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SET FUNCTIONS

Consider a set function f: 2[" — R.

Example: There are n = 3 classes and f represents the
knowledge gained from a set of classes.



SUBMODULARITY

For e € [n] and S C [n], the marginal gain of element e with
respect to set S is

f(elS) = f({e} US) = f(S).

Definition (Submodular set function)

A set function f: 2l — R is submodular if, for all e € [n] and
scsS Cinl,

f(elS) = f(elS).



APPLICATION: COVERAGE PROBLEM'

In coverage problem, f(S) is the amount of water “covered” by
S.

Why is coverage submodular?

"Finding a maximum of at most k hyper-edges is NP-Hard.



APPLICATION: GRAPH CUT?

In graph cut, f(S) is the number of edges between S and [n] \ S.

Why is graph cut submodular?

How is graph cut different from set cover?

2Finding a maximum graph cut is NP-Hard.



APPLICATION: OTHERS!

- Combinatorial optimization (1970-)
- rank of a matroid
- submodular flows

- Algorithmic game theory (2000-)

- marketing on networks
- combinatorial auctions

- Machine learning (2005-)

- document summarization
- active learning



IS SUBMODULARITY MORE LIKE CONCAVITY OR CONVEXITY?

Arguments for concavity:
- Non-increasing derivative.
Arguments for convexity:

- Max cover and max cut are NP-hard.
- Exact minimization can be done in polynomial time.3

3M. Grotschel, L. Lovasz & A. Schrijver. Combinatorica (1981).



APPROXIMATE SUBMODULAR MAXIMIZATION

Let f: 2[") — R be a normalized, monotone, submodular set
function.

We want to find

arg maxsc f(S) subject to [S| < k.

.. any ideas?



GREEDY ALGORITHM

let{}=SoCcS1CS;C...CSy=[nwithS; ={s1,52,...,Si}.
Theorem (Nemhauser-Wolsey 1981)

Let f: 2"l — R be a normalized, monotone, submodular set
function. Fix positive integers £ and k. Choose
S; = arg maxec\s,f(€[S;). Then

f(Se) = (1 e”/M)f(s")
where

S$* = arg maxg; 5| =f(S)-



GREEDY PROOF: STEP 1

Claim: f(S*) — f(S;) < R[f(Siy1) — f(S)]
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GREEDY PROOF: STEP 2

Claim: f(S*) — f(S;) < R[f(Siy1) — f(S)]

n



GREEDY APPROXIMATION FACTOR

If we use the same number of sensors as optimal (¢ = k), then
we get a (1— e ') =~ .63 approximate solution.

If we use five times as many sensors as optimal (¢ = 5R), then
we geta (1—e~>) ~ .99 approximate solution.
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WEAK SUBMODULARITY

What if we have a set function is only close to submodular?

Definition (Weak Submodularity)

Fix a positive integer k. A set function f: 2"l — R is v,-weakly
submodular for R if, forall S’ € [n] and S C [n] \ S’ where
S| <k

Dees f(els')

Yr(f) < 519

Intuition: How much f can increase by adding a set of size Rk vs.
combined increase of each element.
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WEAK SUBMODULARITY VS. SUBMODULARITY

Definition (Weak Submodularity)

Fix a positive integer k. A set function f: 2"l — R is v,-weakly
submodular for kif, forall S € [n] and S C [n] \ S’ where
IS < R,

Seeslels)

Yr(f) < 519

Sanity check: What is ~,(f) if f is submodular?



WEAK SUBMODULAR MAXIMIZATION

Theorem (Das-Kempe 2011)

Let f: 211 — R be a normalized, monotone, ~,-weakly
submodular set function. Choose s; = arg maxcq)\s,f(€[S;)-
Then

f(Se) = (1 = e7™)f(S").
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LEAST SQUARES REGRESSION

We want to minimize ||Ax — b||? over x € RY.
Recall from last class that the Hessian H of least squares
regression is 2ATA and so

algyg = 2ATA = Blaxd
where we say H is a-strongly convex and -smooth. In
particular, we argued o = Amin(2ATA) and B = Amax(2ATA).

Question: What if we can only choose k features?



FEATURE SELECTION

We want to minimize ||Ax — b||? over x € R? where k << d
entries in x are non-zero. Let x’ be the ‘condensed’ k x 1 vector
and A’ be the ‘condensed’ n x k matrix.

Then H is o’-strongly convex and ’-smooth.

Exercise: Why is o < o/ and B’ < f3?



FEATURE SELECTION AND WEAK SUBMODULARITY

Theorem (Elenberg-Khanna-Dimakis-Negahban 2018)
Let maxs,(s|<k f(S) = maxy —||A’X’ — b]|[?. Then

’WeZE-

Corollary: Greedily choosing k features gives a
1 — e~ Amin(ATA)/ Amax(2A7A') _3pproximation to the optimal
features.



TAKEAWAYS

- Greedy solutions often work well
- Our tools (bound progress, (1 — 1/x)* < 1/e) are versatile

- Submodularity research is shallow (rather than deep)
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THANK YOU!
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