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SET FUNCTIONS

Consider a set function f : 2[n] → R.

Example: There are n = 3 classes and f represents the
knowledge gained from a set of classes.
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SUBMODULARITY

For e ∈ [n] and S ⊆ [n], the marginal gain of element e with
respect to set S is

f(e|S) = f({e} ∪ S)− f(S).

Definition (Submodular set function)
A set function f : 2[n] → R is submodular if, for all e ∈ [n] and
S ⊆ S′ ⊆ [n],

f(e|S) ≥ f(e|S′).
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APPLICATION: COVERAGE PROBLEM1

In coverage problem, f(S) is the amount of water “covered” by
S.

Why is coverage submodular?

1Finding a maximum of at most k hyper-edges is NP-Hard.
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APPLICATION: GRAPH CUT2

In graph cut, f(S) is the number of edges between S and [n] \ S.

Why is graph cut submodular?

How is graph cut different from set cover?

2Finding a maximum graph cut is NP-Hard.
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APPLICATION: OTHERS!

• Combinatorial optimization (1970-)
– rank of a matroid
– submodular flows

• Algorithmic game theory (2000-)
– marketing on networks
– combinatorial auctions

• Machine learning (2005-)
– document summarization
– active learning
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IS SUBMODULARITY MORE LIKE CONCAVITY OR CONVEXITY?

Arguments for concavity:

• Non-increasing derivative.

Arguments for convexity:

• Max cover and max cut are NP-hard.
• Exact minimization can be done in polynomial time.3

3M. Grötschel, L. Lovász & A. Schrijver. Combinatorica (1981). 7



APPROXIMATE SUBMODULAR MAXIMIZATION

Let f : 2[n] → R be a normalized, monotone, submodular set
function.

We want to find

argmaxS⊆[n]f(S) subject to |S| ≤ k.

... any ideas?
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GREEDY ALGORITHM

Let {} = S0 ⊂ S1 ⊂ S2 ⊂ . . . ⊂ Sn = [n] with Si = {s1, s2, . . . , si}.

Theorem (Nemhauser-Wolsey 1981)
Let f : 2[n] → R be a normalized, monotone, submodular set
function. Fix positive integers ℓ and k. Choose
si = argmaxe∈[n]\Sif(e|Si). Then

f(Sℓ) ≥ (1− e−ℓ/k)f(S∗)

where

S∗ = argmaxS:|S|=kf(S).
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GREEDY PROOF: STEP 1

Claim: f(S∗)− f(Si) ≤ k [f(Si+1)− f(Si)]
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GREEDY PROOF: STEP 2

Claim: f(S∗)− f(Si) ≤ k [f(Si+1)− f(Si)]
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GREEDY APPROXIMATION FACTOR

If we use the same number of sensors as optimal (ℓ = k), then
we get a (1− e−1) ≈ .63 approximate solution.

If we use five times as many sensors as optimal (ℓ = 5k), then
we get a (1− e−5) ≈ .99 approximate solution.
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WEAK SUBMODULARITY

What if we have a set function is only close to submodular?

Definition (Weak Submodularity)
Fix a positive integer k. A set function f : 2[n] → R is γk-weakly
submodular for k if, for all S′ ∈ [n] and S ⊂ [n] \ S′ where
|S| ≤ k,

γk(f) ≤
∑

e∈S f(e|S′)
f(S|S′) .

Intuition: How much f can increase by adding a set of size k vs.
combined increase of each element.
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WEAK SUBMODULARITY VS. SUBMODULARITY

Definition (Weak Submodularity)
Fix a positive integer k. A set function f : 2[n] → R is γk-weakly
submodular for k if, for all S′ ∈ [n] and S ⊂ [n] \ S′ where
|S| ≤ k,

γk(f) ≤
∑

e∈S f(e|S′)
f(S|S′) .

Sanity check: What is γk(f) if f is submodular?
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WEAK SUBMODULAR MAXIMIZATION

Theorem (Das-Kempe 2011)
Let f : 2[n] → R be a normalized, monotone, γk-weakly
submodular set function. Choose si = argmaxe∈[n]\Sif(e|Si).
Then

f(Sℓ) ≥ (1− e−γk)f(S∗).
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LEAST SQUARES REGRESSION

We want to minimize ||Ax− b||2 over x ∈ Rd.

Recall from last class that the Hessian H of least squares
regression is 2ATA and so

αId×d ⪯ 2ATA ⪯ βId×d

where we say H is α-strongly convex and β-smooth. In
particular, we argued α = λmin(2ATA) and β = λmax(2ATA).

Question: What if we can only choose k features?

16



FEATURE SELECTION

We want to minimize ||Ax− b||2 over x ∈ Rd where k << d
entries in x are non-zero. Let x′ be the ‘condensed’ k× 1 vector
and A′ be the ‘condensed’ n× k matrix.

Then H′ is α′-strongly convex and β′-smooth.

Exercise: Why is α ≤ α′ and β′ ≤ β?
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FEATURE SELECTION AND WEAK SUBMODULARITY

Theorem (Elenberg-Khanna-Dimakis-Negahban 2018)
Let maxS:|S|≤k f(S) = maxx′ −||A′x′ − b||2. Then

γk ≥
α′

β′ .

Corollary: Greedily choosing k features gives a
1− e−λmin(2A′TA′)/ λmax(2A′TA′) -approximation to the optimal
features.
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TAKEAWAYS

• Greedy solutions often work well
• Our tools (bound progress, (1− 1/x)x ≤ 1/e) are versatile
• Submodularity research is shallow (rather than deep)
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THANK YOU!

20


