CS-GY 6763/CS-UY 3943: Lecture 7 Submodularity

NYU Tandon School of Engineering, R. Teal Witter

SET FUNCTIONS

Consider a set function $f: 2^{[n]} \to R$.

Example: There are n = 3 classes and f represents the knowledge gained from a set of classes.

[3] =
$$\{1,2,3\}$$

S $\{(s)\}$ normalized
 $\{3\}$ 0
1 5
2 3
10 $\{(s)\}$ monotone $\{(s)\}$ $\{(s)\}$

SUBMODULARITY

For $e \in [n]$ and $S \subseteq [n]$, the marginal gain of element e with respect to set S is

$$f(e|S) = f(\{e\} \cup S) - f(S)$$
. derivative

Definition (Submodular set function)

A set function $f: 2^{[n]} \to \mathbb{R}$ is submodular if, for all $e \in [n]$ and $S \subseteq S' \subseteq [n]$,

$$f(e|S) \ge f(e|S')$$
.

APPLICATION: COVERAGE PROBLEM¹

In coverage problem, f(S) is the amount of water "covered" by S.

Why is coverage submodular?

¹Finding a maximum of at most *k* hyper-edges is NP-Hard.

APPLICATION: GRAPH CUT²

In graph cut, f(S) is the number of edges between S and $[n] \setminus S$.

$$f(s) = 7$$

 $f(e|s) \ge f(e|s')$
 $s \le s'$

Why is graph cut submodular?

$$F(3)=0=f(17)$$

How is graph cut different from set cover?

²Finding a maximum graph cut is NP-Hard.

APPLICATION: OTHERS!

- Combinatorial optimization (1970-)
 - rank of a matroid
 - submodular flows
- Algorithmic game theory (2000-)
 - marketing on networks
 - combinatorial auctions
- Machine learning (2005-)
 - document summarization
 - active learning

IS SUBMODULARITY MORE LIKE CONCAVITY OR CONVEXITY?

Arguments for concavity:

· Non-increasing derivative.

Arguments for convexity:

- Max cover and max cut are NP-hard.
- Exact minimization can be done in polynomial time.³

³M. Grötschel, L. Lovász & A. Schrijver. *Combinatorica* (1981).

APPROXIMATE SUBMODULAR MAXIMIZATION

Let $f: 2^{[n]} \to \mathbb{R}$ be a normalized, monotone, submodular set function. $f(e|S) \ge f(e|S')$

We want to find

... any ideas?

GREEDY ALGORITHM

Let
$$\{\} = S_0 \subset S_1 \subset S_2 \subset ... \subset S_n = [n] \text{ with } S_i = \{s_1, s_2, ..., s_i\}.$$

Theorem (Nemhauser-Wolsey 1981) Tight

Let $f: 2^{[n]} \to \mathbb{R}$ be a normalized, monotone, submodular set function. Fix positive integers ℓ and k. Thoose $s_i = \arg\max_{e \in [n] \setminus S_i} f(e|S_i)$. Then * elements my elements my and $s_i = \arg\max_{e \in [n] \setminus S_i} f(e|S_i)$.

$$f(S_{\ell}) \geq (1 - \mathbb{g}^{-\ell/k})f(S^*)$$

where

$$S^* = \arg\max_{S:|S|=k} f(S).$$

GREEDY PROOF: STEP 1

Claim:
$$f(S^*) - f(S_i) \le k [f(S_{i+1}) - f(S_i)]$$

$$= f(S^* \cup S_i) - f(S_i) [= f((S^* \setminus S_i) \cup S_i) - f(S_i) = f((S^* \setminus S_i) \cup S_i) - f(S_i)] = f((S^* \setminus S_i) \cup S_i) - f((S_i) \cup S_i) - f((S_i) \cup S_i) + f((S_i) \cup S_i) - f((S_i)$$

GREEDY PROOF: STEP 2

Claim:
$$f(S^*) - f(S_i) \le k [f(S_{i+1}) - f(S_i)]$$

$$= \underbrace{k [(f(S^*) - f(S_i)) - (f(S^*) - f(S_{i+1}))]}$$

$$= \underbrace{k [(f(S^*) - f(S_i)) - (f(S^*) - f(S_{i+1}))]}$$

$$= \underbrace{(1 - \frac{1}{k}) [f(S^*) - f(S_i)]}$$

$$= \underbrace{(1 - \frac{1}{k}) [f(S^*) - f(S_{i-1})]}$$

$$= \underbrace{(1 - \frac{1}{k}) f(S^*) - f(S_{i-1})]}$$

$$f(S^*) - f(S_k) = \underbrace{(1 - \frac{1}{k})^k f(S^*)}$$

$$\underbrace{(1 - \frac{1}{k})^k f(S^*)}_{f(S^*)} = \underbrace{f(S_k)}_{f(S^*)}$$

GREEDY APPROXIMATION FACTOR

If we use the same number of sensors as optimal $(\ell = k)$, then we get a $(1 - e^{-1}) \approx .63$ approximate solution.

If we use five times as many sensors as optimal ($\ell = 5k$), then we get a $(1 - e^{-5}) \approx .99$ approximate solution.

WEAK SUBMODULARITY

What if we have a set function is only *close* to submodular?

Definition (Weak Submodularity)

Fix a positive integer k. A set function $f: 2^{[n]} \to \mathbb{R}$ is γ_k -weakly submodular for k if, for all $S' \in [n]$ and $S \subset [n] \setminus S'$ where $|S| \le k$,

$$\gamma_k(f) \leq \frac{\sum_{e \in S} f(e|S')}{f(S|S')}.$$

Intuition: How much *f* can increase by adding a set of size *k* vs. combined increase of each element.

WEAK SUBMODULARITY VS. SUBMODULARITY

Definition (Weak Submodularity)

Fix a positive integer k. A set function $f: 2^{[n]} \to \mathbb{R}$ is γ_k -weakly submodular for k if, for all $S' \in [n]$ and $S \subset [n] \setminus S'$ where $|S| \leq k$,

$$\gamma_k \mathcal{E} \leq \frac{\sum_{e \in S} f(e|S')}{f(S|S')}.$$

Sanity check: What is
$$\gamma_k$$
 if f is submodular?
$$f(s|s') = \sum_{i=1}^{|s|} f(a_i|s') \cup \{a_i, \dots, a_{i-1}\}) \leq \sum_{i=1}^{|s|} f(a_i|s')$$

WEAK SUBMODULAR MAXIMIZATION

Theorem (Das-Kempe 2011)

Let $f: 2^{[n]} \to \mathbb{R}$ be a normalized, monotone, γ_k -weakly submodular set function. Choose $s_i = \arg\max_{e \in [n] \setminus S_i} f(e|S_i)$. Then $\gamma_k \ge 1$ $\ell = k$

$$f(S_{k}) \geq (1 - e^{-\gamma_{k}})f(S^{*}).$$

$$\geq (1 - e^{-\gamma_{k}})f(S^{*}).$$

$$\downarrow (1 - e^{-\gamma_{k}})f(S^{*}).$$

$$\downarrow (1 - e^{-\gamma_{k}})f(S^{*}).$$

$$\downarrow (1 - e^{-\gamma_{k}})f(S^{*}).$$

LEAST SQUARES REGRESSION

We want to minimize $||\mathbf{A}\mathbf{x} - \mathbf{b}||^2$ over $\mathbf{x} \in \mathbb{R}^d$.

Recall from last class that the Hessian H of least squares regression is 2A^TA and so

$$\alpha I_{d \times d} \leq 2A^{T}A \leq \beta I_{d \times d}$$

where we say **H** is α -strongly convex and β -smooth. In particular, we argued $\alpha = \lambda_{\min}(2\mathbf{A}^{\mathsf{T}}\mathbf{A})$ and $\beta = \lambda_{\max}(2\mathbf{A}^{\mathsf{T}}\mathbf{A})$.

Question: What if we can only choose *k* features?

FEATURE SELECTION

$$\chi' = \begin{bmatrix} \chi_3 \\ \chi_2 \\ \vdots \\ \chi_{3} \end{bmatrix} \qquad \chi = \begin{bmatrix} \chi_1 \\ \vdots \\ \chi_{2} \\ \vdots \\ \chi_{3} \end{bmatrix} \circ \quad \text{k non-zero}$$

We want to minimize $||\mathbf{A}\mathbf{x} - \mathbf{b}||_{\mathbf{Z}}^2$ over $\mathbf{x} \in \mathbb{R}^d$ where k << d entries in \mathbf{x} are non-zero. Let \mathbf{x}' be the 'condensed' $k \times 1$ vector and \mathbf{A}' be the 'condensed' $n \times k$ matrix.

$$A = \begin{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{bmatrix} \qquad A' = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1$$

Then H' is α' -strongly convex and β' -smooth.

Exercise: Why is $\alpha \leq \alpha'$ and $\beta' \leq \beta$?

FEATURE SELECTION AND WEAK SUBMODULARITY

Theorem (Elenberg-Khanna-Dimakis-Negahban 2018)

Let
$$\max_{S:|S| < k} f(S) = \max_{x'} -||A'x' - b||^2$$
. Then

$$\gamma_k \ge \frac{\alpha'}{\beta'}.$$

Corollary: Greedily choosing k features gives a $1 - e^{-\lambda_{\min}(2A'^TA')/\lambda_{\max}(2A'^TA')}$ -approximation to the optimal features.

TAKEAWAYS

- Greedy solutions often work well
- Our tools (bound progress, $(1 1/x)^x \le 1/e$) are versatile
- Submodularity research is shallow (rather than deep)

THANK YOU!