
CS-GY 6763: Lecture 6
Online and Stochastic Gradient Decent

NYU Tandon School of Engineering, Prof. Christopher Musco
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PROJECT

• Midterm in class next Tuesday. .
• See Ed post.
• If you have permission to take remotely, please email
asap so I know who you are.

• List of topics covered and practice problems are on
the course webpage.

• Tomorrow in the reading group Hayden Edelson will
present Estimating Sizes of Social Networks via Biased
Sampling. See you there!

• Thanks to Robert Ronan for the presentation last week.
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GRADIENT DESCENT RECAP

First Order Optimization: Given a function f and a constraint
set S , assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.
• Projection oracle: Evaluate PS(x) for any x.

Goal: Find x̂ ∈ S such that f(x̂) ≤ minx∈S f(x) + ε.
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GRADIENT DESCENT RECAP

Projected gradient descent:

• Select starting point x(߿), learning rate η.
• For i = ,߿ . . . , T:

• z = x(i) − η∇f(x(i))
• x(i+ࠀ) = PS(z)

• Return x̂ = argmini f(x(i)).
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GRADIENT DESCENT RECAP

Conditions for convergence:

• Convexity: f is a convex function, S is a convex set.
• Bounded initial distance:

‖x(߿) − x∗‖ࠁ ≤ R

• Bounded gradients (Lipschitz function):

‖∇f(x)‖ࠁ ≤ G for all x ∈ S.

Theorem: Projected Gradient Descent returns x̂ with
f(x̂) ≤ minx∈S f(x) + ε after

T =
RࠁGࠁ

εࠁ

iterations.

ࠄ

÷



OTHER CONVERGENCE GUARANTEES

Convexity:

߿ ≤ [f(y)− f(x)]−∇f(x)T(y− x)

α-strong-convexity and β-smoothness:

α

ࠁ
‖x− y‖ࠁࠁ ≤ [f(y)− f(x)]−∇f(x)T(y− x) ≤ β

ࠁ
‖x− y‖ࠁࠁ.

Number of iterations for ε error:

G-Lipschitz β-smooth
R bounded start O

(
GࠁRࠁ

εࠁ

)
O
(
βRࠁ

ε

)

α-strong convex O
(

Gࠁ

αε

)
O
(
β
α log(ࠀ/ε)

)
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CONVERGENCE GUARANTEE

Theorem (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = ࠀ

β ) we have:

‖x(T) − x∗‖ࠁࠁ ≤ e−(T−ࠀ)αβ ‖x(ࠀ) − x∗‖ࠁࠁ

Corollary: If T = O
(
β
α log(Rβ/ε)

)
we have:

f(x(T))− f(x∗) ≤ ε

We will prove this in the special case of

f(x) = ‖Ax− b‖ࠁࠁ
where x ∈ Rd,A ∈ Rn×d,b ∈ Rn.

ࠆ
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THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from Rd → R. Let the
Hessian H = f(x)ࠁ∇ contain all of its second derivatives at a
point x. So H ∈ Rd×d. We have:

Hi,j =
[
f(x)ࠁ∇

]
i,j =

fࠁ∂
∂xixj

.

For vector x, v:

∇f(x+ tv) ≈ ∇f(x) + t
[
f(x)ࠁ∇

]
v.

ࠇ
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THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from Rd → R. Let the
Hessian H = f(x)ࠁ∇ contain all of its second derivatives at a
point x. So H ∈ Rd×d. We have:

Hi,j =
[
f(x)ࠁ∇

]
i,j =

fࠁ∂
∂xixj

.

Example: Let f(x) = ‖Ax− b‖ࠁࠁ. Recall that ∇f(x) = −AT(Axࠁ b).
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HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if
the matrix H = f(x)ࠁ∇ is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))
A square, symmetric matrix H ∈ Rd×d is positive semidefinite
(PSD) for any vector y ∈ Rd, yTHy ≥ .߿

This is a natural notion of “positivity” for symmetric matrices.
To denote that H is PSD we will typically use “Loewner order”
notation (\succeq in LaTex):

H ) .߿

We write B ) A or equivalently A * B to denote that (B− A) is
positive semidefinite. This gives a partial ordering on matrices.
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HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if
the matrix H = f(x)ࠁ∇ is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))
A square, symmetric matrix H ∈ Rd×d is positive semidefinite
(PSD) for any vector y ∈ Rd, yTHy ≥ .߿

For the least squares regression loss function: f(x) = ‖Ax− b‖ࠁࠁ,
H = f(x)ࠁ∇ = ATAࠁ for all x.

We know that H is PSD because:

xTHx = xTATAxࠁ = ࠁࠁ‖Ax‖ࠁ ≥ .߿

ࠀࠀ
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THE LINEAR ALGEBRA OF CONDITIONING

If f is β-smooth and α-strongly convex then at any point x,
H = f(x)ࠁ∇ satisfies:

αId×d * H * βId×d,

where Id×d is a d× d identity matrix.

This is the natural matrix generalization of the statement for
scalar valued functions:

α ≤ f′′(x) ≤ β.
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SMOOTH AND STRONGLY CONVEX HESSIAN

αId×d * H * βId×d.

Equivalently for any z,

α‖z‖ࠁࠁ ≤ zTHz ≤ β‖z‖ࠁࠁ.
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SIMPLE EXAMPLE

Let f(x) = ‖Dx− b‖ࠁࠁ where D is a diagaonl matrix. For now

imagine we’re in two dimensions: x =

[
xࠀ
xࠁ

]
, D =

[
dࠀ ߿
߿ dࠁ

]
.

What are α,β for this problem?

α‖z‖ࠁࠁ ≤ zTHz ≤ β‖z‖ࠁࠁ

ࠃࠀ
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GEOMETRIC VIEW

Level sets of ‖Dx− b‖ࠁࠁ when dࠁ
ࠀ = ࠁd,ࠀ

ࠁ = .ࠀ
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GEOMETRIC VIEW

Level sets of ‖Dx− b‖ࠁࠁ when dࠁ
ࠀ =

ࠀ
ࠂ ,d

ࠁ
ࠁ = .ࠁ
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EIGENDECOMPOSITION VIEW

Any symmetric matrix H has an orthogonal, real valued
eigendecomposition.

Here V is square and orthogonal, so VTV = VVT = I. And for
each vi, we have:

Hvi = λivi.

By definition, that’s what makes vࠀ, . . . , vd eigenvectors.
ࠆࠀ
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EIGENDECOMPOSITION VIEW

Recall VVT = VTV = I.

Claim: H is PSD ⇔ λࠀ, ...,λd ≥ .߿

ࠇࠀ
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EIGENDECOMPOSITION VIEW

Recall VVT = VTV = I.

Claim: αI * H * βI⇔ α ≤ λd ≤ ... ≤ λࠀ ≤ β.

ࠈࠀ



EIGENDECOMPOSITION VIEW

Recall VVT = VTV = I.

In other words, if we let λmax(H) and λmin(H) be the smallest
and largest eigenvalues of H, then for all z we have:

zTHz ≤ λmax(H) · ‖z‖ࠁ

zTHz ≥ λmin(H) · ‖z‖ࠁ

߿ࠁ



EIGENDECOMPOSITION VIEW

If the maximum eigenvalue of H = f(x)ࠁ∇ = β and the
minimum eigenvalue of H = f(x)ࠁ∇ = α then f(x) is β-smooth
and α-strongly convex.

λmax(H) = β

λmin(H) = α

ࠀࠁ
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POLYNOMIAL VIEW POINT

Theorem (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = ࠀ

β ) we have:

‖x(T+ࠀ) − x∗‖ࠁ ≤ e−T/κ‖x(ࠀ) − x∗‖ࠁ

Goal: Prove for f(x) = ‖Ax− b‖ࠁࠁ.

Let λmax = λmax(ATA). Gradient descent update is:

x(t+ࠀ) = x(t) − ࠀ
λmaxࠁ

AT(Ax(t)ࠁ − b)

ࠁࠁ
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ALTERNATIVE VIEW OF GRADIENT DESCENT

Richardson Iteration view:

(x(t+ࠀ) − x∗) =
(
I− ࠀ

λmax
ATA
)
(x(t) − x∗)

What is the maximum eigenvalue of the symmetric matrix(
I− ࠀ

λmax
ATA
)
in terms of the eigenvalues

λmax = λࠀ ≥ . . . ≥ λd = λmin of ATA?
ࠂࠁ

* A t(Axa-b) = O ATAN = A t b Atb= A tA× '

-
e -

-

×Ht"..xlt)-Fm,A tfAx'"b)

×Atl)-×' = ×
HI-¥ua×AYA×"'-b) -× '

×it)-Ina,AtAx't)-fu,Attu- × '

" '"'

*÷..***.rs/ttA=vsyt-
VVt-/Tna,vsrt*Q..*..*..

'
" '
" ÷

V I € µ t



UNROLLED GRADIENT DESCENT

(x(T+ࠀ) − x∗) =
(
I− ࠀ

λmax
ATA
)T

(x(ࠀ) − x∗)

Approach: Show that the maximum eigenvalue of(
I− ࠀ

λmax
ATA
)T

is small – i.e., bounded by e−T/κ = ε.

Conclusion:

• ‖x(T+ࠀ) − x∗‖ࠁࠁ = (x(ࠀ) − x∗)T
(
I− ࠀ

λmax
ATA
Tࠁ(

(x(ࠀ) − x∗)

• Since λmax(M) = maxz
zTMz
‖z‖ࠁࠁ

, we have:

‖x(T+ࠀ) − x∗‖ࠁࠁ ≤ λmax

((
I− ࠀ

λmax
ATA
Tࠁ(
)

So we have ‖x(T+ࠀ) − x∗‖ࠁ ≤
ࠃࠁ
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UNROLLED GRADIENT DESCENT

(x(T+ࠀ) − x∗) =
(
I− ࠀ

λmax
ATA
)T

(x(ࠀ) − x∗)

What is the maximum eigenvalue of the symmetric matrix(
I− ࠀ

λmax
ATA
)T

?
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ACCELERATION
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ACCELERATED GRADIENT DESCENT

Nesterov’s accelerated gradient descent:

• x(ࠀ) = y(ࠀ) = z(ࠀ)

• For t = ,ࠀ . . . , T
• y(t+ࠀ) = x(t) − ࠀ

β∇f(x
(t))

• x(t+ࠀ) =
(
+ࠀ

√
κ−ࠀ√
κ+ࠀ

)
y(t+ࠀ) +

√
κ−ࠀ√
κ+ࠀ

(
y(t+ࠀ) − y(t)

)

Theorem (AGD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
AGD for T steps we have:

f(x(t))− f(x∗) ≤ κe−(t−ࠀ)
√
κ
[
f(x(ࠀ))− f(x∗)

]

Corollary: If T = O (
√
κ log(κ/ε)) achieve error ε.

ࠅࠁ
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INTUITION BEHIND ACCELERATION

Level sets of ‖Ax− b‖ࠁࠁ.

Other terms for similar ideas:

• Momentum
• Heavy-ball methods

What if we look back beyond two iterates?

ࠆࠁ
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ONLINE AND STOCHASTIC GRADIENT DESCENT

Second part of class:

• Basics of Online Learning + Optimization.
• Introduction to Regret Analysis.
• Application to analyzing Stochastic Gradient Descent.
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ONLINE LEARNING

Many machine learning problems are solved in an online
setting with constantly changing data.

• Spam filters are incrementally updated and adapt as they
see more examples of spam over time.

• Image classification systems learn from mistakes over
time (often based on user feedback).

• Content recommendation systems adapt to user behavior
and clicks (which may not be a good thing...)

ࠈࠁ



EXAMPLE

Plant identification via iNaturalist app.

(California Academy of Science + National Geographic)

• When the app fails, image
is classified via
crowdsourcing (backed by
huge network of amateurs
and experts).

• Single model that is
updated constantly, not
retrained in batches.

߿ࠂ



EXAMPLE

ML based email spam/scam filtering.

Markers for spam change overtime, so model might change.
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EXAMPLE

ML based email spam/scam filtering.

Markers for spam change overtime, so model might change.
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ONLINE LEARNING FRAMEWORK

Choose some model Mx parameterized by parameters x and
some loss function (. At time steps ,ࠀ . . . , T, receive data
vectors a(ࠀ), . . . , a(T).

• At each time step, we pick (“play”) a parameter vector x(i).
• Make prediction ỹ(i) = Mx(i)(ai).
• Then told true value or label y(i).
• Goal is to minimize cumulative loss:

L =
n∑

i=ࠀ

((x(i), a(i), y(i))

For example, for a regression problem we might use the ࠁ) loss:

((x(i), a(i), y(i)) =
∣∣∣〈x(i), a(i)〉 − y(i)

∣∣∣
ࠁ
.

For classification, we could use logistic/cross-entropy loss.
ࠂࠂ
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ONLINE OPTIMIZATION

Abstraction as optimization problem: Instead of a single
objective function f, we have a single (initially unknown)
function fࠀ, . . . , fT : Rd → R for each time step.

• For time step i ∈ ,ࠀ . . . , T, select vector x(i).
• Observe fi and pay cost fi(x(i))
• Goal is to minimize

∑T
i=ࠀ fi(x(i)).

We make no assumptions that fࠀ, . . . , fT are related to each
other at all!

ࠃࠂ
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REGRET BOUND

In offline optimization, we wanted to find x̂ satisfying
f(x̂) ≤ minx f(x). Ask for a similar thing here.

Objective: Choose x(ࠀ), . . . , x(T) so that:

T∑

i=ࠀ

fi(x(i)) ≤
[
min
x

T∑

i=ࠀ

fi(x)
]
+ ε.

Here ε is called the regret of our solution sequence
x(ࠀ), . . . , x(T).

ࠄࠂ
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REGRET BOUND

Regret compares to the best fixed solution in hindsight.

T∑

i=ࠀ

fi(x(i)) ≤
[
min
x

T∑

i=ࠀ

fi(x)
]
+ ε.

It’s very possible that
∑T

i=ࠀ fi(x(i)) <
[
minx

∑T
i=ࠀ fi(x)

]
. Could we

hope for something stronger?

Exercise: Argue that the following is impossible to achieve:

T∑

i=ࠀ

fi(x(i)) ≤
[ T∑

i=ࠀ

min
x

fi(x)
]
+ ε.

ࠅࠂ
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HARD EXAMPLE FOR ONLINE OPTIMIZATION

Convex functions:

fࠀ(x) = |x− hࠀ|
...

fn(x) = |x− hT|

where hࠀ, . . . ,hT are i.i.d. uniform ,߿} .{ࠀ

ࠆࠂ
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REGRET BOUNDS

T∑

i=ࠀ

fi(x(i)) ≤
[
min
x

T∑

i=ࠀ

fi(x)
]
+ ε.

Beautiful balance:

• Either fࠀ, . . . , fT are similar, so we can learn predict fi from
earlier functions.

• Or fࠀ, . . . , fT are very different, in which case minx
∑T

i=ࠀ fi(x)
is large, so regret bound is easy to achieve.

• Or we live somewhere in the middle.

ࠇࠂ
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ONLINE GRADIENT DESCENT

Online Gradient descent:

• Choose x(ࠀ) and η = R
G
√
T .

• For i = ,ࠀ . . . , T:
• Play x(i).
• Observe fi and incur cost fi(x(i)).
• x(i+ࠀ) = x(i) − η∇fi(x(i))

If fࠀ, . . . , fT = f are all the same, this looks a lot like regular
gradient descent. We update parameters using the gradient ∇f
at each step.

ࠈࠂ
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ONLINE GRADIENT DESCENT (OGD)

x∗ = argminx
∑T

i=ࠀ fi(x) (the offline optimum)

Assume:

• fࠀ, . . . , fT are all convex.
• Each is G-Lipschitz: for all x, i, ‖∇fi(x)‖ࠁ ≤ G.
• Starting radius: ‖x∗ − x(ࠀ)‖ࠁ ≤ R.

Online Gradient descent:

• Choose x(ࠀ) and η = R
G
√
T .

• For i = ,ࠀ . . . , T:
• Play x(i).
• Observe fi and incur cost fi(x(i)).
• x(i+ࠀ) = x(i) − η∇fi(x(i))

߿ࠃ
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ONLINE GRADIENT DESCENT ANALYSIS

Let x∗ = argminx
∑T

i=ࠀ fi(x) (the offline optimum)

Theorem (OGD Regret Bound)

After T steps, ε =
[∑T

i=ࠀ fi(x(i))
]
−
[∑T

i=ࠀ fi(x∗)
]
≤ RG

√
T.

Average regret overtime is bounded by ε
T ≤

RG√
T .

Goes→ ߿ as T→∞.

All this with no assumptions on how fࠀ, . . . , fT relate to each
other! They could have even been chosen adversarially – e.g.
with fi depending on our choice of xi and all previous choices.

ࠀࠃ
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ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

After T steps, ε =
[∑T

i=ࠀ fi(x(i))
]
−
[∑T

i=ࠀ fi(x∗)
]
≤ RG

√
T.

Claim 1: For all i = ,ࠀ . . . , T,

fi(x(i))− fi(x∗) ≤
‖x(i) − x∗‖ࠁࠁ − ‖x(i+ࠀ) − x∗‖ࠁࠁ

ηࠁ
+

ηGࠁ

ࠁ

(Same proof as last class. Only uses convexity of fi.)

ࠁࠃ
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ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

After T steps, ε =
[∑T

i=ࠀ fi(x(i))
]
−
[∑T

i=ࠀ fi(x∗)
]
≤ RG

√
T.

Claim 1: For all i = ,ࠀ . . . , T,

fi(x(i))− fi(x∗) ≤
‖x(i) − x∗‖ࠁࠁ − ‖x(i+ࠀ) − x∗‖ࠁࠁ

ηࠁ
+

ηGࠁ

ࠁ

Telescoping Sum:
T∑

i=ࠀ

[
fi(x(i))− fi(x∗)

]
≤ ‖x(ࠀ) − x∗‖ࠁࠁ − ‖x(T) − x∗‖ࠁࠁ +

TηGࠁ

ࠁ

≤ Rࠁ

ηࠁ
+

TηGࠁ

ࠁ

ࠂࠃ
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STOCHASTIC GRADIENT DESCENT (SGD)

Efficient offline optimization method for functions f with finite
sum structure:

f(x) =
n∑

i=ࠀ

fi(x).

Goal is to find x̂ such that f(x̂) ≤ f(x∗) + ε.

• The most widely use optimization algorithm in modern
machine learning.

• Easily analyzed as a special case of online gradient
descent!

ࠃࠃ
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STOCHASTIC GRADIENT DESCENT

Recall the machine learning setup. In empirical risk
minimization, we can typically write:

f(x) =
n∑

i=ࠀ

fi(x)

where fi is the loss function for a particular data example
(a(i), y(i)).

Example: least squares linear regression.

f(x) =
n∑

i=ࠀ

(xTa(i) − y(i))ࠁ

Note that by linearity, ∇f(x) =
∑n

i=ࠀ∇fi(x).

ࠄࠃ
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STOCHASTIC GRADIENT DESCENT

Main idea: Use random approximate gradient in place of
actual gradient.

Pick random j ∈ ,ࠀ . . . ,n and update x using ∇fj(x).

E
[
∇fj(x)

]
=

ࠀ
n
∇f(x).

n∇fj(x) is an unbiased estimate for the true gradient ∇f(x),
but can often be computed in a n/ࠀ fraction of the time!

Trade slower convergence for cheaper iterations.

ࠅࠃ
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STOCHASTIC GRADIENT DESCENT

Stochastic first-order oracle for f(x) =
∑n

i=ࠀ fi(x).

• Function Query: For any chosen j, x, return fj(x)
• Gradient Query: For any chosen j, x, return ∇fj(x)

Stochastic Gradient descent:

• Choose starting vector x(ࠀ), learning rate η

• For i = ,ࠀ . . . , T:
• Pick random ji ∈ ,ࠀ . . . ,n.
• x(i+ࠀ) = x(i) − η∇fji(x

(i))

• Return x̂ = ࠀ
T
∑T

i=ࠀ x(i)

ࠆࠃ
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VISUALIZING SGD
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STOCHASTIC GRADIENT DESCENT

Assume:
• Finite sum structure: f(x) =

∑n
i=ࠀ fi(x), with fࠀ, . . . , fn all convex.

• Lipschitz functions: for all x, j, ‖∇fj(x)‖ࠁ ≤ G′

n .
• What does this imply about Lipschitz constant of f?

• Starting radius: ‖x∗ − x(ࠀ)‖ࠁ ≤ R.

Stochastic Gradient descent:
• Choose x(ࠀ), steps T, learning rate η = D

G′
√
T .

• For i = ,ࠀ . . . , T:
• Pick random ji ∈ ,ࠀ . . . ,n.
• x(i+ࠀ) = x(i) − η∇fji(x(i))

• Return x̂ = ࠀ
T
∑T

i=ࠀ x(i)

Approach: View as online gradient descent run on function
sequence fjࠀ , . . . , fjT .

Only use the fact that step equals gradient in expectation. ࠈࠃ
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)

After T = RࠁG′ࠁ

εࠁ
iterations:

E [f(x̂)− f(x∗)] ≤ ε.

Claim 1:

f(x̂)− f(x∗) ≤ ࠀ
T

T∑

i=ࠀ

[
f(x(i))− f(x∗)

]

Prove using Jensen’s Inequality:

߿ࠄ
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)
After T = RࠁG′ࠁ

εࠁ iterations:
E [f(x̂)− f(x∗)] ≤ ε.

E[f(x̂)− f(x∗)] ≤ ࠀ
T

T∑

i=ࠀ

E
[
f(x(i))− f(x∗)

]

=
ࠀ
T

T∑

i=ࠀ

nE
[
fji(x

(i))− fji(x
∗)
]

=
ࠀ
T

T∑

i=ࠀ

nE
[
fji(x

(i))− fji(x
offline)

]

=
n
T
· E
[ T∑

i=ࠀ

fji(x
(i))− fji(x

∗)

]

≤ n
T
·
(
R · G

′

n
·
√
T
)

(by OGD guarantee.)
ࠀࠄ
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Number of iterations for error ε:

• Gradient Descent: T = RࠁGࠁ

εࠁ
.

• Stochastic Gradient Descent: T = RࠁG′ࠁ

εࠁ
.

Always have G ≤ G′:

max
x
‖∇f(x)‖ࠁ ≤ max

x
(‖∇fࠀ(x)‖ࠁ + . . .+ ‖∇fn(x)‖ࠁ) ≤ n · G

′

n
= G′.

So GD converges strictly faster than SGD.

But for a fair comparison:

• SGD cost = (# of iterations) · O(ࠀ)
• GD cost = (# of iterations) · O(n)

ࠁࠄ

@ @Noth)'t:v i ."0h14!

a . *

ii.
" "" '" "

I d b

00
- -

-

tryox110£14",
"
'

'I#11041×1"-

-

-



STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

We always have G ≤ G′. When it is much smaller then GD will
perform better. When it is closer to this upper bound, SGD will
perform better.

What is an extreme case where G = G′?

ࠂࠄ
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

What if each gradient ∇fi(x) looks like random vectors in Rd?
E.g. with N ,߿) (ࠀ entries?

E
[
‖∇fi(x)‖ࠁࠁ

]
=

E
[
‖∇f(x)‖ࠁࠁ

]
= E

[
‖

n∑

i=ࠀ

∇fi(x)‖ࠁࠁ

]
=

ࠃࠄ



STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Takeaway: SGD performs better when there is more structure
or repetition in the data set.

ࠄࠄ



PRECONDITIONING
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PRECONDITIONING

Main idea: Instead of minimizing f(x), find another function
g(x) with the same minimum but which is better suited for first
order optimization (e.g., has a smaller conditioner number).

Claim: Let h(x) : Rd → Rd be an invertible function. Let
g(x) = f(h(x)). Then

min
x

f(x) = min
x

g(x) and argmin
x

f(x) = h
(
argmin

x
g(x)

)
.

ࠅࠄ



PRECONDITIONING

First Goal: We need g(x) to still be convex.

Claim: Let P be an invertible d× d matrix and let g(x) = f(Px).

g(x) is always convex.

ࠆࠄ



PRECONDITIONING

Second Goal:

g(x) should have better condition number κ than f(x).

Example:

• f(x) = ‖Ax− b‖ࠁࠁ. κf =
λࠀ(ATA)
λd(ATA)

.

• g(x) = ‖APx− b‖ࠁࠁ. κg = λࠀ(PTATAP)
λd(PTATAP)

.

ࠇࠄ



DIAGONAL PRECONDITIONER

Third Goal: P should be easy to compute.

Many, many problem specific preconditioners are used in
practice. There design is usually a heuristic process.

Example: Diagonal preconditioner.

• Let D = diag(ATA)
• Intuitively, we roughly have that D ≈ ATA.
• Let P =

√
D−ࠀ

P is often called a Jacobi preconditioner. Often works very well
in practice!

ࠈࠄ



DIAGONAL PRECONDITIONER
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ADAPTIVE STEPSIZES

Another view: If g(x) = f(Px) then ∇g(x) = PT∇f(Px).

∇g(x) = P∇f(Px) when P is symmetric.

Gradient descent on g:

• For t = ,ࠀ . . . , T,
• x(t+ࠀ) = x(t) − ηP

[
∇f(Px(t))

]

Gradient descent on g:

• For t = ,ࠀ . . . , T,
• y(t+ࠀ) = y(t) − ηPࠁ [∇f(y(t))

]

When P is diagonal, this is just gradient descent with a
different step size for each parameter!

ࠀࠅ



ADAPTIVE STEPSIZES

Algorithms based on this idea:

• AdaGrad
• RMSprop
• Adam optimizer

(Pretty much all of the most widely used optimization methods
for training neural networks.)

ࠁࠅ



COORDINATE DESCENT
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STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Gradient Descent: When f(x) =
∑n

i=ࠀ fi(x),
approximate ∇f(x) with ∇fi(x) for randomly chosen i.

ࠂࠅ



STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Coordinate Descent: Only compute a single random
entry of ∇f(x) on each iteration:

∇f(x) =





∂f
∂xࠀ (x)
∂f
∂xࠁ (x)...
∂f
∂xd (x)




∇if(x) =





߿
∂f
∂xi

(x)
...
߿





Update: x(t+ࠀ) ← x(t) + η∇if(x(t)).

ࠃࠅ



COORDINATE DESCENT

When x has d parameters, computing ∇if(x) often costs just a
d/ࠀ fraction of what it costs to compute ∇f(x)

Example: f(x) = ‖Ax− b‖ࠁࠁ for A ∈ Rn×d, x ∈ Rd,b ∈ Rn.

• ∇f(x) = −ATAxࠁ .ATbࠁ
• ∇if(x) = ࠁ

[
ATAx

]
i − ࠁ

[
ATb
]
.

ࠄࠅ



STOCHASTIC COORDINATE DESCENT

Stochastic Coordinate Descent:

• Choose number of steps T and step size η.
• For i = ,ࠀ . . . , T:

• Pick random ji ∈ ,ࠀ . . . ,d.
• x(i+ࠀ) = x(i) − η∇ji f(x

(i))

• Return x̂ = ࠀ
T
∑T

i=ࠀ x(i).

ࠅࠅ



COORDINATE DESCENT

Theorem (Stochastic Coordinate Descent convergence)
Given a G-Lipschitz function f with minimizer x∗ and initial
point x(ࠀ) with ‖x(ࠀ) − x∗‖ࠁ ≤ R, SCD with step size η = ࠀ

Rd
satisfies the guarantee:

E[f(x̂)− f(x∗)] ≤ √GRࠁ
T/d

ࠆࠅ



IMPORTANCE SAMPLING

Often it doesn’t make sense to sample i uniformly at random:

A =





߿ ߿ ࠀ ߿ ߿ ߿
߿ ߿ ࠁ ߿ ߿ ߿
߿ ߿ ࠀ− ߿ ߿ ߿
߿ ߿ ࠄ.− ߿ ߿ ߿
߿ ߿ ࠂ ߿ ߿ ߿
߿ ߿ ࠁ− ߿ ߿ ߿





b =





߿ࠀ
ࠁࠃ
ࠀࠀ−
ࠀࠄ−
ࠃࠂ
ࠁࠁ−





Select indices i proportional to ‖ai‖ࠁࠁ:

Pr[select index i to update] = ‖ai‖ࠁࠁ∑d
j=ࠀ ‖aj‖ࠁࠁ

=
‖ai‖ࠁࠁ
‖A‖ࠁࠁ

ࠇࠅ


