CS-GY 6763/CS-UY 3943: Lecture 7 Submodularity

NYU Tandon School of Engineering, R. Teal Witter

Consider a set function $f: 2^{[n]} \to R$.

Example: There are n = 3 classes and f represents the knowledge gained from a set of classes.

For $e \in [n]$ and $S \subseteq [n]$, the marginal gain of element e with respect to set S is

$$f(e|S) = f(\{e\} \cup S) - f(S).$$

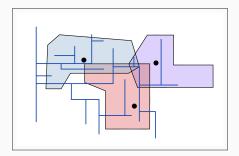
Definition (Submodular set function)

A set function $f: 2^{[n]} \to \mathbb{R}$ is submodular if, for all $e \in [n]$ and $S \subseteq S' \subseteq [n]$,

 $f(e|S) \ge f(e|S').$

APPLICATION: COVERAGE PROBLEM¹

In coverage problem, f(S) is the amount of water "covered" by S.

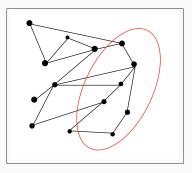


Why is coverage submodular?

¹Finding a maximum of at most *k* hyper-edges is NP-Hard.

APPLICATION: GRAPH CUT²

In graph cut, f(S) is the number of edges between S and $[n] \setminus S$.



Why is graph cut submodular?

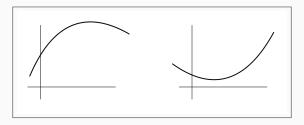
How is graph cut different from set cover?

²Finding a maximum graph cut is NP-Hard.

APPLICATION: OTHERS!

- Combinatorial optimization (1970-)
 - rank of a matroid
 - submodular flows
- Algorithmic game theory (2000-)
 - marketing on networks
 - combinatorial auctions
- Machine learning (2005-)
 - document summarization
 - active learning

IS SUBMODULARITY MORE LIKE CONCAVITY OR CONVEXITY?



Arguments for concavity:

• Non-increasing derivative.

Arguments for convexity:

- · Max cover and max cut are NP-hard.
- Exact minimization can be done in polynomial time.³

³M. Grötschel, L. Lovász & A. Schrijver. *Combinatorica* (1981).

Let $f: 2^{[n]} \to \mathbb{R}$ be a normalized, monotone, submodular set function.

We want to find

 $\operatorname{arg max}_{S \subseteq [n]} f(S)$ subject to $|S| \leq k$.

... any ideas?

Let
$$\{\} = S_0 \subset S_1 \subset S_2 \subset ... \subset S_n = [n]$$
 with $S_i = \{s_1, s_2, ..., s_i\}$.

Theorem (Nemhauser-Wolsey 1981)

Let $f : 2^{[n]} \to \mathbb{R}$ be a normalized, monotone, submodular set function. Fix positive integers ℓ and k. Choose $s_i = \arg \max_{e \in [n] \setminus S_i} f(e|S_i)$. Then

$$f(S_\ell) \ge (1 - e^{-\ell/k})f(S^*)$$

where

$$S^* = \arg \max_{S:|S|=k} f(S).$$

Claim: $f(S^*) - f(S_i) \le k [f(S_{i+1}) - f(S_i)]$

Claim: $f(S^*) - f(S_i) \le k [f(S_{i+1}) - f(S_i)]$

If we use the same number of sensors as optimal ($\ell = k$), then we get a $(1 - e^{-1}) \approx .63$ approximate solution.

If we use five times as many sensors as optimal ($\ell = 5k$), then we get a $(1 - e^{-5}) \approx .99$ approximate solution.

What if we have a set function is only *close* to submodular?

Definition (Weak Submodularity)

Fix a positive integer k. A set function $f : 2^{[n]} \to \mathbb{R}$ is γ_k -weakly submodular for k if, for all $S' \in [n]$ and $S \subset [n] \setminus S'$ where $|S| \le k$,

$$\gamma_k(f) \leq \frac{\sum_{e \in S} f(e|S')}{f(S|S')}$$

Intuition: How much *f* can increase by adding a set of size *k* vs. combined increase of each element.

Definition (Weak Submodularity)

Fix a positive integer k. A set function $f : 2^{[n]} \to \mathbb{R}$ is γ_k -weakly submodular for k if, for all $S' \in [n]$ and $S \subset [n] \setminus S'$ where $|S| \le k$,

$$\gamma_k(f) \leq \frac{\sum_{e \in S} f(e|S')}{f(S|S')}.$$

Sanity check: What is $\gamma_k(f)$ if f is submodular?

Theorem (Das-Kempe 2011)

Let $f : 2^{[n]} \to \mathbb{R}$ be a normalized, monotone, γ_k -weakly submodular set function. Choose $s_i = \arg \max_{e \in [n] \setminus S_i} f(e|S_i)$. Then

$$f(S_{\ell}) \geq (1 - e^{-\gamma_k})f(S^*).$$

We want to minimize $||\mathbf{A}\mathbf{x} - \mathbf{b}||^2$ over $\mathbf{x} \in \mathbb{R}^d$.

Recall from last class that the Hessian **H** of least squares regression is 2**A^TA** and so

$$\alpha \mathbf{I}_{\mathsf{d} \times \mathsf{d}} \preceq 2 \mathbf{A}^{\mathsf{T}} \mathbf{A} \preceq \beta \mathbf{I}_{\mathsf{d} \times \mathsf{d}}$$

where we say H is α -strongly convex and β -smooth. In particular, we argued $\alpha = \lambda_{\min}(2A^{T}A)$ and $\beta = \lambda_{\max}(2A^{T}A)$.

Question: What if we can only choose k features?

We want to minimize $||\mathbf{A}\mathbf{x} - \mathbf{b}||^2$ over $\mathbf{x} \in \mathbb{R}^d$ where $k \ll d$ entries in \mathbf{x} are non-zero. Let \mathbf{x}' be the 'condensed' $k \times 1$ vector and \mathbf{A}' be the 'condensed' $n \times k$ matrix.

Then *H'* is α' -strongly convex and β' -smooth. **Exercise**: Why is $\alpha \leq \alpha'$ and $\beta' \leq \beta$? Theorem (Elenberg-Khanna-Dimakis-Negahban 2018) Let $\max_{S:|S| \le k} f(S) = \max_{\mathbf{x}'} - ||\mathbf{A}'\mathbf{x}' - \mathbf{b}||^2$. Then $\gamma_k \ge \frac{\alpha'}{\beta'}$.

Corollary: Greedily choosing *k* features gives a $1 - e^{-\lambda_{\min}(2A'^{T}A')/\lambda_{\max}(2A'^{T}A')}$ -approximation to the optimal features.

- \cdot Greedy solutions often work well
- Our tools (bound progress, $(1 1/x)^x \le 1/e$) are versatile
- Submodularity research is shallow (rather than deep)

THANK YOU!