mathbf{z}^{(i)}||_2$
 - $\cdot z^{(i)} = z^{(i)}/n_i$

Return $\mathbf{z}^{(T)}$



POWER METHOD FORMAL CONVERGENCE

Theorem (Basic Power Method Convergence)

Let $\gamma = \frac{\sigma_1 - \sigma_2}{\sigma_1}$ be parameter capturing the "gap" between the first and second largest singular values. If Power Method is initialized with a random Gaussian vector then, with high probability, after $T = O\left(\frac{\log d/\epsilon}{\gamma}\right)$ steps, we have either:

$$\|\mathbf{v}_1 - \mathbf{z}^{(T)}\|_2 \le \epsilon$$
 or $\|\mathbf{v}_1 - (-\mathbf{z}^{(T)})\|_2 \le \epsilon$.

Total runtime: $O\left(nd \cdot \frac{\log d/\epsilon}{\gamma}\right)$

ONE STEP ANALYSIS OF POWER METHOD

Write $\mathbf{z}^{(i)}$ in the right singular vector basis:

$$\mathbf{z}^{(0)} = c_1^{(0)} \mathbf{v}_1 + c_2^{(0)} \mathbf{v}_2 + \dots + c_d^{(0)} \mathbf{v}_d$$

$$\mathbf{z}^{(1)} = c_1^{(1)} \mathbf{v}_1 + c_2^{(1)} \mathbf{v}_2 + \dots + c_d^{(1)} \mathbf{v}_d$$

$$\vdots$$

$$\mathbf{z}^{(i)} = c_1^{(i)} \mathbf{v}_1 + c_2^{(i)} \mathbf{v}_2 + \dots + c_d^{(i)} \mathbf{v}_d$$

Note:
$$[c_1^{(i)}, \dots, c_d^{(i)}] = c^{(i)} = V^T z^{(i)}$$
.

Also:
$$\sum_{j=1}^{d} (c_j^{(i)})^2 = 1.$$

ONE STEP ANALYSIS OF POWER METHOD

Claim: After update
$$\mathbf{z}^{(i)} = \frac{1}{n_1} \mathbf{X}^T \mathbf{X} \mathbf{z}^{(i-1)}$$
,

$$c_j^{(i)} = \frac{1}{n_1} \sigma_j^2 c_j^{(i-1)}$$

$$\mathbf{z}^{(i)} = \frac{1}{n_1} \left[c_1^{(i-1)} \sigma_1^2 \cdot \mathbf{v}_1 + c_2^{(i-1)} \sigma_2^2 \cdot \mathbf{v}_2 + \ldots + c_d^{(i-1)} \sigma_d^2 \cdot \mathbf{v}_d \right]$$

MULTI-STEP ANALYSIS OF POWER METHOD

Claim: After T updates:

$$\mathbf{z}^{(T)} = \frac{1}{\prod_{i=1}^{T} n_i} \left[c_1^{(0)} \sigma_1^{2T} \cdot \mathbf{v}_1 + c_2^{(0)} \sigma_2^{2T} \cdot \mathbf{v}_2 + \ldots + c_d^{(0)} \sigma_d^{2T} \cdot \mathbf{v}_d \right]$$

Let
$$\alpha_j = \frac{1}{\prod_{i=1}^T n_i} c_j^{(0)} \sigma_j^{2T}$$
. **Goal:** Show that $\alpha_j \ll \alpha_1$ for all $j \neq 1$.

POWER METHOD FORMAL CONVERGENCE

Since $\mathbf{z}^{(T)}$ is a unit vector, $\sum_{i=1}^{d} \alpha_i^2 = 1$. So $\alpha_1 \leq 1$.

If we can prove that $\frac{\alpha_j}{\alpha_1} \leq \sqrt{\frac{\epsilon}{d}}$ then:

$$\alpha_j^2 \le \alpha_1^2 \cdot \frac{\epsilon}{d}$$

$$1 = \alpha_1^2 + \sum_{j=2}^d \alpha_d^2 \le \alpha_1^2 + \epsilon$$

$$\alpha_1^2 \ge 1 - \epsilon$$

$$|\alpha_1| \ge 1 - \epsilon$$

$$\|\mathbf{v}_1 - \mathbf{z}^{(T)}\|_2 = 2 - 2\langle \mathbf{v}_1, \mathbf{z}^{(T)} \rangle \le 2\epsilon$$

POWER METHOD FORMAL CONVERGENCE

Lets proves that $\frac{\alpha_j}{\alpha_1} \leq \sqrt{\frac{\epsilon}{d}}$ where $\alpha_j = \frac{1}{\prod_{i=1}^T n_i} c_j^{(0)} \sigma_j^{2T}$

First observation: Starting coefficients are all roughly equal.

For all
$$j$$
 $O(1/d^3) \le c_j^{(0)} \le 1$

with probability $1 - \frac{1}{d}$. This is a very loose bound, but it's all that we will need. **Prove using Gaussian concentration.**

$$\frac{\alpha_j}{\alpha_1} = \frac{\sigma_j^{2T}}{\sigma_1^{2T}} \cdot \frac{c_j^{(0)}}{c_1^{(0)}} \le$$

Need T =

POWER METHOD - NO GAP DEPENDENCE

Theorem (Gapless Power Method Convergence)

If Power Method is initialized with a random Gaussian vector then, with high probability, after $T = O\left(\frac{\log d/\epsilon}{\epsilon}\right)$ steps, we obtain a **z** satisfying:

$$\|\mathbf{X} - \mathbf{X}\mathbf{z}\mathbf{z}^{\mathsf{T}}\|_F^2 \le (1 + \epsilon)\|\mathbf{X} - \mathbf{X}\mathbf{v}_1\mathbf{v}_1^{\mathsf{T}}\|_F^2$$

GENERALIZATIONS TO LARGER R

 Block Power Method aka Simultaneous Iteration aka Subspace Iteration aka Orthogonal Iteration

Power method:

- Choose $\mathbf{G} \in \mathbb{R}^{d \times k}$ be a random Gaussian matrix.
- · $Z_0 = orth(G)$.
- For $i = 1, \dots, T$
 - $\cdot Z^{(i)} = X^T \cdot (Xz^{(i-1)})$
 - $\cdot Z^{(i)} = \operatorname{orth}(z^{(i)})$

Return $\mathbf{Z}^{(T)}$

Runtime: $O\left(\frac{\log d/\epsilon}{\epsilon}\right)$ iterations to obtain a nearly optimal low-rank approximation:

$$\|\mathbf{X} - \mathbf{X}\mathbf{Z}\mathbf{Z}^{\mathsf{T}}\|_F^2 \le (1 + \epsilon)\|\mathbf{X} - \mathbf{X}\mathbf{V_k}\mathbf{V_k}^{\mathsf{T}}\|_F^2.$$

KRYLOV METHODS

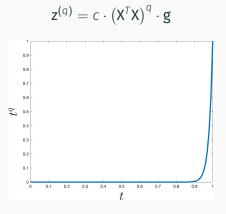
Possible to "accelerate" these methods.

Convergence Guarantee: $T = O\left(\frac{\log d/\epsilon}{\sqrt{\epsilon}}\right)$ iterations to obtain a nearly optimal low-rank approximation:

$$\|\mathbf{A} - \mathbf{A}\mathbf{Z}\mathbf{Z}^T\|_F^2 \leq (1+\epsilon)\|\mathbf{A} - \mathbf{A}\mathbf{V_k}\mathbf{V_k}^T\|_F^2.$$

Runtime: $O(nnz(X) \cdot k \cdot T) \leq O(ndk \cdot T)$.

KRYLOV SUBSPACE METHODS



$$\mathbf{z}^{(q)} = c \cdot \left[c_1 \cdot \sigma_1^{2q} \mathbf{v}_1 + c_2 \cdot \sigma_2^{2q} \mathbf{v}_2 + \ldots + c_n \cdot \sigma_n^{2q} \mathbf{v}_n \right]$$

KRYLOV SUBSPACE METHODS

$$\mathbf{z}^{(q)} = c \cdot \left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{q} \cdot \mathbf{g}$$

Along the way we computed:

$$\mathcal{K}_{q} = \left[g, \left(X^{T}X \right) \cdot g, \left(X^{T}X \right)^{2} \cdot g, \dots, \left(X^{T}X \right)^{q} \cdot g \right]$$

 \mathcal{K} is called the Krylov subspace of degree q.

Idea behind Krlyov methods: Don't throw away everything before $(X^TX)^q \cdot g$. What you're using when you run **svds** or **eigs** in MATLAB or Python.

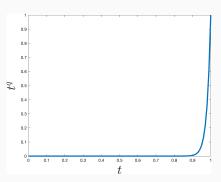
Want to find \mathbf{v} , which minimizes $\|\mathbf{X} - \mathbf{X} \mathbf{v} \mathbf{v}^T\|_F^2$.

Lanczos method:

- · Let $\mathbf{Q} \in \mathbb{R}^{d \times k}$ be an orthonormal span for the vectors in \mathcal{K} .
- Solve $\min_{\mathbf{V}=\mathbf{Q}\mathbf{W}} \|\mathbf{X} \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$.
 - Find <u>best</u> vector in the Krylov subspace, instead of just using last vector.
 - Can be done in $O(nnz(X) \cdot k + dk^2)$ time.

LANCZOS METHOD ANALYSIS

Claim: There is an $O\left(\sqrt{q\log\frac{1}{\epsilon}}\right)$ degree polynomial \hat{p} approximating \mathbf{x}^q up to error $\epsilon\sigma_1^2$ on $[0,\sigma_1^2]$.



$$\|X - Xv_{p^*}v_{p^*}^T\|_F^2 \leq \|X - Xv_{\hat{p}}v_{\hat{p}}^T\|_F^2 \approx \|X - Xv_{X^q}v_{X^q}^T\|_F^2 \approx \|X - Xv_1v_1^T\|_F^2$$

Runtime:
$$O\left(\frac{\log(d/\epsilon)}{\sqrt{\gamma}} \cdot \operatorname{nnz}(X)\right)$$
 vs. $O\left(\frac{\log(d/\epsilon)}{\gamma} \cdot \operatorname{nnz}(X)\right)$

POWER METHOD - NO GAP DEPENDENCE

Convergence is slow when $\gamma = \frac{\sigma_1 - \sigma_2}{\sigma_1}$ is small. $\mathbf{z}^{(q)}$ has large components of both \mathbf{v}_1 and \mathbf{v}_2 . But in this case:

$$\|\mathbf{X} - \mathbf{X}\mathbf{v}_1\mathbf{v}_1^T\|_F^2 = \sum_{i \neq 1} \sigma_i^2 \approx \sum_{i \neq 2} = \sigma_i^2 \|\mathbf{X} - \mathbf{X}\mathbf{v}_2\mathbf{v}_2^T\|_F^2.$$

So we don't care! Either v_1 or v_2 give good rank-1 approximations.

Claim: To achieve

$$\|\mathbf{X} - \mathbf{X}\mathbf{z}\mathbf{z}^T\|_F^2 \leq (1+\epsilon)\|\mathbf{X} - \mathbf{X}\mathbf{v}_1\mathbf{v}_1^T\|_F^2$$

we need $O\left(\frac{\log(d/\epsilon)}{\epsilon}\right)$ power method iterations or $O\left(\frac{\log(d/\epsilon)}{\sqrt{\epsilon}}\right)$ Lanczos iterations.

GENERALIZATIONS TO LARGER k

- Block Krylov methods
- Let $\mathbf{G} \in \mathbb{R}^{d \times k}$ be a random Gaussian matrix.

•
$$\mathcal{K}_q = \left[\mathbf{G}, \left(\mathbf{X}^\mathsf{T} \mathbf{X} \right) \cdot \mathbf{G}, \left(\mathbf{X}^\mathsf{T} \mathbf{X} \right)^2 \cdot \mathbf{G}, \dots, \left(\mathbf{X}^\mathsf{T} \mathbf{X} \right)^q \cdot \mathbf{G} \right]$$

Runtime: $O\left(\operatorname{nnz}(\mathbf{X}) \cdot k \cdot \frac{\log d/\epsilon}{\sqrt{\epsilon}}\right)$ to obtain a nearly optimal low-rank approximation.