CS-GY 6763: Lecture 6
Online and Stochastic Gradient Decent

NYU Tandon School of Engineering, Prof. Christopher Musco



PROJECT

- Midterm in class next Tuesday. .
- See Ed post.
- If you have permission to take remotely, please email
asap so | know who you are.

- List of topics covered and practice problems are on
the course webpage.

- Tomorrow in the reading group Hayden Edelson will
present Estimating Sizes of Social Networks via Biased
Sampling. See you there!

- Thanks to Robert Ronan for the presentation last week.



GRADIENT DESCENT RECAP

First Order Optimization: Given a function f and a constraint
set S, assume we have:

- Function oracle: Evaluate f(x) for any x.
- Gradient oracle: Evaluate Vf(x) for any x.

- Projection oracle: Evaluate Ps(x) for any x.

Goal: Find X € S such that f(X) < minkes f(X) + €.



GRADIENT DESCENT RECAP

Projected gradient descent:

- Select starting point x(9, learning rate .
- Fori=0,...,T

-z = x0) — pvAx()

- XU+ = ps(2)

- Return X = arg min; f(x).



GRADIENT DESCENT RECAP

Conditions for convergence:

- Convexity: fis a convex function, S is a convex set.
- Bounded initial distance:

X —x*[l, < R
- Bounded gradients (Lipschitz function):
IVi(x)| < Gforallx e S.

Theorem: Projected Gradient Descent returns X with
f(X) < minges f(X) + € after
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OTHER CONVERGENCE GUARANTEES

Convexity:

0 < [fly) — f(x)] = VAX)"(y — X)

a-strong-convexity and 3-smoothness:

Q ]
L yli5 < [f(y) = f)] = VAX)(y = x) < 5 lx = yli3-
Number of iterations for ¢ error:
‘ G-Lipschitz B-smooth
R bounded start | O (Gifz) 0 (%RQ)
a-strong convex | O (G—Z) 0 <§ Iog(T/e))

Qe




CONVERGENCE GUARANTEE

Theorem (GD for 5-smooth, a-strongly convex.)
Let f be a B8-smooth and a-strongly convex function. If we run
GD for T steps (with step size n = %) we have:

XM — x*|2 < eI |x( — x*|)2

Corollary: If we have:
fx) = f(x*) < e

We will prove this in the special case of
f(x) = ||Ax — b]3

where x e R A e R™9 b e R".



THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from R? — R. Let the
Hessian H = V?f(x) contain all of its second derivatives at a
point x. So H € R9%4. We have:

0°f

Hi,j = [VZJC(X)LJ = 6X7,Xj

For vector X, v:

VAx + tv) = VAX) + t [V2f(x)] v.



THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from RY — R. Let the
H = V?f(x) contain all of its second derivatives at a
point x. So H € R9%4. We have:
0°f
H = [V? = .
1, [v f(x)] i aX,X}

Example: Let f(x) = ||Ax — b||2. Recall that Vf(x) = 2AT(Ax — b).

aj|dy| ... |44




HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If fis twice differentiable, then it is convex if and only if
the matrix H = Vf(x) is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix H € R9%9 is positive semidefinite
(PSD) for any vector y € RY, y"Hy > 0.

This is a natural notion of “positivity” for symmetric matrices.
To denote that H is PSD we will typically use “Loewner order”
notation (\succeq in LaTex):

H > 0.

We write B = A or equivalently A < B to denote that (B —A) is
positive semidefinite. This gives a partial ordering on matrices.
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HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If fis twice differentiable, then it is convex if and only if
the matrix H = Vf(x) is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix H € R9%9 is positive semidefinite
(PSD) for any vector y € RY, y"Hy > 0.

For the least squares regression loss function: f(x) = ||Ax — b||?,
H = V?f(x) = 2ATA for all x.

We know that H is PSD because:

x"Hx = 2x"ATAx = 2||Ax||3 > 0.

n



THE LINEAR ALGEBRA OF CONDITIONING

If fis B-smooth and a-strongly convex then at any point x,
H = V?f(x) satisfies:

alyxg 2 H =X Blyxy,

where lgyq 1S a d x d identity matrix.

This is the natural matrix generalization of the statement for
scalar valued functions:

a<f'(x) < B.

12



SMOOTH AND STRONGLY CONVEX HESSIAN

algyg = H X Blyxg.
Equivalently for any z,

allz|l7 < z'Hz < Bl|l3.
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SIMPLE EXAMPLE

Let f(x) = ||Dx — b||3 where D is a diagaonl matrix. For now

imagine we're in two dimensions: X = & ,D= o & )
X2 0 dz
What are «, 3 for this problem?

alZll} < z'Hz < B3

14



GEOMETRIC VIEW

@

Level sets of |[Dx — b||3 when d? = 1,d3 = 1.



GEOMETRIC VIEW

Level sets of ||Dx — b||3 when d? = 1, d5 = 2.

1
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EIGENDECOMPOSITION VIEW

Any symmetric matrix H has an orthogonal, real valued
eigendecomposition.

d eigenvectors eigenvalues eigenvectors
M
A
d H = \'} A TS
A
A

A Vg

Here V is square and orthogonal, so VIV = W' = |. And for
each v;, we have:

Hv; = \v;.

By definition, that's what makes v,. .., v, eigenvectors.



EIGENDECOMPOSITION VIEW

Recall W' = VIV = 1I.

d eigenvectors eigenvalues eigenvectors
M
A
d H = \'} A VT
A
A

ViV, Vg

Claim: His PSD < A\q,...,\y > 0.



EIGENDECOMPOSITION VIEW

Recall W' = VIV = 1I.

d eigenvectors eigenvalues eigenvectors
M
A
d H = \'} A VT
A
A

ViV, Vg

Claimal = H=Blesa< < ... <\ < 8.



EIGENDECOMPOSITION VIEW

Recall W' = VIV = 1I.

d eigenvectors eigenvalues eigenvectors
A

A

d H = v A A

A
Ay

V,V, Vq

In other words, if we let Amax(H) and Amin(H) be the smallest
and largest eigenvalues of H, then for all z we have:

Z"Hz < Amax(H) - [|Z]|2
z"Hz > Amin(H) - ||2|?
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EIGENDECOMPOSITION VIEW

If the maximum eigenvalue of H = V?f(x) = 8 and the
minimum eigenvalue of H = V2f(x) = a then f(x) is 3-smooth
and a-strongly convex.
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POLYNOMIAL VIEW POINT

Theorem (GD for 5-smooth, a-strongly convex.)
Let f be a B8-smooth and «-strongly convex function. If we run
GD for T steps (with step size n = %) we have:

X — x| < e T/RxD — e,

Let Amax = Amax(ATA). Gradient descent update is:

x(H = x(O — 2AT(AX(Y) — b)

2 )\max

22



ALTERNATIVE VIEW OF GRADIENT DESCENT

Richardson Iteration view:
(xT) —x*) = <I - 1ATA> (x® —x*)

max

What is the maximum eigenvalue of the symmetric matrix
(I — ﬁATA) in terms of the eigenvalues

>\max — )\1 2 coo0 & >\d = )‘min OfATA?
23



UNROLLED GRADIENT DESCENT

1

)\max

() _ x*) = (I 3

Approach: Show that the maximum eigenvalue of
T
(I — ATA> is small - i.e, bounded by e~ /% = ¢.

)\max

.
ATA> (x() — x*)

Conclusion:
2T
o XD — xR = (x() — x*)T (| _ ﬁATA) (x() — x*)

. T
- Since Amax(M) = max, ﬁ we have:
2

1 2T
||X(T+1) _ X*H% < )\max ((I . ATA) >
A|T]a)<

So we have [|x(T+) — x*||, <
24



UNROLLED GRADIENT DESCENT

.
(xT+) — x*) = (I — 1ATA> (x( — x*)

)\max

What is the maximum eigenvalue of the symmetric matrix
(1- 2 ATA>T?

25



ACCELERATION



ACCELERATED GRADIENT DESCENT

Nesterov's accelerated gradient descent:
- x() =y = 2
s fFort=1,...,T
-yt = x(O — %Vf(x(t))

- x(tH) = (1 4 ﬁ:) YD % (y(t+1) — y()

Theorem (AGD for 3-smooth, a-strongly convex.)

Let f be a B3-smooth and a-strongly convex function. If we run
AGD for T steps we have:

FO) = f(x) < we~ VR [xO) — fx)]

Corollary: If
26



INTUITION BEHIND ACCELERATION

Level sets of ||Ax — bl}3.

Other terms for similar ideas:

+ Momentum
- Heavy-ball methods



BREAK



ONLINE AND STOCHASTIC GRADIENT DESCENT

Second part of class:

- Basics of Online Learning + Optimization.

- Introduction to Regret Analysis.

- Application to analyzing Stochastic Gradient Descent.

28



ONLINE LEARNING

Many machine learning problems are solved in an online
setting with constantly changing data.

- Spam filters are incrementally updated and adapt as they
see more examples of spam over time.

- Image classification systems learn from mistakes over
time (often based on user feedback).

- Content recommendation systems adapt to user behavior
and clicks (which may not be a good thing...)

29



EXAMPLE

Plant identification via iNaturalist app.

(California Academy of Science + National Geographic)

- When the app fails, image

is classified via
crowdsourcing (backed by
huge network of amateurs
and experts).

- Single model that is

updated constantly, not
retrained in batches.

30



EXAMPLE

ML based email spam/scam filtering.
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Markers for spam change overtime, so model might change.
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EXAMPLE

ML based email spam/scam filtering.

Re:SAFTY CORONA VIRUS AWARENESS WHO

[0 T —

{7, World Health
%2 Organization

Markers for spam change overtime, so model might change.
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ONLINE LEARNING FRAMEWORK

Choose some model My parameterized by parameters x and
some loss function £. At time steps 1,...,T, receive data
vectors a(V, ..., a(D,

- At each time step, we pick (“play”) a parameter vector x().
- Make prediction §() = M, (a)).

- Then told true value or label y(.

-+ Goal is to minimize cumulative loss:

n
L= Zg(x(f)’ a)
i=1
For example, for a regression problem we might use the ¢, loss:
. 2
o(x), 2l Yy = ‘<X<r ay — (0

For classification, we could use logistic/cross-entropy loss.
33



ONLINE OPTIMIZATION

Abstraction as optimization problem: Instead of a single
objective function f, we have a single (initially unknown)
function fu,...,fr : RY — R for each time step.

- Fortimestepie1,...,T, select vector x().
- Observe f; and pay cost f;(x())
- Goal is to minimize .1, fi(x®).

We make no assumptions that fy, ..., fr are related to each
other at all!

34



REGRET BOUND

In offline optimization, we wanted to find X satisfying
f(X) < miny f(x). Ask for a similar thing here.

Objective: Choose x(M, ..., x(D so that:

> i) < [mxian,-(x)

Here ¢ is called the regret of our solution sequence
x o x(™.

+ €.

35



REGRET BOUND

Regret compares to the best fixed solution in hindsight.

+ €.

T T
D fix0) < [mxian,-(x)

It's very possible that 31, fi(x(D) < [minx Z,—Tﬂf,(x)] Could we
hope for something stronger?

Exercise: Argue that the following is impossible to achieve:

T T
S H(x0) < lz min f,(x)
i=1 i=1

+ €.

36



HARD EXAMPLE FOR ONLINE OPTIMIZATION

Convex functions:

Fil) = x—

fa(x) = |x = hrl

where hq,..., hrare i.id. uniform {0,1}.

37



REGRET BOUNDS

T T
> fix) < [mxinZﬁ(x) +e.
=1 i=1
Beautiful balance:
- Either fy,...,fr are similar, so we can learn predict f; from

earlier functions.

- Orfy,...,fr are very different, in which case miny Z,T:m(x)
is large, so regret bound is easy to achieve.

- Or we live somewhere in the middle.
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ONLINE GRADIENT DESCENT

Online Gradient descent:

- Choose x(" and n = &~

GVT
- Fori=1,...,T
- Play x(.
- Observe f; and incur cost f;(x()).
. x(i+1) — X(i) _ UVJCI(X(’))

If f1,...,fr = f are all the same, this looks a lot like regular
gradient descent. We update parameters using the gradient Vf
at each step.

39



ONLINE GRADIENT DESCENT (OGD)

x* = argmin, 1. fi(x) (the offline optimum)
Assume:

* f1,...,fr are all convex.
- Each is G-Lipschitz: for all x, i, || Vfi(x)[|> < G.
- Starting radius: ||x* — x|, <R.

Online Gradient descent:

- Choose x and n = R~

) GVT
- Fori=1,... T
- Play x(.
- Observe f; and incur cost f;(x()).
- x(+) = X0 — 5 vf(x)

40



ONLINE GRADIENT DESCENT ANALYSIS

Let x* = arg min, S, fi(x) (the offline optimum)
Theorem (OGD Regret Bound)
After T steps, ¢ = [2,; f,—(xU))} - [z,; f,-(x*)] < RGVT

RG
Average regret overtime is bounded by £ < i

Goes - 0as T — oo.
All this with no assumptions on how fi, ..., fr relate to each

other! They could have even been chosen adversarially - e.g.
with f; depending on our choice of x; and all previous choices.
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ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)
After T steps, ¢ = [z,; f,(xﬁ))} - [Z,-L f,-(x*)] < RGVT

Claim 1: Foralli=1,...,T,

(D _ y* 12 (15 (i+1) _ %2 2
o I = — x5 x|,

FxD) — £i(x) = S

(Same proof as last class. Only uses convexity of f;.)

)



ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)
After T steps, e — [z,; f,»(x<">)} _ [z,; f,-(x*)] < RGVT.

Claim 1: Foralli=1,...,T,

X9 — X3 = x40 — x| G2

fi(x) = fi(x*) <

Telescoping Sum:
T

> ) - i)

=1

IN

I —x*|13 — Ix(0 —x*|} + ——

R? TT]G2
< —+
2n 2

43



STOCHASTIC GRADIENT DESCENT (SGD)

Efficient offline optimization method for functions f with finite
sum structure:

f(x) = ZJ‘/(X)-

Goal is to find X such that f(X) < f(x*) + .

- The most widely use optimization algorithm in modern
machine learning.

- Easily analyzed as a special case of online gradient
descent!

44



STOCHASTIC GRADIENT DESCENT

Recall the machine learning setup. In empirical risk
minimization, we can typically write:

fx) =Y _fi(x)
=1

where f; is the loss function for a particular data example
(@®, ).

Example: least squares linear regression.
n
f0 = - (a® — Yy’
i=1

Note that by linearity, Vf(x) = >, Vfi(X).

45



STOCHASTIC GRADIENT DESCENT

Main idea: Use random approximate gradient in place of
actual gradient.

Pick random j € 1,...,n and update x using Vf;(x).

E [V£()] = - V(4.

nVfi(x) is an unbiased estimate for the true gradient Vf(x),
but can often be computed in a 1/n fraction of the time!

Trade slower convergence for cheaper iterations.

46



STOCHASTIC GRADIENT DESCENT

Stochastic first-order oracle for f(x) = >, fi(X).

- Gradient Query: For any chosen j, x, return Vfj(x)
Stochastic Gradient descent:

- Choose starting vector x(, learning rate 7
s Fori=1,...,T

- Pick random j; € 1,...,n.

- X+ = x0) _ v (x0))

A T i
- Return & = 13, x0)

47



VISUALIZING SGD

GD's smooth convergence SGD's stochastic convergence

co0 610
500

608

5 606

8

& o0s

602
100

600
0

0 10 o 50 0 10 50

20 20 EY
# GD iterations # 5GD iterations
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STOCHASTIC GRADIENT DESCENT

Assume:
- Finite sum structure: f(x) = Zfﬂf,-(x), with fy,...,f, all convex.

- Lipschitz functions: for all x, j, | Vfi(x)|. < &
- What does this imply about Lipschitz constant of f?
- Starting radius: ||x* —xM|, < R.

Stochastic Gradient descent:
. Q] i _ _D
Choose x*, steps T, learning rate n = ===
- Fori=1,...,T:
- Pick random j; € 1,...,n.
- XD = xO — pvf, (x(0)

A T i
* Return X = 13", x()

Approach: View as online gradient descent run on function
sequence fi,...,fj.

Only use the fact that step equals gradient in expectation. &



STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)

After T = B8% jterations:

Claim 1:
0~ f¢) < 737 [fx0) = )

Prove using Jensen’s Inequality:

50



STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)
After T =

EIfR) — f)] < e
E[f(%) - f(x')] < }ZE [F0e) — fx7)]
- “TZ 0B [5,(x9) - ¢
Z B [f, ) — £, 07)|
Zf, 1

<R E \fT) (by OGD guarantee.)

\!\3

\1\3
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Number of iterations for error €

- Gradient Descent: T = R¢’

e -

- Stochastic Gradient Descent: T = @.

Always have G < G’
/

max [Vf()ll2 < max (IVA( + . + [ Vo)) < n- & = &

So GD converges strictly faster than SGD.

But for a fair comparison:

- SGD cost = (# of iterations) - O(1)
- GD cost = (# of iterations) - O(n)
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

We always have G < G’. When it is much smaller then GD will
perform better. When it is closer to this upper bound, SGD will
perform better.

What is an extreme case where G = G'?
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

What if each gradient Vf;(x) looks like random vectors in R9?
E.g. with N(0,1) entries?

E [IVfi(x)l2] =

E [|VAX)|3] =

HZVf, ]
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Takeaway: SGD performs better when there is more structure
or repetition in the data set.

EEET - AEEDE
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Smll NE b e
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RGeS En
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PRECONDITIONING



PRECONDITIONING

Main idea: Instead of minimizing f(x), find another function
g(x) with the same minimum but which is better suited for first
order optimization (e.g., has a smaller conditioner number).

Claim: Let h(x) : RY — RY be an invertible function. Let
g9(x) = f(h(x)). Then

mxinf(x) = mxin g(x) and argminf(x)=nh <argxmin g(x)> .

X
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PRECONDITIONING

First Goal: We need g(x) to still be convex.

Claim: Let P be an invertible d x d matrix and let g(x) = f(Px).

g(x) is always convex.

57



PRECONDITIONING

Second Goal:
g(x) should have better condition number & than f(x).

Example:

T
0 = 1Ax = bl k= Sy

M (PTATAP
-+ g(x) = [APx — b|3. g = REEAT.
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DIAGONAL PRECONDITIONER

Third Goal: P should be easy to compute.

Many, many problem specific preconditioners are used in
practice. There design is usually a heuristic process.
Example: Diagonal preconditioner.

- Let D = diag(A'A)
- Intuitively, we roughly have that D ~ ATA.
- LletP =+vD™!

P is often called a Jacobi preconditioner. Often works very well
in practice!
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DIAGONAL PRECONDITIONER

A=
-734 1 33 9111 )
-31 -2 108 5946 -19
232 -1 101 3502 10
426 ) -65 12503 9
-373 ) 26 9298 )
-236 -2 -94 2398 -1
2024 ) -132 -6904 -25
-2258 A 92 -6516 6
2229 ) 0 11921 -22
338 1 -5 -16118 -23
>> cond(A'*A) >> P = sqrt(inv(diag(diag(A'*A))));
>> cond(PxA"'+AxP)
ans =
ans =
8.4145e+07
10.3878
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ADAPTIVE STEPSIZES

Another view: If g(x) = f(Px) then Vg(x) = PTVf(Px).
Vg(x) = PVf(Px) when P is symmetric.

Gradient descent on g:

s Fort=1,...,T,
. x(t'H) — X(t) — nP [Vf(Px(t))]

Gradient descent on g:
- Fort=1,...,T,
=y = yO — 9P [VAY©O)]

When P is diagonal, this is just gradient descent with a
different step size for each parameter!
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ADAPTIVE STEPSIZES

Algorithms based on this idea:

- AdaGrad
- RMSprop
- Adam optimizer

Vi
% %

LoaS @ AVA
B

. A‘\ ‘ lA A‘ . Output
Input \" .

Hidden Layers
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COORDINATE DESCENT



STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Gradient Descent: When f(x) = Y7, fi(x),
approximate Vf(x) with Vfi(x) for randomly chosen i.
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STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Coordinate Descent: Only compute a single random
entry of Vf(x) on each iteration:

v = | v = |7
2 0

Update: x(tH) « x(®O 4+ nv,f(x®).
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COORDINATE DESCENT

When x has d parameters, computing V,f(x) often costs just a
1/d fraction of what it costs to compute Vf(x)

Example: f(x) = ||Ax — b||3 for Ac R x ¢ RY b € R".

- Vf(x) = 2ATAx — 2ATb.
© Vif(x) = 2 [ATAx]. — 2 [ATb].
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STOCHASTIC COORDINATE DESCENT

Stochastic Coordinate Descent:

- Choose number of steps T and step size 7.
- Fori=1,...,T

- Pick random j; € 1,...,d.

< x(+1) — x() — nvjl_f(x(i))
- Return X = 1 21 x(),

66



COORDINATE DESCENT

Theorem (Stochastic Coordinate Descent convergence)
Given a G-Lipschitz function f with minimizer x* and initial
point x( with |x( — x*||, < R, SCD with step size n = 75
satisfies the guarantee:

E[f(R) — f(x')] <

E
Q.
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IMPORTANCE SAMPLING

Often it doesn't make sense to sample i uniformly at random:

00 1 000 [ 10 ]

00 2 00O 42

A_ 00 -1 0 0O b— =11

0 0 -5 0 00 =51

00 3 00O 34

00 -2 00 0 | —22]

Select indices i proportional to ||a;||3:

lails — _ Jlaill3

Pr[select index i to update] = — =
>imallal 1Al
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