
CS-GY 6763: Lecture 8
Dimension Dependent Optimization

NYU Tandon School of Engineering, Prof. Christopher Musco

1

ADMINISTRATIVE

• Problem Set 3 is out.
• Quizzes restart this week.
• If you are completing a project, a 1-page proposal is due
end of day today.

• We are working grading pset 2 and midterms.

2

We missed a few things due to missed class... Please see last
years lecture notes if these topics interest you.

3

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Coordinate Descent: Only compute a single random
entry of ∇f(x) on each iteration:

∇f(x) =


∂f
∂x1 (x)
∂f
∂x2 (x)...
∂f
∂xd (x)

 ∇if(x) =


0

∂f
∂xi (x)...
0


Update: x(t+1) ← x(t) + η∇if(x(t)).

4

STOCHASTIC COORDINATE DESCENT

Stochastic Coordinate Descent:

• Choose number of steps T and step size η.
• For t = 1, . . . , T:

• Pick random j ∈ 1, . . . ,d uniformly at random.
• x(t+1) = x(t) − η∇jf(x(i))

• Return x̂ = 1
T
∑T

t=1 x(t).

Theorem (Stochastic Coordinate Descent convergence)
Given a G-Lipschitz function f with minimizer x∗ and initial
point x(1) with ∥x(1) − x∗∥2 ≤ R, SCD with step size η = 1

Rd
satisfies the guarantee:

E[f(x̂)− f(x∗)] ≤ 2GR√
T/d

5

NON-CONVEX OPTIMIZATION

5

STATIONARY POINTS

We understand much less about optimizing non-convex
functions in comparison to convex functions, but not nothing.
In many cases, we’re still figuring out the right questions to ask

Definition (Stationary point)
For a differentiable function f, a stationary point is any x with:

∇f(x) = 0

local/global minima - local/global maxima - saddle points

6

STATIONARY POINTS

Reasonable goal: Find an approximate stationary point x̂ with

∥∇f(x̂)∥22 ≤ ϵ.

7

GRADIENT DESCENT FINDS APPROXIMATE STATIONARY POINTS

Theorem
If GD is run with step size η = 1

β on a differentiable, β-smooth
function f with global minimum x∗ then after
T = O

(
β[f(x(1))−f(x∗)]

ϵ

)
we will find an ϵ-approximate stationary

point x̂.

• ∇f(x(t))T(x(t) − x(t+1))− f(x(t)) + f(x(t+1)) ≤ β
2 ∥x(t) − x(t+1)∥22.

• f(x(t+1]))− f(x(t)) ≤ β
2 η

2∥∇f(x(t))∥22 − η∥∇f(x(t))∥22
• f(x(t+1]))− f(x(t)) ≤ −η

2 ∥∇f(x(t))∥22
• 1

T
∑T

t=1
η
2∥∇f(x(t))∥22 ≤

1
T
∑T

t=1 f(x(t))− f(x(t+1))

• η
2 mint ∥∇f(x(t))∥22 ≤ 1

T
[
f(x)(1) − f(x)(T))

]
8

QUESTIONS IN NON-CONVEX OPTIMIZATION

If GD can find a stationary point, are there algorithms which
find a stationary point faster using preconditioning,
acceleration, stocastic methods, etc.?

9

QUESTIONS IN NON-CONVEX OPTIMIZATION

What if my function only has global minima and saddle
points? Randomized methods (SGD, perturbed gradient
methods, etc.) can “escape” stationary points under some
minor assumptions.

Example: minx
−xTATAx

xTx

• Global minimum: Top eigenvector of ATA (i.e., top principal
component of A).

• Saddle points: All other eigenvectors of A.

Useful for lots of other matrix factorization problems beyond
vanilla PCA.

10

DIMENSION DEPENDENT OPTIMIZATION

10

FIRST ORDER CONVEX OPTIMIZATION

First Order Optimization: Given a convex function f and a
convex set S ,

Goal: Find x̂ ∈ S such that f(x̂) ≤ minx∈S f(x) + ϵ.

Assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.
• Projection oracle: Evaluate PS(x) for any x.

Gradient descent requires O
(
R2G2

ϵ2

)
calls to each oracle to

solve the problem.

We were only able to improve the ϵ dependence by making
stronger assumptions on f (strong convexity, smoothness).

11

DIMENSION DEPENDENT BOUND

Alternatively, we can get much better bounds if we are willing
to depend on the problem dimension. I.e. on d if f(x) is a
function mapping d-dimensional vectors to scalars.

We already know how to do this for a few special functions:

f(x) = ∥Ax− b∥22 where A ∈ Rn×d.

12

DIMENSION DEPENDENT BOUND

Let f(x) be bounded between [−B,B] on S .

Theorem (Dimension Dependent Convex Optimization)
There is an algorithm (the Center-of-Gravity Method) which
finds x̂ satisfying f(x̂) ≤ minx∈S f(x) + ϵ using O(d log(B/ϵ))
calls to a function and gradient oracle for f.

Caveat: Assumes we have some representation of S , not just a
projection oracle. We will discuss this more later.

Note: For starting radius R and maxx ∥∇f(x)∥2 = G, without loss
of generality we have B = O(RG).

13

CENTER OF GRAVITY METHOD

A few basic ingredients:

1. The center-of-gravity of a convex set S is defined as:

c =
∫
x∈S x dx
vol(S)

=

∫
x∈S x dx∫
x∈S 1dx

2. For two convex sets A and B, A ∩ B is convex. Proof by
picture:

14

CENTER OF GRAVITY METHOD

Natural “cutting plane” method. Developed simultaneous on
opposite sides of iron curtain.

Not used in practice (we will discuss why) but the basic idea
underlies many algorithms that are. 15

CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

• S1 = S
• For t = 1, . . . , T :

• ct = center of gravity of St.
• Compute ∇f(ct).
• H = {x

∣∣⟨∇f(ct), x− ct⟩ ≤ 0}.
• St+1 = St ∩ H

• Return x̂ = argmint f(ct)

16

CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

• S1 = S
• For t = 1, . . . , T :

• ct = center of gravity of St.
• Compute ∇f(ct).
• H = {x

∣∣⟨∇f(ct), x− ct⟩ ≤ 0}.
• St+1 = St ∩ H

• Return x̂ = argmint f(ct)

17

CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

• S1 = S
• For t = 1, . . . , T :

• ct = center of gravity of St.
• Compute ∇f(ct).
• H = {x

∣∣⟨∇f(ct), x− ct⟩ ≤ 0}.
• St+1 = St ∩ H

• Return x̂ = argmint f(ct)

18

CENTER OF GRAVITY METHOD

Intuitively, why does it make sense to search in St ∩H where:

H = {x
∣∣⟨∇f(ct), x− ct⟩ ≤ 0}?

19

CENTER OF GRAVITY METHOD

Intuitively, why does it make sense to search in St ∩H where:

H = {x
∣∣⟨∇f(ct), x− ct⟩ ≤ 0}?

By convexity, if y /∈ {St ∩H}
then:

f(y) ≥ f(ct) + ⟨∇f(ct), y− ct⟩
> f(ct)

20

CONVERGENCE THEOREM

Theorem (Center-of-Gravity Convergence)
Let f be a convex function with values in [−B,B]. Let x̂ be the
output of the center-of-gravity method run for T iterations.
Then:

f(x̂)− f(x∗) ≤ 2B
(
1− 1

e

)T/d
≤ 2Be−T/3d.

If we set T = 3d log(2B/ϵ), then f(x̂)− f(x∗) ≤ ϵ.

21

KEY GEOMETRIC TOOL

Want to argue that, at every step of the algorithm, we “cut off”
a large portion of the convex set we are searching over:

22

KEY GEOMETRIC TOOL

Theorem (Grünbaum’s Theorem)
For any convex set S with center-of-gravity c, and any
halfspace Z = {x

∣∣⟨a, x− c⟩ ≤ 0} then:

vol(S ∩ Z)
vol(S)

≥ 1
e ≈ .368

23

KEY GEOMETRIC TOOL

Want to argue that, at every step of the algorithm, we “cut off”
a large portion of the convex set we are searching over.

Theorem (Grünbaum’s Theorem)
For any convex set S with center-of-gravity c, and any
halfspace Z = {x

∣∣⟨a, x− c⟩ ≤ 0} then:

vol(S ∩ Z)
vol(S)

≥ 1
e ≈ .368

Let Z be the compliment of H from the algorithm. Then we cut
off at least a 1/e fraction of the convex body on every iteration.

Corollary: After t steps, vol(St) ≤
(
1− 1

e
)t
vol(S).

24

CONVERGENCE PROOF

Let δ be a small parameter to be chosen later.

Let Sδ = {(1− δ)x∗ + δx
∣∣ for x ∈ S}.

Claim: Every point y in Sδ has good function value.
25

CONVERGENCE PROOF

For any y ∈ Sδ :

f(y) = f ((1− δ)x∗ + δx)
≤ (1− δ)f(x∗) + δf(x)
≤ f(x∗)− δf(x∗) + δf(x)
≤ f(x∗) + 2Bδ.

26

CONVERGENCE PROOF

We also have: vol(Sδ) ≤ δd vol(S).

Set δ =
(
1− 1

e
)t/d. After t+ 1 steps,

vol(St) < vol(Sδ).

We must have “chopped off” at least
one point y in Sδ by the time we
reach step t+ 1.

Claim: For some centroid c1, . . . , ct,

2Bδ ≥ f(y) ≥ f(ct) + ⟨∇f(ct), y− ct⟩
> f(ct).

Algorithm returns argminci f(ci).
27

CONVERGENCE THEOREM

Theorem (Center-of-Gravity Convergence)
Let f be a convex function with values in [−B,B]. Let x̂ be the
output of the center-of-gravity method run for T iterations.
Then:

f(x̂)− f(x∗) ≤ 2B
(
1− 1

e

)T/d
≤ 2Be−T/3d.

If we set T = O (d log(B/ϵ)), then f(x̂)− f(x∗) ≤ ϵ.

In terms of gradient-oracle complexity, this is essentially
optimal. So why isn’t the algorithm used?

28

CENTROID COMPUTATION

In general computing the centroid is hard. #P-hard even when
when S is an intersection of half-spaces (a polytope).

Even if the problem isn’t hard for your starting convex body S ,
it likely will become hard for S ∩ H1 ∩H2 ∩H3

So while the oracle complexity of dimension-dependent
optimization was settled, in the 70s a number of basic
questions in terms of computational complexity.

29

LINEAR PROGRAMMING

Linear programs (LPs) are one of the most basic convex
constrained, convex optimization problems:

Let c ∈ Rd,b ∈ Rn,A ∈ Rn×d be fixed vectors that define the
problem, and let x be our variable parameter.

min f(x) = cTx
subject to Ax ≥ b.

Think about Ax ≥ b as a union of half-space constraints:

{x : aT1x ≥ b1}
{x : aT2x ≥ b2}

...
{x : aTnx ≥ bn}

30

LINEAR PROGRAMMING

min f(x) = cTx
subject to Ax ≥ b.

31

LINEAR PROGRAMMING APPLICATIONS

• Classic optimization applications: industrial resource
optimization problems were killer app in the 70s.

• Robust regression: minx ∥Ax− b∥1.
• L1 constrained regression: minx ∥x∥1 subject to Ax = b. Lots
of applications in sparse recovery/compressed sensing.

• Solve minx ∥Ax− b∥∞.
• Polynomial time algorithms for Markov Decision Processes.
• Many combinatorial optimization problems can be solved
via LP relaxations.

32

LINEAR PROGRAMMING

Theorem (Khachiyan, 1979)
Assume n = d. The ellipsoid method solves any linear
program with L-bit integer valued constraints in O(n4L) time.
I.e. linear programming is in (weakly) polynomial time!

Using a relatively simple center-of-gravity like method!

Front page of New York Times, November 9, 1979. 33

PROBLEM SIMPLIFICATION

Simplifying the problem: Given a convex set K via access to
separation oracle SK for the set, determine if K is empty, or
otherwise return any point x ∈ K.

Sk(y) =
{
∅ if y ∈ K.
seperating hyperplane (a, c) if y /∈ K.

Let H = {x : aTx = c}.

34

SEPARATION ORACLE

Example: How would you implement a seperation oracle for a
polytope {x : Ax ≥ b}.

35

FROM MEMBERSHIP TO OPTIMIZATION

Original problem:

min
x

f(x) subject to x ∈ S

How can we reduce to determining if a convex set K is empty
or not?

Binary search! For a convex function f(x), {x : f(x) ≤ c} is
convex, and you can get a seperation oracle via the gradient.

• Start with upper bound and lower bounds u and l on
optimal solution (can be obtained for many problems).

• Check if the convex set S ∩ {x : f(x) ≤ (u+ l)/2} contains a
point.

• Update u = (u+ l)/2 if it does, l = (u+ l)/2 if not.
• Continue until |u− l| ≤ ϵ.

36

ELLIPSOID METHOD SKETCH

Goal of ellipsoid algorithm: Solve “Is K empty or not?” given a
seperation oracle for K under the assumptions that:

1. K ⊂ B(cR,R).
2. If non-empty, K contains B(cr, r) for some r < R.

37

ELLIPSOID METHOD SKETCH

Iterative method similar to center-of-gravity:

1. Check if center cR of B(cR,R) is in K.
2. If it is, we are done.
3. If not, cut search space in half, using seperating

hyperplane.

38

ELLIPSOID METHOD SKETCH

Key insight: Before moving on, approximate new search region
by something that we can easily compute the centroid of.
Specifically an ellipse!!

Produce a sequence of ellipses that always contain K and
decrease in volume: B(cR,R) = E1, E2, Once we get to an
ellipse with volume ≤ B(cr, r), we know that K must be empty. 39

ELLIPSE

An ellipse is a convex set of the form: {x : ∥A(x− c)∥22 ≤ α} for
some constant c and matrix A. The center-of-mass is c.

Often re-parameterized to say that the ellipse is all x with
{x : (x− c)TQ−1(x− c) ≤ 1} 40

ELLIPSOID UPDATE

There is a closed form solution for the equation of the
smallest ellipse containing a given half-ellipse. I.e. let Ei have
parameters Qi, ci and consider the half-ellipse:

Ei ∩ {x : aTi x ≤ aTi ci}.

Then Ei+1 is the ellipse with parameters:

Qi+1 =
d2

d2 − 1

(
Qi −

2
d+ 1hh

T
)

ci+1 = ci −
1

n+ 1h,

where h =
√
aTi Qiai · ai.

41

GEOMETRIC OBSERVATION

Claim: vol(Ei+1) ≤ (1− 1
2d) vol(Ei).

Proof: Via reduction to the “isotropic case”. I will post a proof
on the course website if you are interested.

Not as good as the (1− 1
e) constant-factor volume reduction

we got from center-of-gravity, but still very good! 42

GEOMETRIC OBSERVATION

Claim: vol(Ei+1) ≤ (1− 1
2d) vol(Ei)

After O(d) iterations, we reduce the volume by a constant.

In total require O(d2 log(R/r)) iterations to solve the problem.

43

ELLIPSOID FOR LPS

Theorem (Khachiyan, 1979)
Assume n = d. The ellipsoid method solves any linear
program with L-bit integer valued constraints in O(n4L) time.
I.e. linear programming is in (weakly) polynomial time!

The method works for any convex program.

For LPs, we have an O(nd) time seperation oracle, and ellipsoid
update take O(d2) time.

Careful analysis of the binary search method, how to set Br
and BR, etc. leads to the final runtime bound.

44

INTERIOR POINT METHODS

Theorem (Karmarkar, 1979)
Assume n = d. The interior point method solves any linear
program with L-bit integer valued constraints in O(n3.5L)
time.

Front page of New York Times, November 19, 1984. 45

INTERIOR POINT METHODS

Will post some notes on the website.

46

POLYNOMIAL TIME LINEAR PROGRAMMING

Both results had a huge impact on the theory of optimization,
although at the time neither the ellipsoid method or interior
point method were faster than a heuristic known at the
Simplex Method.

These days, improved interior point methods compete with
and often outperform simplex.

47

