CS-GY 6763: Lecture 6 Online and Stochastic Gradient Decent

NYU Tandon School of Engineering, Prof. Christopher Musco

PROJECT

- Midterm in class next Tuesday. .
 - See Ed post.
 - If you have permission to take remotely, please email asap so I know who you are.
 - List of topics covered and practice problems are on the course webpage.
- Tomorrow in the reading group Hayden Edelson will present Estimating Sizes of Social Networks via Biased Sampling. See you there!
- Thanks to **Robert Ronan** for the presentation last week.

First Order Optimization: Given a function f and a constraint set S, assume we have:

- Function oracle: Evaluate $f(\mathbf{x})$ for any \mathbf{x} .
- Gradient oracle: Evaluate $\nabla f(\mathbf{x})$ for any \mathbf{x} .
- **Projection oracle**: Evaluate $P_{\mathcal{S}}(\mathbf{x})$ for any \mathbf{x} .

Goal: Find $\hat{\mathbf{x}} \in S$ such that $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x} \in S} f(\mathbf{x}) + \epsilon$.

Projected gradient descent:

- Select starting point $\mathbf{x}^{(0)}$, learning rate η .
- For i = 0, ..., T:

•
$$\mathbf{z} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$$

- $\cdot \mathbf{x}^{(i+1)} = P_{\mathcal{S}}(\mathbf{z})$
- Return $\hat{\mathbf{x}} = \arg\min_{i} f(\mathbf{x}^{(i)})$.

Conditions for convergence:

- **Convexity:** f is a convex function, S is a convex set.
- · Bounded initial distance:

$$\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2 \le R$$

• Bounded gradients (Lipschitz function):

 $\|\nabla f(\mathbf{x})\|_2 \leq \mathbf{G} \text{ for all } \mathbf{x} \in \mathcal{S}.$

Theorem: Projected Gradient Descent returns $\hat{\mathbf{x}}$ with $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x} \in S} f(\mathbf{x}) + \epsilon$ after

$$T = \frac{R^2 G^2}{\epsilon^2}$$

iterations.

Convexity:

$$0 \leq [f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x})$$

 $\alpha\text{-strong-convexity}$ and $\beta\text{-smoothness:}$

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \leq [f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2.$$

Number of iterations for ϵ error:

	G-Lipschitz	eta-smooth
<i>R</i> bounded start	$O\left(\frac{G^2R^2}{\epsilon^2}\right)$	$O\left(\frac{\beta R^2}{\epsilon}\right)$
$\alpha\text{-strong}$ convex	$O\left(\frac{G^2}{\alpha\epsilon}\right)$	$O\left(\frac{\beta}{\alpha}\log(1/\epsilon)\right)$

CONVERGENCE GUARANTEE

Theorem (GD for β **-smooth,** α **-strongly convex.)** Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2 \le e^{-(T-1)\frac{\alpha}{\beta}} \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2$$

Corollary: If $T = O\left(\frac{\beta}{\alpha}\log(R\beta/\epsilon)\right)$ we have: $f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$

We will prove this in the special case of

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

where $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{b} \in \mathbb{R}^n$.

Let *f* be a twice differentiable function from $\mathbb{R}^d \to \mathbb{R}$. Let the **Hessian** $\mathbf{H} = \nabla^2 f(\mathbf{x})$ contain all of its second derivatives at a point \mathbf{x} . So $\mathbf{H} \in \mathbb{R}^{d \times d}$. We have:

$$\mathsf{H}_{i,j} = \left[\nabla^2 f(\mathsf{x})\right]_{i,j} = \frac{\partial^2 f}{\partial x_i x_j}.$$

For vector **x**, **v**:

$$\nabla f(\mathbf{x} + t\mathbf{v}) \approx \nabla f(\mathbf{x}) + t \left[\nabla^2 f(\mathbf{x}) \right] \mathbf{v}.$$

Let *f* be a twice differentiable function from $\mathbb{R}^d \to \mathbb{R}$. Let the **Hessian** $\mathbf{H} = \nabla^2 f(\mathbf{x})$ contain all of its second derivatives at a point \mathbf{x} . So $\mathbf{H} \in \mathbb{R}^{d \times d}$. We have:

$$\mathsf{H}_{i,j} = \left[\nabla^2 f(\mathsf{x})\right]_{i,j} = \frac{\partial^2 f}{\partial x_i x_j}.$$

Example: Let $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$. Recall that $\nabla f(\mathbf{x}) = 2\mathbf{A}^T(\mathbf{A}\mathbf{x} - \mathbf{b})$.

Claim: If *f* is twice differentiable, then it is convex if and only if the matrix $\mathbf{H} = \nabla^2 f(\mathbf{x})$ is positive semidefinite for all \mathbf{x} .

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$ is <u>positive semidefinite</u> (PSD) for any vector $\mathbf{y} \in \mathbb{R}^d$, $\mathbf{y}^T \mathbf{H} \mathbf{y} \ge 0$.

This is a natural notion of "positivity" for symmetric matrices. To denote that **H** is PSD we will typically use "Loewner order" notation (**succeq** in LaTex):

$\mathbf{H} \succeq \mathbf{0}.$

We write $B \succeq A$ or equivalently $A \preceq B$ to denote that (B - A) is positive semidefinite. This gives a <u>partial ordering</u> on matrices.

Claim: If *f* is twice differentiable, then it is convex if and only if the matrix $\mathbf{H} = \nabla^2 f(\mathbf{x})$ is positive semidefinite for all \mathbf{x} .

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$ is <u>positive semidefinite</u> (PSD) for any vector $\mathbf{y} \in \mathbb{R}^d$, $\mathbf{y}^T \mathbf{H} \mathbf{y} \ge 0$.

For the least squares regression loss function: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$, $\mathbf{H} = \nabla^2 f(\mathbf{x}) = 2\mathbf{A}^T \mathbf{A}$ for all \mathbf{x} .

We know that *H* is PSD because:

$$\mathbf{x}^{\mathsf{T}}\mathbf{H}\mathbf{x} = 2\mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = 2\|\mathbf{A}\mathbf{x}\|_{2}^{2} \ge 0.$$

If *f* is β -smooth and α -strongly convex then at any point **x**, $\mathbf{H} = \nabla^2 f(\mathbf{x})$ satisfies:

 $\alpha \mathbf{I}_{d \times d} \preceq \mathbf{H} \preceq \beta \mathbf{I}_{d \times d},$

where $I_{d \times d}$ is a $d \times d$ identity matrix.

This is the natural matrix generalization of the statement for scalar valued functions:

 $\alpha \leq f''(\mathbf{X}) \leq \beta.$

 $\alpha \mathsf{I}_{d \times d} \preceq \mathsf{H} \preceq \beta \mathsf{I}_{d \times d}.$

Equivalently for any **z**,

 $\alpha \|\mathbf{z}\|_2^2 \le \mathbf{z}^{\mathsf{T}} \mathbf{H} \mathbf{z} \le \beta \|\mathbf{z}\|_2^2.$

Let $f(\mathbf{x}) = \|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ where **D** is a diagaonl matrix. For now imagine we're in two dimensions: $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\mathbf{D} = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}$.

What are α, β for this problem?

 $\alpha \|\mathbf{z}\|_2^2 \le \mathbf{z}^T \mathbf{H} \mathbf{z} \le \beta \|\mathbf{z}\|_2^2$

GEOMETRIC VIEW

Level sets of $\|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ when $d_1^2 = 1, d_2^2 = 1$.

GEOMETRIC VIEW

Level sets of $\|\mathbf{D}\mathbf{x} - \mathbf{b}\|_{2}^{2}$ when $d_{1}^{2} = \frac{1}{3}, d_{2}^{2} = 2$.

Any symmetric matrix **H** has an <u>orthogonal</u>, real valued eigendecomposition.

Here V is square and orthogonal, so $V^T V = V V^T = I$. And for each v_i , we have:

 $\mathbf{H}\mathbf{v}_i = \lambda_i \mathbf{v}_i.$

By definition, that's what makes $\mathbf{v}_1, \ldots, \mathbf{v}_d$ eigenvectors.

Recall $VV^T = V^T V = I$.

Claim: H is PSD $\Leftrightarrow \lambda_1, ..., \lambda_d \ge 0$.

Recall $VV^{T} = V^{T}V = I$.

Claim: $\alpha I \preceq H \preceq \beta I \Leftrightarrow \alpha \leq \lambda_d \leq \ldots \leq \lambda_1 \leq \beta$.

Recall $VV^{T} = V^{T}V = I$.

In other words, if we let $\lambda_{max}(H)$ and $\lambda_{min}(H)$ be the smallest and largest eigenvalues of H, then for all z we have:

$$\begin{split} \mathbf{z}^{\mathsf{T}}\mathbf{H}\mathbf{z} &\leq \lambda_{\mathsf{max}}(\mathbf{H}) \cdot \|\mathbf{z}\|^2 \\ \mathbf{z}^{\mathsf{T}}\mathbf{H}\mathbf{z} &\geq \lambda_{\mathsf{min}}(\mathbf{H}) \cdot \|\mathbf{z}\|^2 \end{split}$$

If the maximum eigenvalue of $\mathbf{H} = \nabla^2 f(\mathbf{x}) = \beta$ and the minimum eigenvalue of $\mathbf{H} = \nabla^2 f(\mathbf{x}) = \alpha$ then $f(\mathbf{x})$ is β -smooth and α -strongly convex.

 $\lambda_{\max}(\mathsf{H}) = \beta$ $\lambda_{\min}(\mathsf{H}) = \alpha$

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$\|\mathbf{x}^{(T+1)} - \mathbf{x}^*\|_2 \le e^{-T/\kappa} \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2$$

Goal: Prove for $f(x) = ||Ax - b||_2^2$.

Let $\lambda_{\max} = \lambda_{\max}(\mathbf{A}^T \mathbf{A})$. Gradient descent update is:

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \frac{1}{2\lambda_{\max}} 2\mathbf{A}^{\mathsf{T}} (\mathbf{A}\mathbf{x}^{(t)} - \mathbf{b})$$

Richardson Iteration view:

$$(\mathbf{x}^{(t+1)} - \mathbf{x}^*) = \left(\mathbf{I} - \frac{1}{\lambda_{\max}} \mathbf{A}^T \mathbf{A}\right) (\mathbf{x}^{(t)} - \mathbf{x}^*)$$

What is the maximum eigenvalue of the symmetric matrix $\left(I - \frac{1}{\lambda_{max}} \mathbf{A}^T \mathbf{A}\right)$ in terms of the eigenvalues $\lambda_{max} = \lambda_1 \ge \ldots \ge \lambda_d = \lambda_{min}$ of $\mathbf{A}^T \mathbf{A}$?

$$(\mathbf{x}^{(T+1)} - \mathbf{x}^*) = \left(\mathbf{I} - \frac{1}{\lambda_{\max}} \mathbf{A}^T \mathbf{A}\right)^T (\mathbf{x}^{(1)} - \mathbf{x}^*)$$

Approach: Show that the maximum eigenvalue of $\left(\mathbf{I} - \frac{1}{\lambda_{\max}}\mathbf{A}^T\mathbf{A}\right)^T$ is small – i.e., bounded by $e^{-T/\kappa} = \epsilon$. **Conclusion:**

•
$$\|\mathbf{x}^{(T+1)} - \mathbf{x}^*\|_2^2 = (\mathbf{x}^{(1)} - \mathbf{x}^*)^T \left(\mathbf{I} - \frac{1}{\lambda_{\max}} \mathbf{A}^T \mathbf{A}\right)^{2T} (\mathbf{x}^{(1)} - \mathbf{x}^*)$$

• Since $\lambda_{\max}(M) = \max_{z} \frac{z^T M z}{\|z\|_2^2}$, we have:

$$\|\mathbf{x}^{(T+1)} - \mathbf{x}^*\|_2^2 \le \lambda_{\max}\left(\left(\mathbf{I} - \frac{1}{\lambda_{\max}}\mathbf{A}^T\mathbf{A}\right)^{2T}\right)$$

So we have $\|\mathbf{x}^{(T+1)} - \mathbf{x}^*\|_2 \le$

UNROLLED GRADIENT DESCENT

$$(\mathbf{x}^{(T+1)} - \mathbf{x}^*) = \left(\mathbf{I} - \frac{1}{\lambda_{\max}} \mathbf{A}^T \mathbf{A}\right)^T (\mathbf{x}^{(1)} - \mathbf{x}^*)$$

What is the maximum eigenvalue of the symmetric matrix $\left(I - \frac{1}{\lambda_{max}} A^T A\right)^T$?

ACCELERATION

Nesterov's accelerated gradient descent:

•
$$\mathbf{x}^{(1)} = \mathbf{y}^{(1)} = \mathbf{z}^{(1)}$$

For
$$t = 1, ..., T$$

• $\mathbf{y}^{(t+1)} = \mathbf{x}^{(t)} - \frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})$
• $\mathbf{x}^{(t+1)} = \left(1 + \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right) \mathbf{y}^{(t+1)} + \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \left(\mathbf{y}^{(t+1)} - \mathbf{y}^{(t)}\right)$

Theorem (AGD for β **-smooth,** α **-strongly convex.)** Let f be a β -smooth and α -strongly convex function. If we run AGD for T steps we have:

$$f(\mathbf{x}^{(t)}) - f(\mathbf{x}^*) \le \kappa e^{-(t-1)\sqrt{\kappa}} \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$

Corollary: If $T = O(\sqrt{\kappa} \log(\kappa/\epsilon))$ achieve error ϵ .

INTUITION BEHIND ACCELERATION

Level sets of $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$.

Other terms for similar ideas:

- Momentum
- Heavy-ball methods

What if we look back beyond two iterates?

BREAK

Second part of class:

- Basics of Online Learning + Optimization.
- Introduction to <u>Regret Analysis</u>.
- Application to analyzing <u>Stochastic Gradient Descent.</u>

Many machine learning problems are solved in an <u>online</u> setting with constantly changing data.

- Spam filters are incrementally updated and adapt as they see more examples of spam over time.
- Image classification systems learn from mistakes over time (often based on user feedback).
- Content recommendation systems adapt to user behavior and clicks (which may not be a good thing...)

Plant identification via iNaturalist app.

(California Academy of Science + National Geographic)

- When the app fails, image is classified via crowdsourcing (backed by huge network of amateurs and experts).
- Single model that is updated constantly, not retrained in batches.

ML based email spam/scam filtering.

Markers for spam change overtime, so model might change.

ML based email spam/scam filtering.

Markers for spam change overtime, so model might change.

Choose some model M_x parameterized by parameters x and some loss function ℓ . At time steps $1, \ldots, T$, receive data vectors $\mathbf{a}^{(1)}, \ldots, \mathbf{a}^{(T)}$.

- At each time step, we pick ("play") a parameter vector $\mathbf{x}^{(i)}$.
- Make prediction $\tilde{y}^{(i)} = M_{\mathbf{x}^{(i)}}(\mathbf{a}_i)$.
- Then told true value or label $y^{(i)}$.
- Goal is to minimize cumulative loss:

$$L = \sum_{i=1}^{n} \ell(\mathbf{x}^{(i)}, \mathbf{a}^{(i)}, y^{(i)})$$

For example, for a regression problem we might use the ℓ_2 loss:

$$\ell(\mathbf{x}^{(i)}, \mathbf{a}^{(i)}, y^{(i)}) = \left| \langle \mathbf{x}^{(i)}, \mathbf{a}^{(i)} \rangle - y^{(i)} \right|^2.$$

For classification, we could use logistic/cross-entropy loss.

Abstraction as optimization problem: Instead of a single objective function f, we have a single (initially unknown) function $f_1, \ldots, f_T : \mathbb{R}^d \to \mathbb{R}$ for each time step.

- For time step $i \in 1, ..., T$, select vector $\mathbf{x}^{(i)}$.
- Observe f_i and pay cost $f_i(\mathbf{x}^{(i)})$
- Goal is to minimize $\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})$.

We make <u>no assumptions</u> that f_1, \ldots, f_T are related to each other at all!
In offline optimization, we wanted to find $\hat{\mathbf{x}}$ satisfying $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x}} f(\mathbf{x})$. Ask for a similar thing here.

Objective: Choose $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(T)}$ so that:

$$\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \leq \left[\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x}) \right] + \epsilon.$$

Here ϵ is called the **regret** of our solution sequence $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(7)}$.

Regret compares to the best fixed solution in hindsight.

$$\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \leq \left[\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x}) \right] + \epsilon.$$

It's very possible that $\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) < [\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x})]$. Could we hope for something stronger?

Exercise: Argue that the following is impossible to achieve:

$$\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \leq \left[\sum_{i=1}^{T} \min_{\mathbf{x}} f_i(\mathbf{x})\right] + \epsilon.$$

Convex functions:

$$f_1(x) = |x - h_1|$$

$$\vdots$$

$$f_n(x) = |x - h_T|$$

where h_1, \ldots, h_T are i.i.d. uniform $\{0, 1\}$.

$$\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \leq \left[\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x}) \right] + \epsilon.$$

Beautiful balance:

- Either f_1, \ldots, f_T are similar, so we can learn predict f_i from earlier functions.
- Or f_1, \ldots, f_T are very different, in which case $\min_{\mathbf{x}} \sum_{i=1}^T f_i(\mathbf{x})$ is large, so regret bound is easy to achieve.
- Or we live somewhere in the middle.

Online Gradient descent:

- Choose $\mathbf{x}^{(1)}$ and $\eta = \frac{R}{G\sqrt{T}}$.
- For i = 1, ..., T:
 - Play $\mathbf{x}^{(i)}$.
 - Observe f_i and incur cost $f_i(\mathbf{x}^{(i)})$.

•
$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f_i(\mathbf{x}^{(i)})$$

If $f_1, \ldots, f_T = f$ are all the same, this looks a lot like regular gradient descent. We update parameters using the gradient ∇f at each step.

 $\mathbf{x}^* = \arg \min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x})$ (the offline optimum)

Assume:

- f_1, \ldots, f_T are all convex.
- Each is G-Lipschitz: for all \mathbf{x} , i, $\|\nabla f_i(\mathbf{x})\|_2 \leq \mathbf{G}$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(1)}\|_2 \le R$.

Online Gradient descent:

- Choose $\mathbf{x}^{(1)}$ and $\eta = \frac{R}{G\sqrt{T}}$.
- For i = 1, ..., T:
 - Play $\mathbf{x}^{(i)}$.
 - Observe f_i and incur cost $f_i(\mathbf{x}^{(i)})$.
 - $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f_i(\mathbf{x}^{(i)})$

Let $\mathbf{x}^* = \arg \min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x})$ (the offline optimum)

Theorem (OGD Regret Bound) After T steps, $\epsilon = \left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right] - \left[\sum_{i=1}^{T} f_i(\mathbf{x}^*)\right] \le RG\sqrt{T}.$

Average regret overtime is bounded by $\frac{\epsilon}{T} \leq \frac{RG}{\sqrt{T}}$. Goes $\rightarrow 0$ as $T \rightarrow \infty$.

All this with no assumptions on how f_1, \ldots, f_T relate to each other! They could have even been chosen adversarially – e.g. with f_i depending on our choice of \mathbf{x}_i and all previous choices.

Theorem (OGD Regret Bound) After T steps, $\epsilon = \left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right] - \left[\sum_{i=1}^{T} f_i(\mathbf{x}^*)\right] \le RG\sqrt{T}.$

Claim 1: For all i = 1, ..., T,

$$f_i(\mathbf{x}^{(i)}) - f_i(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2\eta}$$

(Same proof as last class. Only uses convexity of f_i .)

Theorem (OGD Regret Bound) After T steps, $\epsilon = \left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right] - \left[\sum_{i=1}^{T} f_i(\mathbf{x}^*)\right] \le RG\sqrt{T}.$

Claim 1: For all *i* = 1, . . . , *T*,

$$f_i(\mathbf{x}^{(i)}) - f_i(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2\eta}$$

Telescoping Sum:

$$\sum_{i=1}^{T} \left[f_i(\mathbf{x}^{(i)}) - f_i(\mathbf{x}^*) \right] \le \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2 + \frac{T\eta G^2}{2} \le \frac{R^2}{2\eta} + \frac{T\eta G^2}{2}$$

Efficient <u>offline</u> optimization method for functions *f* with <u>finite</u> <u>sum structure</u>:

$$f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x}).$$

Goal is to find $\hat{\mathbf{x}}$ such that $f(\hat{\mathbf{x}}) \leq f(\mathbf{x}^*) + \epsilon$.

- The most widely use optimization algorithm in modern machine learning.
- Easily analyzed as a special case of online gradient descent!

Recall the machine learning setup. In empirical risk minimization, we can typically write:

$$f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$$

where f_i is the loss function for a particular data example $(\mathbf{a}^{(i)}, y^{(i)})$.

Example: least squares linear regression.

$$f(\mathbf{x}) = \sum_{i=1}^{n} (\mathbf{x}^{T} \mathbf{a}^{(i)} - y^{(i)})^{2}$$

Note that by linearity, $\nabla f(\mathbf{x}) = \sum_{i=1}^{n} \nabla f_i(\mathbf{x})$.

Main idea: Use random approximate gradient in place of actual gradient.

Pick <u>random</u> $j \in 1, ..., n$ and update **x** using $\nabla f_j(\mathbf{x})$.

$$\mathbb{E}\left[\nabla f_j(\mathbf{x})\right] = \frac{1}{n} \nabla f(\mathbf{x}).$$

 $n\nabla f_j(\mathbf{x})$ is an unbiased estimate for the true gradient $\nabla f(\mathbf{x})$, but can often be computed in a 1/*n* fraction of the time!

Trade slower convergence for cheaper iterations.

Stochastic first-order oracle for $f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$.

- Function Query: For any chosen j, \mathbf{x} , return $f_j(\mathbf{x})$
- Gradient Query: For any chosen j, \mathbf{x} , return $\nabla f_j(\mathbf{x})$

Stochastic Gradient descent:

- \cdot Choose starting vector $\mathbf{x}^{(1)}$, learning rate η
- For i = 1, ..., T:
 - Pick random $j_i \in 1, \ldots, n$.
 - $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f_{j_i}(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}$

VISUALIZING SGD

STOCHASTIC GRADIENT DESCENT

Assume:

- Finite sum structure: $f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$, with f_1, \ldots, f_n all convex.
- Lipschitz functions: for all $\mathbf{x}, j, \|\nabla f_j(\mathbf{x})\|_2 \leq \frac{G'}{n}$.
 - What does this imply about Lipschitz constant of *f*?
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(1)}\|_2 \le R$.

Stochastic Gradient descent:

- Choose $\mathbf{x}^{(1)}$, steps *T*, learning rate $\eta = \frac{D}{G'\sqrt{T}}$.
- For i = 1, ..., T:
 - Pick random $j_i \in 1, \ldots, n$.

•
$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f_{j_i}(\mathbf{x}^{(i)})$$

• Return $\hat{\mathbf{x}} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}$

Approach: View as online gradient descent run on function sequence f_{j_1}, \ldots, f_{j_T} .

Only use the fact that step equals gradient in expectation.

Claim (SGD Convergence) After $T = \frac{R^2 G'^2}{\epsilon^2}$ iterations: $\mathbb{E} [f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \le \epsilon.$

Claim 1:

$$f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \frac{1}{T} \sum_{i=1}^{T} \left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \right]$$

Prove using Jensen's Inequality:

Claim (SGD Convergence) After $T = \frac{R^2 G'^2}{c^2}$ iterations: $\mathbb{E}\left[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)\right] < \epsilon.$ $\mathbb{E}[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \leq \frac{1}{T} \sum_{i=1}^{I} \mathbb{E}\left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*)\right]$ $= \frac{1}{T} \sum_{i=1}^{I} n \mathbb{E} \left[f_{j_i}(\mathbf{x}^{(i)}) - f_{j_i}(\mathbf{x}^*) \right]$ $= \frac{1}{T} \sum_{i=1}^{l} n \mathbb{E}\left[f_{j_i}(\mathbf{x}^{(i)}) - f_{j_i}(\mathbf{x}^{offline})\right]$ $= \frac{n}{T} \cdot \mathbb{E}\left[\sum_{i=1}^{l} f_{j_i}(\mathbf{x}^{(i)}) - f_{j_i}(\mathbf{x}^*)\right]$ $\leq \frac{n}{T} \cdot \left(R \cdot \frac{G'}{n} \cdot \sqrt{T} \right)$ (by OGD guarantee.) Number of iterations for error ϵ :

- Gradient Descent: $T = \frac{R^2 G^2}{\epsilon^2}$.
- Stochastic Gradient Descent: $T = \frac{R^2 G'^2}{\epsilon^2}$.

Always have $G \leq G'$:

$$\max_{\mathbf{x}} \|\nabla f(\mathbf{x})\|_2 \leq \max_{\mathbf{x}} \left(\|\nabla f_1(\mathbf{x})\|_2 + \ldots + \|\nabla f_n(\mathbf{x})\|_2 \right) \leq n \cdot \frac{G'}{n} = G'.$$

So GD converges strictly faster than SGD.

But for a fair comparison:

- SGD cost = (# of iterations) · O(1)
- GD cost = (# of iterations) · O(n)

We always have $G \le G'$. When it is <u>much smaller</u> then GD will perform better. When it is closer to this upper bound, SGD will perform better.

What is an extreme case where G = G'?

What if each gradient $\nabla f_i(\mathbf{x})$ looks like random vectors in \mathbb{R}^d ? E.g. with $\mathcal{N}(0, 1)$ entries?

$$\mathbb{E}\left[\|\nabla f_i(\mathbf{x})\|_2^2\right] = \mathbb{E}\left[\|\nabla f(\mathbf{x})\|_2^2\right] = \mathbb{E}\left[\|\sum_{i=1}^n \nabla f_i(\mathbf{x})\|_2^2\right] =$$

Takeaway: SGD performs better when there is more structure or repetition in the data set.

PRECONDITIONING

Main idea: Instead of minimizing $f(\mathbf{x})$, find another function $g(\mathbf{x})$ with the same minimum but which is better suited for first order optimization (e.g., has a smaller conditioner number).

Claim: Let $h(\mathbf{x}) : \mathbb{R}^d \to \mathbb{R}^d$ be an <u>invertible function</u>. Let $g(\mathbf{x}) = f(h(\mathbf{x}))$. Then

 $\min_{\mathbf{x}} f(\mathbf{x}) = \min_{\mathbf{x}} g(\mathbf{x}) \quad \text{and} \quad \arg\min_{\mathbf{x}} f(\mathbf{x}) = h\left(\arg\min_{\mathbf{x}} g(\mathbf{x})\right).$

First Goal: We need $g(\mathbf{x})$ to still be convex.

Claim: Let **P** be an invertible $d \times d$ matrix and let $g(\mathbf{x}) = f(\mathbf{Px})$.

 $g(\mathbf{x})$ is always convex.

Second Goal:

 $g(\mathbf{x})$ should have better condition number κ than $f(\mathbf{x})$. Example:

•
$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}$$
. $\kappa_{f} = \frac{\lambda_{1}(\mathbf{A}^{T}\mathbf{A})}{\lambda_{d}(\mathbf{A}^{T}\mathbf{A})}$.
• $g(\mathbf{x}) = \|\mathbf{A}\mathbf{P}\mathbf{x} - \mathbf{b}\|_{2}^{2}$. $\kappa_{g} = \frac{\lambda_{1}(\mathbf{P}^{T}\mathbf{A}^{T}\mathbf{A}\mathbf{P})}{\lambda_{d}(\mathbf{P}^{T}\mathbf{A}^{T}\mathbf{A}\mathbf{P})}$.

Third Goal: P should be easy to compute.

Many, many problem specific preconditioners are used in practice. There design is usually a heuristic process.

Example: Diagonal preconditioner.

- · Let $\mathbf{D} = \operatorname{diag}(\mathbf{A}^T \mathbf{A})$
- Intuitively, we roughly have that $D \approx A^T A$.
- · Let $P=\sqrt{D^{-1}}$

P is often called a Jacobi preconditioner. Often works very well in practice!

DIAGONAL PRECONDITIONER

~	_
~	_

0	9111	33	1	-734
-19	5946	108	-2	-31
10	3502	101	-1	232
9	12503	-65	0	426
0	9298	26	0	-373
-1	2398	-94	-2	-236
-25	-6904	-132	0	2024
6	-6516	92	-1	-2258
-22	11921	0	0	2229
-23	-16118	-5	1	338

>> cond(A'*A)	<pre>>> P = sqrt(inv(diag(diag(A'*A)))); >> cond(P*A'*A*P)</pre>
ans =	ans =
8.4145e+07	10.3878

ADAPTIVE STEPSIZES

Another view: If $g(\mathbf{x}) = f(\mathbf{P}\mathbf{x})$ then $\nabla g(\mathbf{x}) = \mathbf{P}^T \nabla f(\mathbf{P}\mathbf{x})$.

 $\nabla g(\mathbf{x}) = \mathbf{P} \nabla f(\mathbf{P} \mathbf{x})$ when **P** is symmetric.

Gradient descent on g:

• For
$$t = 1, ..., T$$
,
• $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \eta \mathbf{P} \left[\nabla f(\mathbf{P} \mathbf{x}^{(t)}) \right]$

Gradient descent on g:

• For
$$t = 1, ..., T$$
,
• $\mathbf{y}^{(t+1)} = \mathbf{y}^{(t)} - \eta \mathbf{P}^2 \left[\nabla f(\mathbf{y}^{(t)}) \right]$

When **P** is diagonal, this is just gradient descent with a <u>different step size for each parameter!</u>

ADAPTIVE STEPSIZES

Algorithms based on this idea:

- AdaGrad
- RMSprop
- Adam optimizer

(Pretty much all of the most widely used optimization methods for training neural networks.)

COORDINATE DESCENT

Main idea: Trade slower convergence (more iterations) for cheaper iterations.

Stochastic Gradient Descent: When $f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$, approximate $\nabla f(\mathbf{x})$ with $\nabla f_i(\mathbf{x})$ for randomly chosen *i*.

Main idea: Trade slower convergence (more iterations) for cheaper iterations.

Stochastic Coordinate Descent: Only compute a <u>single random</u> <u>entry</u> of $\nabla f(\mathbf{x})$ on each iteration:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \frac{\partial f}{\partial x_2}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_d}(\mathbf{x}) \end{bmatrix} \qquad \nabla_i f(\mathbf{x}) = \begin{bmatrix} 0 \\ \frac{\partial f}{\partial x_i}(\mathbf{x}) \\ \vdots \\ 0 \end{bmatrix}$$

Update: $\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} + \eta \nabla_i f(\mathbf{x}^{(t)})$.

When **x** has *d* parameters, computing $\nabla_i f(\mathbf{x})$ often costs just a 1/d fraction of what it costs to compute $\nabla f(\mathbf{x})$

Example: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ for $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{b} \in \mathbb{R}^n$.

$$\cdot \nabla f(\mathbf{x}) = 2\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} - 2\mathbf{A}^{\mathsf{T}}\mathbf{b}.$$

•
$$\nabla_i f(\mathbf{x}) = 2 \left[\mathbf{A}^T \mathbf{A} \mathbf{x} \right]_i - 2 \left[\mathbf{A}^T \mathbf{b} \right].$$

Stochastic Coordinate Descent:

- Choose number of steps T and step size η .
- For i = 1, ..., T:
 - Pick random $j_i \in 1, \ldots, d$.

•
$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla_{j_i} f(\mathbf{x}^{(i)})$$

• Return
$$\hat{\mathbf{x}} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}$$
.

Theorem (Stochastic Coordinate Descent convergence) Given a G-Lipschitz function f with minimizer \mathbf{x}^* and initial point $\mathbf{x}^{(1)}$ with $\|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2 \leq R$, SCD with step size $\eta = \frac{1}{Rd}$ satisfies the guarantee:

$$\mathbb{E}[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \le \frac{2GR}{\sqrt{T/d}}$$

Often it doesn't make sense to sample *i* uniformly at random:

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -.5 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 10 \\ 42 \\ -11 \\ -51 \\ 34 \\ -22 \end{bmatrix}$$

Select indices *i* proportional to $\|\mathbf{a}_i\|_2^2$:

Pr[select index *i* to update] =
$$\frac{\|\mathbf{a}_i\|_2^2}{\sum_{j=1}^d \|\mathbf{a}_j\|_2^2} = \frac{\|\mathbf{a}_i\|_2^2}{\|\mathbf{A}\|_2^2}$$