CS-GY 6763/CS-UY 3943: Lecture 7
Submodularity

NYU Tandon School of Engineering, R. Teal Witter



SET FUNCTIONS

Consider a set function f: 2"l — R.

Example: There are n = 3 classes and f represents the
knowledge gained from a set of classes.
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SUBMODULARITY

For e € [n] and S C [n], the marginal gain of element e with

respect to setS s
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Definition (Submodular set function)

A set function f: 2"l — R is submodular if, for all e € [n] and
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APPLICATION: COVERAGE PROBLEM'

In coverage problem, f(S) is the amount of water “covered” by

S.
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Why Is coverage submodular?

'Finding a maximum of at most k hyper-edges is NP-Hard.



APPLICATION: GRAPH CUT?

In graph cut, f(S) Is the number of edges between S and [n] \ S.
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Why is graph cut submodular? £(53y= 0 = f(D’"J)

How is graph cut different from set cover?

Finding a maximum graph cut is NP-Hard.



APPLICATION: OTHERS!

- Combinatorial optimization (1970-)

— rank of a matroid
— submodular flows

- Algorithmic game theory (2000-)

- marketing on networks
— combinatorial auctions

- Machine learning (2005-)

— document summarization
— active learning



IS SUBMODULARITY MORE LIKE CONCAVITY OR CONVEXITY?

Arguments for concavity:
- Non-increasing derivative.
Arguments for convexity:

- Max cover and max cut are NP-hard.
- Exact minimization can be done in polynomial time.?

*M. Grotschel, L. Lovasz & A. Schrijver. Combinatorica (1981).



APPROXIMATE SUBMODULAR MAXIMIZATION

A
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Let f: 27l 5 R be a normalized, monotone, submodular set
function. FCeI%B‘i\CCdg's

We want to find
arg maxsc(nf(S) subject to |S[| # k.
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.. any ideas?



GREEDY ALGORITHM

let{}=SoCc S5 CS,C...CS,=[n]with S; ={s1,52,...,S;}.

Theorem (Nemhauser-Wolsey 1981) Tight

Let f: 2l"l - R be a normalized, monotone, submodular set
function. Fix positive integers E and k. Thoose , = Woe
S = arg maxeeqns.f(elSi)- Then® 4 elenerts g
2=k
f(Se) = (1 =@ “"MA(S*)

where

5% = arg maxs;s|—tf(5)



¥
R[f(Siv1) — £(Si)]

Claim: f(S*) — f(S)) <
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GREEDY PROOF: STEP 2
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GREEDY APPROXIMATION FACTOR

If we use the same number of sensors as optimal (¢ = k), then
we get a (1 — e~ ') ~ .63 approximate solution.

If we use five times as many sensors as optimal (¢ = 5k), then
we get a (1 — e~) ~ .99 approximate solution.
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WEAK SUBMODULARITY

What If we have a set function is only close to submodular?

Definition (Weak Submodularity)

Fix a positive integer k. A set function f: 2l — R is y,-weakly
submodular for k if, for all S € [n] and S C [n] \ S’ where
S| <k,

Zees f(e’S,)
f(s|s')

Yr(f) <

Intuition: How much f can increase by adding a set of size R vs.
combined increase of each element.
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WEAK SUBMODULARITY VS. SUBMODULARITY

Definition (Weak Submodularity)

Fix a positive integer k. A set function f: 2l — R is ~,-weakly
submodular for k if, for all S € [n] and S C [n] \ S’ where
S| <R,
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Sanity check: What is yk@ If fis submodular?
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WEAK SUBMODULAR MAXIMIZATION

Theorem (Das-Kempe 2011)

Let f: 2l"1 — R be a normalized, monotone, ~,-weakly
submodular set function. Choose s; = arg maxecn\s.f(€[S))-

Then 7.2 K
f(SR) > (1— e M)f(S").
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LEAST SQUARES REGRESSION

nxd dx! 0%\
We want to minimize ||Ax — b||? over x € RY.

Recall from last class that the Hessian H of least squares

regression is 2ATA and so
dxn nxdk

Alaxg X2ATA = Blaud o

where we say H Is a-strongly convex and g-smooth. In
particular, we argued a = Amin(2ATA) and 8 = Amax(2ATA).

Question: What if we can only choose k features?
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FEATURE SELECTION

X 0
) = [’*’;}; w= ) xto Kk mn-Zero

We want to minimize ||Ax — bHi over x € RY where k << d
entries in X are non-zero. Let x’ be the ‘condensed’ k x 1 vector
and A’ be the ‘condensed’ n x kR matrix.
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2 hmin (HI\ z \'""b‘n(H >
Then H' is o’-strongly convex and #’-smooth.

Exercise: Why is o < o’ and g’ < 37
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FEATURE SELECTION AND WEAK SUBMODULARITY

Theorem (Elenberg-Khanna-Dimakis-Negahban 2018)
Let max5:|5‘§kf(5) = maXy/ —||A/X’ — sz Then

Corollary: Greedily choosing k features gives a
1 — e~ 2min(A"A")/ Amax(2A"A") _gnproximation to the optimal
features.
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TAKEAWAYS

- Greedy solutions often work well
- Our tools (bound progress, (1 — 1/x)* < 1/e) are versatile

- Submodularity research is shallow (rather than deep)
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THANK YOU!
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