CS-GY 6763: Lecture 6
Online and Stochastic Gradient Decent

NYU Tandon School of Engineering, Prof. Christopher Musco



PROJECT

- Midterm in class next Tuesday. .
- See Ed post.
- If you have permission to take remotely, please email
asap so | know who you are.

- List of topics covered and practice problems are on
the course webpage.

- Tomorrow in the reading group Hayden Edelson will
present Estimating Sizes of Social Networks via Biased
Sampling. See you there!

- Thanks to Robert Ronan for the presentation last week.



GRADIENT DESCENT RECAP

First Order Optimization: Given a function f and a constraint
set S, assume we have:

- Function oracle: Evaluate f(x) for any x.
- Gradient oracle: Evaluate Vf(x) for any x.

- Projection oracle: Evaluate Pg(x) for any x.

Goal: Find X € S such that f(X) < minkes f(X) + €



GRADIENT DESCENT RECAP

Projected gradient descent:

- Select starting point x(%, learning rate ».

- Fori=0,...,T
X0 = 2 = x(’ nVf(x")
- XD = Ps(2)

- Return & = arg min; f(x()).



GRADIENT DESCENT RECAP

Conditions for convergence:

- Convexity: fis a convex function, S is a convex set.
- Bounded initial distance:

X9 —x[, < R
- Bounded gradients (Lipschitz function):
IVA(X)]. < Gforallx € S.

Theorem: Projected Gradient Descent returns X with
f(X) < minkes f(X) + € after

RZGZ
= 5

€
iterations.



OTHER CONVERGENCE GUARANTEES

Convexity:

0 < [fly) — f()] = VAX)'(y —x) =

a-strong-convexity and 3-smoothness: « < aﬁy(") < b

> lx = yli3.
2 "

S Ik = ylI3 < [f(y) = 00l = VA (y = x) <

N |

Number of iterations for ¢ error:

‘ G-Lipschitz B-smooth
R bounded start | O (%) O (‘LRZ)

@

a-strong convex | O (G—Z) 0 (g Iog(1/e)>

e



CONVERGENCE GUARANTEE

Theorem (GD for 5-smooth, a-strongly convex.)
Let f be a 3-smooth and a-strongly convex function. If we run
GD for T steps (with step size n = 13) we have:

C HX(T) _X*H% < e*(TM)%Hx(O) _i”%) 7 %“{DO(‘/&)

<z Ix"®-x¥[r

7

Corollary: If we have:
fO) — fix*) < e

We will prove this in the special case of

[ 7600 = Ix— bHﬁ\j

where x e R A e R"™<9 b € R".




THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from R? — R. Let the
Hessian H = V2f(x) contain all of its second derivatives at a
point x. So H € R9*4. We have:

Hij = [Vf(0)]; =

For vector X, v:

V(X + tv) & VA(X) + t [Vf(x)] v



THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from R? — R. Let the
H = V2f(x) contain all of its second derivatives at a

point x. So H € R9*4. We have:

o0*f

v2 _

Ij - [ ( )],J aX;X}-.

Example: Let f(x) = ||Ax — b||2. Recall that Vf(x) = 2AT(Ax — b).

0o fh

aq(dy| .. [Qg




HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If fis twice differentiable, then it is convex if and only if
the matrix H = V2f(x) is positive semidefinite for all x
Definition (Positive Semidefinite (PSD))

A square, symmetric matrix H € R9%9 is positive semidefinite
(PSD) for any vectory € RY, y"H

[EnY o 3 i -(O
-0 = -

—+

This is a natural notion of “positivity” for symmetric matrices

To denote that H is PSD we will typically use “Loewner order
notation (\succeq in LaTex):

L
K
T -
Vy 5 - 17 ~
VRNER SHTN HEO \v iy | e e
We write B > A or equivalently A < B to denote that (B — A) is

positive semidefinite. This gives a partial ordering on matrices

n-A%o

T :
s | A
T H‘/ >




HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If fis twice differentiable, then it is convex if and only if
the matrix H = V2f(x) is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix H € R9*9 is positive semidefinite
(PSD) for any vectory € RY, y"Hy > 0.

2
21

For the least squares regression loss function: f(x) = [[Ax — b
H = Vf(X) :or all x.

We know that H is PSD because:

x"Hx = 2x’ATAx = 2||Ax||5 > 0.
e

WA AT L T = AR

I



THE LINEAR ALGEBRA OF CONDITIONING

y €4"(x) < b
If fis B-smooth and a-strongly convex then at any point x,

H = V?f(x) satisfies:
Lo
algxg S H X Blyxg, 6 [" K J

. . - ®
where lg4q is a d x d identity matrix. - L P
o

This is the natural matrix generalization of the statement for
scalar valued functions:

a <f'(x) < B.

12



SMOOTH AND STRONGLY CONVEX HESSIAN

-

U - 0/1 ?/O WVY-oe D

—_ 0 LAV\'—X
algyg 2 H = Blayg-
—

Equivalently for any z,

ozl < 2'Hz < B|z|5.
-

L. .1 -H>%0

fe Ny, EleT-B)zno

H1L -2'He 20D

Gl -2 bz 2 D ;



SIMPLE EXAMPLE

Let f(x) =/[[Dx — b||3 Where D is a diagaonl matrix. For now
. 2
d 0

) ) - . . X
imagine we're in two dimensions: X = = ,D= )
X2 0 o

What are «, 3 for this problem?

oz} <ZTHz < Bllzlf e o]l -
%“—/—‘—’_\_‘ ——

b o - [‘* | Glerwiia)

p iy A N

o =y (WdY, 2d2) B s 24, 147)
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GEOMETRIC VIEW

e?:b:/l

Level sets of |[Dx — b||2 when d? = 1,d3 = 1.
VR,

15



GEOMETRIC VIEW

-
’ '—?év‘"_ )

Level sets of ||Dx — b||3 when d? = 1,d? = 2.

16



EIGENDECOMPOSITION VIEW

/\,>//\w D ... >//\A,
Any symmetric matrix H has an orthogonal, rega

eigendecomposition.

d eigenvectors eigenvalues eigenvectors
N
A
A
A
AR Vq
Here V is square and orthogonal, so VIV = VW = I. And for

each v;, we have:
HV,‘ = )\,‘V,’.

By definition, that's what makes v, ..., v, eigenvectors.
17



EIGENDECOMPOSITION VIEW

\r\//‘u\,\l '—LJ/&(,};)\'\'

Recall W' = VIV = |.

d eigenvectors eigenvalues eigenvectors
A
! A -1 ’_L
d H = '} A T = |s
A 2
Ay NI K
AA Vg v
/_/_,
Claim: His PSD < Aq,..., Ay > 0.
*II/\. ) o
MY

Ry S e

/}: /\ \ \)’/\‘A/\\’bv‘r;H’ .



EIGENDECOMPOSITION VIEW

Recall \L\f =Viv=1

d eigenvectors eigenvalues eigenvectors
I
A
d H = Vv A A
A
Ay

A Vq
Claim: al KH[blea< A ;<. . <\ <6

H-<T %0
AT VAN NN /A_WI\\YT
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EIGENDECOMPOSITION VIEW

Recall W' = VIV = |.

d eigenvectors eigenvalues eigenvectors
A
A
d H = \'} A VT
A
A

ViV, Vg

In other words, if we let Apax(H) and Amin(H) be the smallest
and largest eigenvalues of H, then for all z we have:

Z"Hz < Amax(H) - ||Z|)?
Z"Hz > Amin(H) - ||2]|?

20



EIGENDECOMPOSITION VIEW

If the maximum eigenvalue of H = V?f(x) = 3 and the
minimum eigenvalue of H = V2f(x) = « then f(x) is B-smooth
and a-strongly convex.

21



POLYNOMIAL VIEW POINT

Theorem (GD for 5-smooth, a-strongly convex.)
Let f be a B-smooth and a-strongly convex function. If we run
GD for T steps (with step size n = %) we have:

X — x| < eT/x D — e,

-

_ ok
N >
Let Amax = Amax(ATA). Gradient descent update is:

XD = x0 — 1 oaT(ax® _p)

max

22



ALTERNATIVE VIEW OF GRADIENT DESCENT

270 Y) 20 g - ATD Atb = ATA K
Richardson Iteration view:

(xTD — x*) = (I — 1ATA> (x(0 — x*)

e Amax I
v K | e
(1) U’) | T+ o)
t AT AT

+ q ) ) 4

X & I> -%X < KU - /Ylw&xlﬂ(-r@ XU “\0> -X
1 r (;\-) | N € B 4
xU’) -5 {\' /AY X _ ):h AAX X

/Ao S

T t < —&:’
R £ S VL | G by =

hat is the-maximum eigenvalue of the symmetric matrix
I — A:WATA) n terms of the eigenvalues vy T /,L vAYT
/\\«\x Ao /\‘“\K /\wv( 23




UNROLLED GRADIENT DESCENT

(- ket e (I £ K)o (Do HTh) ox 2 e
2 \hV=
fice (X(T+1) - X*) = MZ\/‘ Z\XS/L
[/L: LoChX
/\b’_""l :AMWQM)

Approach: Show that the maximum eigenvalue of

;
(I — %ATA) is small - i.e., bounded by e~ T/* gus
e 1 P (e

. 7 hL Z /’\V\.Qx (N) v
Conclusion:
. ||X(T+1) _ X*HZ _ (X(1) _ox*

- Since Amax(M axz HZHZ’




UNROLLED GRADIENT DESCENT

.
(x+) — x*) = <I ~ )\1ATA> (x( — x*)
max

b (- W‘) = v eo?

(T
SRS VES /AR AR LTy
What is the maX|mum eigenvalue of the symmetrlc matrlx

B7/k

</_,) 1(5@} (57 e ™

)\L -
)(w - 2]@ f A>> LR oo \ s T hed
Ao

Mes N7
*/%> o Ve % (\M £

\AWJQ )(ur;\q
}\L\;& : )\‘hw MTA) T: O ()\}/\%i \a@(‘/«»



ACCELERATION



ACCELERATED GRADIENT DESCENT

Nesterov's accelerated gradient descent:
x(N = y(M = z()
s Fort=1,...,T
-y = xO 1Vf( ®)
< (1 S 4 ()

Theorem (AGD for 3-smooth, a-strongly convex.)
Let f be a 5-smooth and a-strongly convex function. If we run
AGD for T steps we have:

O( N l&d U/é,>>

Fx) = fx") < we™CEDVE [(x) — ')

Corollary: If
26



INTUITION BEHIND ACCELERATION

-"‘v"‘u- )
= : B

Level sets of ||Ax — b||3.

Other terms for similar ideas:

- Momentum
- Heavy-ball methods

27
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ONLINE AND STOCHASTIC GRADIENT DESCENT

Second part of class:

- Basics of Online Learning + Optimization.

- Introduction to Regret Analysis.

- Application to analyzing Stochastic Gradient Descent.

28



ONLINE LEARNING

Many machine learning problems are solved in an online
setting with constantly changing data.

- Spam filters are incrementally updated and adapt as they
see more examples of spam over time.

- Image classification systems learn from mistakes over
time (often based on user feedback).

- Content recommendation systems adapt to user behavior
and clicks (which may not be a good thing...)

29



EXAMPLE

Plant identification via iNaturalist app.

(California Academy of Science + National Geographic)

- When the app fails, image

is classified via
crowdsourcing (backed by
huge network of amateurs
and experts).

- Single model that is

updated constantly, not
retrained in batches.

30



EXAMPLE

ML based email spam/scam filtering.

IME-Version: 1.0 Date: Mon, 7 Oct 201

Markers for spam change overtime, so model might change.

31



EXAMPLE

ML based email spam/scam filtering.

Re:SAFTY CORONA VIRUS AWARENESS WHO

;b\ World Health
*4 /¥ Organization

Dear Si,

res regarding the

Markers for spam change overtime, so model might change.

32



ONLINE LEARNING FRAMEWORK

Choose some model My parameterized by parameters x and
some loss function £. At time steps 1,...,T, receive data
vectors a(, ... a(D.

- At each time step, we pick (“play”) a parameter vector )5@
- Make prediction y() = MXV(,v)(aZj‘
- Then told true value or labelﬁ.

- Goal is to minimize cumulative loss: \6“) - Mo [D‘MJ
T
_ (i) () (A0
= Z;K(L— ,a Y )
=

For example, for a regression problem we might use the ¢, loss:
o(x®, a0 y0y = |(x ay — 0 2.

For classification, we could use logistic/cross-entropy loss.
33



ONLINE OPTIMIZATION

Abstraction as optimization problem: Instead of a single
objective function f, we have a single (initially unknown)

function fi, ..., fr : R? — R for each time step.
- Fortime stepie1,...,T, select vector x().
=

- Observe f; and pay cost f;(x())
- Goal is to minimize "1, fi(x().

We make no assumptions that fy,. .., fr are related to each
other at all!

34



REGRET BOUND

In_offline optimization, we wanted to find X satisfying
‘< miny f(x). Ask for a similar thing here.

Objective: Choose x(, ..., x(D so that:

[mxin iZ_T;ﬁ(x)] S

Here ¢ is called the regret of our solution sequence
x(, . x(D, -

35



REGRET BOUND

Regret compares to the best fixed solution in hindsight.

Zf, x() D+ e

/

It's very possible that 321, fi(x() < {mmxz, 1 filx )} Could we
hope for something stronger?

Exercise: Argue that the following is impossible to achieve:

S0 < [Z min f(X)

36



HARD EXAMPLE FOR ONLINE OPTIMIZATION

Convex functions:

fi) = —hl| = [x]

= | x-1]

[ %I
fp() =Ix=hr| 1y

where hs, ..., hrare i.id. uniform {0, 1}. H..M

37



REGRET BOUNDS

D

T

3100 < i 32109 +

=1

Beautiful balance:

- Either f,...,fr are similar, so we can learn predict f; from
earlier functions.

- Orfy,...,fr are very different, in which case miny Z,Tﬁfi(x)
is large, so regret bound is easy to achieve.

« Or we live somewhere in the middle.

38



ONLINE GRADIENT DESCENT

Online Gradient descent:

. ) _ R
Choosandan_ S
- Fori=1,...,T

- Play x().

+ Observe f; and incur cost fi(x().
- XD X0 — v

If f1,...,fr = f are all the same, this looks a lot like regular
gradient descent. We update parameters using the gradient Vf
at each step.

39



ONLINE GRADIENT DESCENT (OGD)

X' = argmin, S>L fi(x) (the offline optimum)
Assume:

* f1,...,fr are all convex.
- Bach is G-Lipschitz: for all x, i, [|[Vfi(X)[l2 < G.
- Starting radius: [|x* — x|, <R,

Online Gradient descent:

- Choose x(" and n = £~

. GVT’
s Fori=1,...,T
- Play x().
- Observe f; and incur cost f;(x()).
. X(i-‘r'l) _ X(i) o nv]cl(x(/))

40



ONLINE GRADIENT DESCENT ANALYSIS

Let x* = arg min, 1, fi(x) (the offline optimum)
Theorem (OGD Regret Bound)
After T steps, e = [ L fi(x)] - [£Lafi(x7)| < RGVT.

Average regret overtime is bounded by £ < \RﬁT

Goes -+ 0as T — oc.
All this with no assumptions on how fi, ..., fr relate to each

other! They could have even been chosen adversarially - e.g.
with f; depending on our choice of x; and all previous choices.

41



ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)
After T steps, € = [Z[Tﬂf,-(x("))} - [Z,-T:m(x*)} < RGVT.

Claim 1: Foralli=1,...,T,

X — x*|I3 — X0 — x5 06

)~ 5 < % T
(Same proof as last class. Only uses convexity of f;.)
P N PO P R

= | x Do > s gt x “‘)\ - )/\/\VHK U\y [x”x“‘)

¥M7' (//V e

42



ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

After T steps, € = [Z;T:Nci(x(i))} - [Z’sz(x*)}

Claim1: Foralli=1,...,T,

. (1) 12 |1y (1) _ y*12 2
fl(x(l)) _fi(X*) < ”X X HZ HX X H2 _'_ﬁ

2n 2
Telescoping Sum: SR e M M/G’) . [ll 7&),&
> - .
.
. &3 * Y T 62
5 - 060 < OGO+
=1 Z A
LD, T8y me
— 2n 2 ()/

L S LR S PRUANIC T

X2

L

43



STOCHASTIC GRADIENT DESCENT (SGD)

Efficient offline optimization method for functions f with finite
sum structure:

) = 3 fil0).
- i=1

Goal is to find X such that f(X) < f(x*) + €.

- The most widely use optimization algorithm in modern
machine learning.

- Easily analyzed as a special case of online gradient
descent!

4



STOCHASTIC GRADIENT DESCENT

Recall the machine learning setup. In empirical risk
minimization, we can typically write:

fx) =) fi(x)

===
where f; is the loss function for a particular data example

(0 y() n
G vglxy' i 7 4 Cx)

Vo ————=
Example: least squares linear regression.
n
fx) = > (dah - yty2

Note that by linearity, Vf(x) = >, Vfi(x).

45



STOCHASTIC GRADIENT DESCENT

Main idea: Use random approximate gradient in place of
actual gradient.

Pick random j € 1,...,n and update_x using Vf;(x).

E [VA(X)] = - VAX).

= " [] —

nVfi(x) is an unbiased estimate for the true gradient Vf(x),
but can often be computed in a 1/n fraction of the time!

Trade slower convergence for cheaper iterations.

46



STOCHASTIC GRADIENT DESCENT

Stochastic first-order oracle forf = = X)-

- Gradient Query: For any chosen j, x, return Vf;(x)

Stochastic Gradient descent:

- Choose starting vector x(, learning rate 1
- Fori=1,...,T
- Pick random j; € 1

... N
PIBSELEEER LY
- XD = x0) v, (x0)

- Return X = 127 x()

47



a
G)
N
©
=
N
-
<
>
0
>

SGD's stochastic con

vergence

GD's smooth con

48




STOCHASTIC GRADIENT DESCENT

Assume:
- Finite sum structure: f(x) = 7, fi(x), with fi,. .., f, all convex.

+ Lipschitz functions: for all x, j, || Vfj(x)][2 g > (r
- What does this imply about Lipschitz constant of f?
- Starting radius: ||x* — x|, <R.

Stochastic Gradient descent:

c ™M i — _b_
Choose x'7, steps T, learning rate n = ===.
- Fori=1,...,T:
- Pickrandom j; € 1,...,n.

~ T ;
* Returnk =13 xO

Approach: View as online gradient descent run on function
sequence fi,,...,fj.

Only use the fact that step equals gradient in expectation. .



STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence) p

A \
After T = KS” iterations: A= ’{i

Claim 1:

Prove using Jensen’s Inequality:
4/'; 20 L £k
i = F fac

50



STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence) \)‘\ wand 1, ',WB
After T = :
E[f(%) ~ f(x")] < e $x ™)
E[f(%) - fx')] < - ZEH) )] 2 25K

f\\

ee.)



STOCHASTIC VS. FULL BATCH GRADIENT DESCENT
-

(w): &
Number of iterations for error e: “ﬁ X) m*ﬂ L’V}

. \ (!
- Gradient Descent: T | hot (N, = w - ThiY
- Stochastic Gradient Descent: T

Always have G < G":

m3@2 < max (VA2 + - + [Va(X)]l2) @@

4wl \vg L)QH
So GD converges strictly faster than SGD. o g4,

But for a fair comparison: 1

- SGD cost = (# of iterations) ‘QQ) w94, el
* GD cost = (# of iterations) - O(n)

52



STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

We always have G < G’. When it is much smaller then GD will
perform better. When it is closer to this upper bound, SGD will
perform better.

What is an extreme case where G = G'?

grd o K -los V)
OC‘JA 2 °(3\'/CJ 4\()%

e
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

What if each gradient Vf;(x) looks like random vectors in R9?
E.g. with (0, 1) entries?

E [IVAi(x)IIZ] =

E (|| VA(x)

E Z Vfi(x ||2] =

54



STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

\AY/ 1,7 a]l;@ &L

Takeaway: SGD performs better when there is more structure
or repetition in the data set.

o 1T MR Y 50 8 R D
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PRECONDITIONING



PRECONDITIONING

Main idea: Instead of minimizing f(x), find another function
g(x) with the same minimum but which is better suited for first
order optimization (e.g., has a smaller conditioner number).

Claim: Let h(x) : RY — RY be an invertible function. Let
g(x) = f(h(x)). Then

mxinf(x) — mxin g(x) and argxminf(x) =h <argxmin g(x)> .

56



PRECONDITIONING

First Goal: We need g(x) to still be convex.

Claim: Let P be an invertible d x d matrix and let g(x) = f(Px).

g(x) is always convex.

57



PRECONDITIONING

Second Goal:
g(x) should have better condition number x than f(x).

Example:

T
f(x) = [|Ax — b3. rp = 268

M(PTATAP
+ g(x) = [|APX — b|[3. xg = 3XEAES.

58



DIAGONAL PRECONDITIONER

Third Goal: P should be easy to compute.

Many, many problem specific preconditioners are used in
practice. There design is usually a heuristic process.
Example: Diagonal preconditioner.

- Let D = diag(ATA)
- Intuitively, we roughly have that D ~ ATA.
- LetP=+vD

P is often called a Jacobi preconditioner. Often works very well
in practice!

59



DIAGONAL PRECONDITIONER

A=
-734 1 33 9111 [}
-31 -2 108 5946 -19
232 = 101 3502 10
426 ) -65 12503 9
-373 ) 26 9298 [)
-236 -2 -94 2398 =4
2024 ) -132 -6904 -25
-2258 -1 92 -6516 6
2229 [) [} 11921 -22
338 1 -5 -16118 -23
>> cond(A'xA) >> P = sqrt(inv(diag(diag(A'xA))));
>> cond (PxA"'*xAxP)
ans =
ans =
8.4145e+07
10.3878
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ADAPTIVE STEPSIZES

Another view: If g(x) = f(Px) then Vg(x) = PTVf(PXx).
Vg(x) = PVf(Px) when P is symmetric.

Gradient descent on g:

s Fort=1,...,T,
< x(t) — () nP [Vf(Px(t))]

Gradient descent on g:
s Fort=1,...,T,
-y =y — P2 [VAY©)]

When P is diagonal, this is just gradient descent with a
different step size for each parameter!

61



ADAPTIVE STEPSIZES

Algorithms based on this idea:

- AdaGrad
- RMSprop
- Adam optimizer

ieYie
A KA

el @ WA

S Ovv. O

A‘\. S INAN . Output
\w

Hidden Layers
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COORDINATE DESCENT



STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Gradient Descent: When f(x) = Y7, fi(x),
approximate Vf(x) with Vf;(x) for randomly chosen i.

63



STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Coordinate Descent: Only compute a single random
entry of Vf(x) on each iteration:

vio = | 7 Vi = [
2(x) 0

Update: x(t+) « x(O 5 v,f(x®).

64



COORDINATE DESCENT

When x has d parameters, computing V;f(x) often costs just a
1/d fraction of what it costs to compute Vf(x)

Example: f(x) = ||[Ax — b|j3 for Ac R™9 x ¢ RY b € R".

* Vf(x) = 2ATAx — 2ATDb.
- Vif(x) = 2 [ATAx], — 2 [ATb].

65



STOCHASTIC COORDINATE DESCENT

Stochastic Coordinate Descent:

- Choose number of steps T and step size 7.
- Fori=1,...,T:

- Pick randomj; €1,...,d.

- x(+1) = x() — anf(x(’))

- Return & = 1 327, x().,

66



COORDINATE DESCENT

Theorem (Stochastic Coordinate Descent convergence)
Given a G-Lipschitz function f with minimizer x* and initial
point XM with [x( —x*||, < R, SCD with step size n = 75
satisfies the guarantee:

2GR

E[f(x) — f(x*)] < =

Q.
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IMPORTANCE SAMPLING

Often it doesn't make sense to sample i uniformly at random:

00 1 0O00O0 10
00 2 000 42
00 -1 000 -1
A = b =
00 -5 000 =51
00 3 000 34
00 -2 0 0 0] |22
Select indices i proportional to ||a;||3:
laillz — _ il

2
2

Pr[select index i to update] =

S llaly AN
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