
CS-GY 6763: Lecture 6
Online and Stochastic Gradient Decent

NYU Tandon School of Engineering, Prof. Christopher Musco

1

PROJECT

• Midterm in class next Tuesday. .
• See Ed post.
• If you have permission to take remotely, please email
asap so I know who you are.

• List of topics covered and practice problems are on
the course webpage.

• Tomorrow in the reading group Hayden Edelson will
present Estimating Sizes of Social Networks via Biased
Sampling. See you there!

• Thanks to Robert Ronan for the presentation last week.

2

GRADIENT DESCENT RECAP

First Order Optimization: Given a function f and a constraint
set S , assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.
• Projection oracle: Evaluate PS(x) for any x.

Goal: Find x̂ ∈ S such that f(x̂) ≤ minx∈S f(x) + ϵ.

3

GRADIENT DESCENT RECAP

Projected gradient descent:

• Select starting point x(0), learning rate η.
• For i = 0, . . . , T:

• z = x(i) − η∇f(x(i))
• x(i+1) = PS(z)

• Return x̂ = argmini f(x(i)).

4

GRADIENT DESCENT RECAP

Conditions for convergence:

• Convexity: f is a convex function, S is a convex set.
• Bounded initial distance:

∥x(0) − x∗∥2 ≤ R

• Bounded gradients (Lipschitz function):

∥∇f(x)∥2 ≤ G for all x ∈ S.

Theorem: Projected Gradient Descent returns x̂ with
f(x̂) ≤ minx∈S f(x) + ϵ after

T =
R2G2

ϵ2

iterations.
5

OTHER CONVERGENCE GUARANTEES

Convexity:

0 ≤ [f(y)− f(x)]−∇f(x)T(y− x)

α-strong-convexity and β-smoothness:

α

2 ∥x− y∥22 ≤ [f(y)− f(x)]−∇f(x)T(y− x) ≤ β

2 ∥x− y∥22.

Number of iterations for ϵ error:

G-Lipschitz β-smooth
R bounded start O

(
G2R2
ϵ2

)
O
(
βR2
ϵ

)
α-strong convex O

(
G2

αϵ

)
O
(
β
α log(1/ϵ)

)
6

CONVERGENCE GUARANTEE

Theorem (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = 1

β) we have:

∥x(T) − x∗∥22 ≤ e−(T−1)α
β ∥x(1) − x∗∥22

Corollary: If T = O
(
β
α log(Rβ/ϵ)

)
we have:

f(x(T))− f(x∗) ≤ ϵ

We will prove this in the special case of

f(x) = ∥Ax− b∥22
where x ∈ Rd,A ∈ Rn×d,b ∈ Rn.

7

THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from Rd → R. Let the
Hessian H = ∇2f(x) contain all of its second derivatives at a
point x. So H ∈ Rd×d. We have:

Hi,j =
[
∇2f(x)

]
i,j =

∂2f
∂xixj

.

For vector x, v:

∇f(x+ tv) ≈ ∇f(x) + t
[
∇2f(x)

]
v.

8

THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from Rd → R. Let the
Hessian H = ∇2f(x) contain all of its second derivatives at a
point x. So H ∈ Rd×d. We have:

Hi,j =
[
∇2f(x)

]
i,j =

∂2f
∂xixj

.

Example: Let f(x) = ∥Ax− b∥22. Recall that ∇f(x) = 2AT(Ax− b).

9

HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if
the matrix H = ∇2f(x) is positive semidefinite for all x.
Definition (Positive Semidefinite (PSD))
A square, symmetric matrix H ∈ Rd×d is positive semidefinite
(PSD) for any vector y ∈ Rd, yTHy ≥ 0.

This is a natural notion of “positivity” for symmetric matrices.
To denote that H is PSD we will typically use “Loewner order”
notation (\succeq in LaTex):

H ⪰ 0.

We write B ⪰ A or equivalently A ⪯ B to denote that (B− A) is
positive semidefinite. This gives a partial ordering on matrices.

10

HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if
the matrix H = ∇2f(x) is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))
A square, symmetric matrix H ∈ Rd×d is positive semidefinite
(PSD) for any vector y ∈ Rd, yTHy ≥ 0.

For the least squares regression loss function: f(x) = ∥Ax− b∥22,
H = ∇2f(x) = 2ATA for all x.

We know that H is PSD because:

xTHx = 2xTATAx = 2∥Ax∥22 ≥ 0.

11

THE LINEAR ALGEBRA OF CONDITIONING

If f is β-smooth and α-strongly convex then at any point x,
H = ∇2f(x) satisfies:

αId×d ⪯ H ⪯ βId×d,

where Id×d is a d× d identity matrix.

This is the natural matrix generalization of the statement for
scalar valued functions:

α ≤ f′′(x) ≤ β.

12

SMOOTH AND STRONGLY CONVEX HESSIAN

αId×d ⪯ H ⪯ βId×d.

Equivalently for any z,

α∥z∥22 ≤ zTHz ≤ β∥z∥22.

13

SIMPLE EXAMPLE

Let f(x) = ∥Dx− b∥22 where D is a diagaonl matrix. For now

imagine we’re in two dimensions: x =

[
x1
x2

]
, D =

[
d1 0
0 d2

]
.

What are α, β for this problem?

α∥z∥22 ≤ zTHz ≤ β∥z∥22

14

GEOMETRIC VIEW

Level sets of ∥Dx− b∥22 when d21 = 1,d2
2 = 1.

15

GEOMETRIC VIEW

Level sets of ∥Dx− b∥22 when d2
1 =

1
3 ,d

2
2 = 2.

16

EIGENDECOMPOSITION VIEW

Any symmetric matrix H has an orthogonal, real valued
eigendecomposition.

Here V is square and orthogonal, so VTV = VVT = I. And for
each vi, we have:

Hvi = λivi.

By definition, that’s what makes v1, . . . , vd eigenvectors.
17

EIGENDECOMPOSITION VIEW

Recall VVT = VTV = I.

Claim: H is PSD ⇔ λ1, ..., λd ≥ 0.

18

EIGENDECOMPOSITION VIEW

Recall VVT = VTV = I.

Claim: αI ⪯ H ⪯ βI⇔ α ≤ λd ≤ ... ≤ λ1 ≤ β.

19

EIGENDECOMPOSITION VIEW

Recall VVT = VTV = I.

In other words, if we let λmax(H) and λmin(H) be the smallest
and largest eigenvalues of H, then for all z we have:

zTHz ≤ λmax(H) · ∥z∥2

zTHz ≥ λmin(H) · ∥z∥2

20

EIGENDECOMPOSITION VIEW

If the maximum eigenvalue of H = ∇2f(x) = β and the
minimum eigenvalue of H = ∇2f(x) = α then f(x) is β-smooth
and α-strongly convex.

λmax(H) = β

λmin(H) = α

21

POLYNOMIAL VIEW POINT

Theorem (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = 1

β) we have:

∥x(T+1) − x∗∥2 ≤ e−T/κ∥x(1) − x∗∥2

Goal: Prove for f(x) = ∥Ax− b∥22.

Let λmax = λmax(ATA). Gradient descent update is:

x(t+1) = x(t) − 1
2λmax

2AT(Ax(t) − b)

22

ALTERNATIVE VIEW OF GRADIENT DESCENT

Richardson Iteration view:

(x(t+1) − x∗) =
(
I− 1

λmax
ATA
)
(x(t) − x∗)

What is the maximum eigenvalue of the symmetric matrix(
I− 1

λmax
ATA
)
in terms of the eigenvalues

λmax = λ1 ≥ . . . ≥ λd = λmin of ATA?
23

UNROLLED GRADIENT DESCENT

(x(T+1) − x∗) =
(
I− 1

λmax
ATA
)T

(x(1) − x∗)

Approach: Show that the maximum eigenvalue of(
I− 1

λmax
ATA
)T

is small – i.e., bounded by e−T/κ = ϵ.

Conclusion:

• ∥x(T+1) − x∗∥22 = (x(1) − x∗)T
(
I− 1

λmax
ATA
)2T

(x(1) − x∗)
• Since λmax(M) = maxz

zTMz
∥z∥22

, we have:

∥x(T+1) − x∗∥22 ≤ λmax

((
I− 1

λmax
ATA
)2T
)

So we have ∥x(T+1) − x∗∥2 ≤
24

UNROLLED GRADIENT DESCENT

(x(T+1) − x∗) =
(
I− 1

λmax
ATA
)T

(x(1) − x∗)

What is the maximum eigenvalue of the symmetric matrix(
I− 1

λmax
ATA
)T

?

25

ACCELERATION

25

ACCELERATED GRADIENT DESCENT

Nesterov’s accelerated gradient descent:

• x(1) = y(1) = z(1)
• For t = 1, . . . , T

• y(t+1) = x(t) − 1
β∇f(x(t))

• x(t+1) =
(
1+

√
κ−1√
κ+1

)
y(t+1) +

√
κ−1√
κ+1

(
y(t+1) − y(t)

)
Theorem (AGD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
AGD for T steps we have:

f(x(t))− f(x∗) ≤ κe−(t−1)
√
κ
[
f(x(1))− f(x∗)

]

Corollary: If T = O (
√
κ log(κ/ϵ)) achieve error ϵ.

26

INTUITION BEHIND ACCELERATION

Level sets of ∥Ax− b∥22.

Other terms for similar ideas:

• Momentum
• Heavy-ball methods

What if we look back beyond two iterates?

27

BREAK

27

ONLINE AND STOCHASTIC GRADIENT DESCENT

Second part of class:

• Basics of Online Learning + Optimization.
• Introduction to Regret Analysis.
• Application to analyzing Stochastic Gradient Descent.

28

ONLINE LEARNING

Many machine learning problems are solved in an online
setting with constantly changing data.

• Spam filters are incrementally updated and adapt as they
see more examples of spam over time.

• Image classification systems learn from mistakes over
time (often based on user feedback).

• Content recommendation systems adapt to user behavior
and clicks (which may not be a good thing...)

29

EXAMPLE

Plant identification via iNaturalist app.

(California Academy of Science + National Geographic)

• When the app fails, image
is classified via
crowdsourcing (backed by
huge network of amateurs
and experts).

• Single model that is
updated constantly, not
retrained in batches.

30

EXAMPLE

ML based email spam/scam filtering.

Markers for spam change overtime, so model might change.

31

EXAMPLE

ML based email spam/scam filtering.

Markers for spam change overtime, so model might change.

32

ONLINE LEARNING FRAMEWORK

Choose some model Mx parameterized by parameters x and
some loss function ℓ. At time steps 1, . . . , T, receive data
vectors a(1), . . . , a(T).

• At each time step, we pick (“play”) a parameter vector x(i).
• Make prediction ỹ(i) = Mx(i)(ai).
• Then told true value or label y(i).
• Goal is to minimize cumulative loss:

L =
n∑
i=1

ℓ(x(i), a(i), y(i))

For example, for a regression problem we might use the ℓ2 loss:

ℓ(x(i), a(i), y(i)) =
∣∣∣⟨x(i), a(i)⟩ − y(i)

∣∣∣2 .
For classification, we could use logistic/cross-entropy loss.

33

ONLINE OPTIMIZATION

Abstraction as optimization problem: Instead of a single
objective function f, we have a single (initially unknown)
function f1, . . . , fT : Rd → R for each time step.

• For time step i ∈ 1, . . . , T, select vector x(i).
• Observe fi and pay cost fi(x(i))
• Goal is to minimize

∑T
i=1 fi(x(i)).

We make no assumptions that f1, . . . , fT are related to each
other at all!

34

REGRET BOUND

In offline optimization, we wanted to find x̂ satisfying
f(x̂) ≤ minx f(x). Ask for a similar thing here.

Objective: Choose x(1), . . . , x(T) so that:

T∑
i=1

fi(x(i)) ≤
[
min
x

T∑
i=1

fi(x)
]
+ ϵ.

Here ϵ is called the regret of our solution sequence
x(1), . . . , x(T).

35

REGRET BOUND

Regret compares to the best fixed solution in hindsight.

T∑
i=1

fi(x(i)) ≤
[
min
x

T∑
i=1

fi(x)
]
+ ϵ.

It’s very possible that
∑T

i=1 fi(x(i)) <
[
minx

∑T
i=1 fi(x)

]
. Could we

hope for something stronger?

Exercise: Argue that the following is impossible to achieve:

T∑
i=1

fi(x(i)) ≤
[T∑

i=1
min
x

fi(x)
]
+ ϵ.

36

HARD EXAMPLE FOR ONLINE OPTIMIZATION

Convex functions:

f1(x) = |x− h1|
...

fn(x) = |x− hT|

where h1, . . . ,hT are i.i.d. uniform {0, 1}.

37

REGRET BOUNDS

T∑
i=1

fi(x(i)) ≤
[
min
x

T∑
i=1

fi(x)
]
+ ϵ.

Beautiful balance:

• Either f1, . . . , fT are similar, so we can learn predict fi from
earlier functions.

• Or f1, . . . , fT are very different, in which case minx
∑T

i=1 fi(x)
is large, so regret bound is easy to achieve.

• Or we live somewhere in the middle.

38

ONLINE GRADIENT DESCENT

Online Gradient descent:

• Choose x(1) and η = R
G
√
T .

• For i = 1, . . . , T:
• Play x(i).
• Observe fi and incur cost fi(x(i)).
• x(i+1) = x(i) − η∇fi(x(i))

If f1, . . . , fT = f are all the same, this looks a lot like regular
gradient descent. We update parameters using the gradient ∇f
at each step.

39

ONLINE GRADIENT DESCENT (OGD)

x∗ = argminx
∑T

i=1 fi(x) (the offline optimum)

Assume:

• f1, . . . , fT are all convex.
• Each is G-Lipschitz: for all x, i, ∥∇fi(x)∥2 ≤ G.
• Starting radius: ∥x∗ − x(1)∥2 ≤ R.

Online Gradient descent:

• Choose x(1) and η = R
G
√
T .

• For i = 1, . . . , T:
• Play x(i).
• Observe fi and incur cost fi(x(i)).
• x(i+1) = x(i) − η∇fi(x(i))

40

ONLINE GRADIENT DESCENT ANALYSIS

Let x∗ = argminx
∑T

i=1 fi(x) (the offline optimum)

Theorem (OGD Regret Bound)

After T steps, ϵ =
[∑T

i=1 fi(x(i))
]
−
[∑T

i=1 fi(x∗)
]
≤ RG

√
T.

Average regret overtime is bounded by ϵ
T ≤

RG√
T .

Goes→ 0 as T→∞.

All this with no assumptions on how f1, . . . , fT relate to each
other! They could have even been chosen adversarially – e.g.
with fi depending on our choice of xi and all previous choices.

41

ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

After T steps, ϵ =
[∑T

i=1 fi(x(i))
]
−
[∑T

i=1 fi(x∗)
]
≤ RG

√
T.

Claim 1: For all i = 1, . . . , T,

fi(x(i))− fi(x∗) ≤
∥x(i) − x∗∥22 − ∥x(i+1) − x∗∥22

2η +
ηG2

2

(Same proof as last class. Only uses convexity of fi.)

42

ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

After T steps, ϵ =
[∑T

i=1 fi(x(i))
]
−
[∑T

i=1 fi(x∗)
]
≤ RG

√
T.

Claim 1: For all i = 1, . . . , T,

fi(x(i))− fi(x∗) ≤
∥x(i) − x∗∥22 − ∥x(i+1) − x∗∥22

2η +
ηG2

2
Telescoping Sum:

T∑
i=1

[
fi(x(i))− fi(x∗)

]
≤ ∥x(1) − x∗∥22 − ∥x(T) − x∗∥22 +

TηG2

2

≤ R2

2η +
TηG2

2

43

STOCHASTIC GRADIENT DESCENT (SGD)

Efficient offline optimization method for functions f with finite
sum structure:

f(x) =
n∑
i=1

fi(x).

Goal is to find x̂ such that f(x̂) ≤ f(x∗) + ϵ.

• The most widely use optimization algorithm in modern
machine learning.

• Easily analyzed as a special case of online gradient
descent!

44

STOCHASTIC GRADIENT DESCENT

Recall the machine learning setup. In empirical risk
minimization, we can typically write:

f(x) =
n∑
i=1

fi(x)

where fi is the loss function for a particular data example
(a(i), y(i)).

Example: least squares linear regression.

f(x) =
n∑
i=1

(xTa(i) − y(i))2

Note that by linearity, ∇f(x) =
∑n

i=1∇fi(x).

45

STOCHASTIC GRADIENT DESCENT

Main idea: Use random approximate gradient in place of
actual gradient.

Pick random j ∈ 1, . . . ,n and update x using ∇fj(x).

E
[
∇fj(x)

]
=

1
n∇f(x).

n∇fj(x) is an unbiased estimate for the true gradient ∇f(x),
but can often be computed in a 1/n fraction of the time!

Trade slower convergence for cheaper iterations.

46

STOCHASTIC GRADIENT DESCENT

Stochastic first-order oracle for f(x) =
∑n

i=1 fi(x).

• Function Query: For any chosen j, x, return fj(x)
• Gradient Query: For any chosen j, x, return ∇fj(x)

Stochastic Gradient descent:

• Choose starting vector x(1), learning rate η

• For i = 1, . . . , T:
• Pick random ji ∈ 1, . . . ,n.
• x(i+1) = x(i) − η∇fji(x

(i))

• Return x̂ = 1
T
∑T

i=1 x(i)

47

VISUALIZING SGD

48

STOCHASTIC GRADIENT DESCENT

Assume:
• Finite sum structure: f(x) =

∑n
i=1 fi(x), with f1, . . . , fn all convex.

• Lipschitz functions: for all x, j, ∥∇fj(x)∥2 ≤ G′

n .
• What does this imply about Lipschitz constant of f?

• Starting radius: ∥x∗ − x(1)∥2 ≤ R.

Stochastic Gradient descent:
• Choose x(1), steps T, learning rate η = D

G′
√
T .

• For i = 1, . . . , T:
• Pick random ji ∈ 1, . . . ,n.
• x(i+1) = x(i) − η∇fji(x(i))

• Return x̂ = 1
T
∑T

i=1 x(i)

Approach: View as online gradient descent run on function
sequence fj1 , . . . , fjT .

Only use the fact that step equals gradient in expectation. 49

STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)
After T = R2G′2

ϵ2
iterations:

E [f(x̂)− f(x∗)] ≤ ϵ.

Claim 1:

f(x̂)− f(x∗) ≤ 1
T

T∑
i=1

[
f(x(i))− f(x∗)

]
Prove using Jensen’s Inequality:

50

STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)
After T = R2G′2

ϵ2 iterations:
E [f(x̂)− f(x∗)] ≤ ϵ.

E[f(x̂)− f(x∗)] ≤ 1
T

T∑
i=1

E
[
f(x(i))− f(x∗)

]

=
1
T

T∑
i=1

nE
[
fji(x

(i))− fji(x
∗)
]

=
1
T

T∑
i=1

nE
[
fji(x

(i))− fji(x
offline)

]

=
n
T · E

[T∑
i=1

fji(x
(i))− fji(x

∗)

]

≤ n
T ·
(
R · G

′

n ·
√
T
)

(by OGD guarantee.)
51

STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Number of iterations for error ϵ:

• Gradient Descent: T = R2G2

ϵ2
.

• Stochastic Gradient Descent: T = R2G′2

ϵ2
.

Always have G ≤ G′:

max
x
∥∇f(x)∥2 ≤ max

x
(∥∇f1(x)∥2 + . . .+ ∥∇fn(x)∥2) ≤ n · G

′

n = G′.

So GD converges strictly faster than SGD.

But for a fair comparison:

• SGD cost = (# of iterations) · O(1)
• GD cost = (# of iterations) · O(n)

52

STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

We always have G ≤ G′. When it is much smaller then GD will
perform better. When it is closer to this upper bound, SGD will
perform better.

What is an extreme case where G = G′?

53

STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

What if each gradient ∇fi(x) looks like random vectors in Rd?
E.g. with N (0, 1) entries?

E
[
∥∇fi(x)∥22

]
=

E
[
∥∇f(x)∥22

]
= E

[
∥

n∑
i=1
∇fi(x)∥22

]
=

54

STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Takeaway: SGD performs better when there is more structure
or repetition in the data set.

55

PRECONDITIONING

55

PRECONDITIONING

Main idea: Instead of minimizing f(x), find another function
g(x) with the same minimum but which is better suited for first
order optimization (e.g., has a smaller conditioner number).

Claim: Let h(x) : Rd → Rd be an invertible function. Let
g(x) = f(h(x)). Then

min
x

f(x) = min
x

g(x) and argmin
x

f(x) = h
(
argmin

x
g(x)

)
.

56

PRECONDITIONING

First Goal: We need g(x) to still be convex.

Claim: Let P be an invertible d× d matrix and let g(x) = f(Px).

g(x) is always convex.

57

PRECONDITIONING

Second Goal:

g(x) should have better condition number κ than f(x).

Example:

• f(x) = ∥Ax− b∥22. κf =
λ1(ATA)
λd(ATA)

.

• g(x) = ∥APx− b∥22. κg = λ1(PTATAP)
λd(PTATAP)

.

58

DIAGONAL PRECONDITIONER

Third Goal: P should be easy to compute.

Many, many problem specific preconditioners are used in
practice. There design is usually a heuristic process.

Example: Diagonal preconditioner.

• Let D = diag(ATA)
• Intuitively, we roughly have that D ≈ ATA.
• Let P =

√
D−1

P is often called a Jacobi preconditioner. Often works very well
in practice!

59

DIAGONAL PRECONDITIONER

60

ADAPTIVE STEPSIZES

Another view: If g(x) = f(Px) then ∇g(x) = PT∇f(Px).

∇g(x) = P∇f(Px) when P is symmetric.

Gradient descent on g:

• For t = 1, . . . , T,
• x(t+1) = x(t) − ηP

[
∇f(Px(t))

]
Gradient descent on g:

• For t = 1, . . . , T,
• y(t+1) = y(t) − ηP2

[
∇f(y(t))

]
When P is diagonal, this is just gradient descent with a

different step size for each parameter!
61

ADAPTIVE STEPSIZES

Algorithms based on this idea:

• AdaGrad
• RMSprop
• Adam optimizer

(Pretty much all of the most widely used optimization methods
for training neural networks.)

62

COORDINATE DESCENT

62

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Gradient Descent: When f(x) =
∑n

i=1 fi(x),
approximate ∇f(x) with ∇fi(x) for randomly chosen i.

63

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Coordinate Descent: Only compute a single random
entry of ∇f(x) on each iteration:

∇f(x) =

∂f
∂x1 (x)
∂f
∂x2 (x)...
∂f
∂xd (x)

 ∇if(x) =

0

∂f
∂xi (x)...
0

Update: x(t+1) ← x(t) + η∇if(x(t)).

64

COORDINATE DESCENT

When x has d parameters, computing ∇if(x) often costs just a
1/d fraction of what it costs to compute ∇f(x)

Example: f(x) = ∥Ax− b∥22 for A ∈ Rn×d, x ∈ Rd,b ∈ Rn.

• ∇f(x) = 2ATAx− 2ATb.
• ∇if(x) = 2

[
ATAx

]
i − 2

[
ATb
]
.

65

STOCHASTIC COORDINATE DESCENT

Stochastic Coordinate Descent:

• Choose number of steps T and step size η.
• For i = 1, . . . , T:

• Pick random ji ∈ 1, . . . ,d.
• x(i+1) = x(i) − η∇jif(x

(i))

• Return x̂ = 1
T
∑T

i=1 x(i).

66

COORDINATE DESCENT

Theorem (Stochastic Coordinate Descent convergence)
Given a G-Lipschitz function f with minimizer x∗ and initial
point x(1) with ∥x(1) − x∗∥2 ≤ R, SCD with step size η = 1

Rd
satisfies the guarantee:

E[f(x̂)− f(x∗)] ≤ 2GR√
T/d

67

IMPORTANCE SAMPLING

Often it doesn’t make sense to sample i uniformly at random:

A =

0 0 1 0 0 0
0 0 2 0 0 0
0 0 −1 0 0 0
0 0 −.5 0 0 0
0 0 3 0 0 0
0 0 −2 0 0 0

b =

10
42
−11
−51
34
−22

Select indices i proportional to ∥ai∥22:

Pr[select index i to update] = ∥ai∥22∑d
j=1 ∥aj∥22

=
∥ai∥22
∥A∥22

68

