
CS-GY :ࠂ676 Lecture 5
Gradient Descent and Projected Gradient
Descent

NYU Tandon School of Engineering, Prof. Christopher Musco
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PROJECT

• Choose your partner and email me by end of this week
(deadline was originally today).

• Sign-up to present or lead discussion for ࠀ reading group
slot. We need presenters for next week!
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NEW UNIT: CONTINUOUS OPTIMIZATION

Have some function f : Rd → R. Want to find x∗ such that:

f(x∗) = min
x

f(x).

Or at least x̂ which is close to a minimum. E.g.
f(x̂) ≤ minx f(x) + ε

Often we have some additional constraints:

• x > .߿
• ‖x‖ࠁ ≤ R, ‖x‖ࠀ ≤ R.
• aTx > c.
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CONTINUOUS OPTIMIZATION

Dimension d = :ࠀ

Dimension d = :ࠁ
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OPTIMIZATION IN MACHINE LEARNING

Continuouos optimization is the foundation of modern
machine learning.

Supervised learning: Want to learn a model that maps inputs

• numerical data vectors
• images, video
• text documents

to predictions

• numerical value (probability stock price increases)
• label (is the image a cat? does the image contain a car?)
• decision (turn car left, rotate robotic arm)

ࠄ



MACHINE LEARNING MODEL

Let Mx be a model with parameters x = {xࠀ, . . . , xk}, which
takes as input a data vector a and outputs a prediction.

Example:

Mx(a) = sign(aTx)

ࠅ
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MACHINE LEARNING MODEL

Example:

x ∈ R(# of connections) is the parameter vector containing all the
network weights.
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SUPERVISED LEARNING

Classic approach in supervised learning: Find a model that
works well on data that you already have the answer for
(labels, values, classes, etc.).

• Model Mx parameterized by a vector of numbers x.
• Dataset a(ࠀ), . . . , a(n) with outputs y(ࠀ), . . . , y(n).

Want to find x̂ so that Mx̂(a(i)) ≈ y(i) for i ∈ ,ࠀ . . . ,n.

How do we turn this into a function minimization problem?
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LOSS FUNCTION

Loss function L (Mx(a), y): Some measure of distance between
prediction Mx(a) and target output y. Increases if they are
further apart.

• Squared (ࠁ") loss: |Mx(a)− y|ࠁ

• Absolute deviation (ࠀ") loss: |Mx(a)− y|
• Hinge loss: ࠀ - y ·Mx(a)
• Cross-entropy loss (log loss).
• Etc.
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EMPIRICAL RISK MINIMIZATION

Empirical risk minimization:

f(x) =
n∑

i=ࠀ

L
(
Mx(a(i)), y(i)

)

Solve the optimization problem minx f(x).
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EXAMPLE: LINEAR REGRESSION

• Mx(a) = xTa. x contains the regression coefficients.
• L(z, y) = |z− y|ࠁ.
• f(x) =

∑n
i=ࠀ |xTa(i) − y(i)|ࠁ

f(x) = ‖Ax− y‖ࠁࠁ

where A is a matrix with a(i) as its ith row and y is a vector with
y(i) as its ith entry.
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ALGORITHMS FOR CONTINUOUS OPTIMIZATION

The choice of algorithm to minimize f(x) will depend on:

• The form of f(x) (is it linear, is it quadratic, does it have
finite sum structure, etc.)

• If there are any additional constraints imposed on x. E.g.
‖x‖ࠁ ≤ c.

What are some example algorithms for continuous
optimization?
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GRADIENT DESCENT

Gradient descent: A greedy algorithm for minimizing functions
of multiple variables that often works amazingly well.

(and sometimes we can prove it works)
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CALCULUS REVIEW

For i = ,ࠀ . . . ,d, let xi be the ith entry of x. Let e(i) be the ith

standard basis vector.

Partial derivative:

∂f
∂xi

(x) = lim
t→߿

f(x+ te(i))− f(x)
t

Directional derivative:

Dvf(x) = lim
t→߿

f(x+ tv)− f(x)
t
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CALCULUS REVIEW

Gradient:

∇f(x) =





∂f
∂xࠀ (x)
∂f
∂xࠁ (x)...
∂f
∂xd (x)





Directional derivative:

Dvf(x) = lim
t→߿

f(x+ tv)− f(x)
t

= ∇f(x)Tv.
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FIRST ORDER OPTIMIZATION

Given a function f to minimize, assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.

We view the implementation of these oracles as black-boxes,
but they can often require a fair bit of computation.
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EXAMPLE GRADIENT EVALUATION

Linear least-squares regression:

• Given a(ࠀ), . . . a(n) ∈ Rd, y(ࠀ), . . . y(n) ∈ R.
• Want to minimize:

f(x) =
n∑

i=ࠀ

(
xTa(i) − y(i)

ࠁ(
= ‖Ax− y‖ࠁࠁ.

∂f
∂xj

=
n∑

i=ࠀ

ࠁ
(
xTa(i) − y(i)

)
· a(i)j = −Axࠁ) y)Tα(j)

where α(j) is the jth column of A.

∇f(x) = ATࠁ (Ax− y)

What is the time complexity of a gradient oracle for ∇f(x)?
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DECENT METHODS

Greedy approach: Given a starting point x, make a small
adjustment that decreases f(x). In particular, x← x+ ηv and
f(x)← f(x+ ηv).

What property do I want in v?

Leading question: When η is small, what’s an approximation
for f(x+ ηv)− f(x)?

f(x+ ηv)− f(x) ≈
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DIRECTIONAL DERIVATIVES

Dvf(x) = lim
t→߿

f(x+ tv)− f(x)
t

= ∇f(x)Tv.

So:

f(x+ ηv)− f(x) ≈

How should we choose v so that f(x+ ηv) < f(x)?
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GRADIENT DESCENT

Prototype algorithm:

• Choose starting point x(߿).
• For i = ,߿ . . . , T:

• x(i+ࠀ) = x(i) − η∇f(x(i))
• Return x(T).

η is a step-size parameter, which is often adapted on the go.
For now, assume it is fixed ahead of time.
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GRADIENT DESCENT INTUITION

ࠀ dimensional example:
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GRADIENT DESCENT INTUITION

ࠁ dimensional example:
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KEY RESULTS

For a convex function f(x): For sufficiently small η and a
sufficiently large number of iterations T, gradient descent will
converge to a near global minimum:

f(x(T)) ≤ f(x∗) + ε.

Examples: least squares regression, logistic regression, kernel
regression, SVMs.

For a non-convex function f(x): For sufficiently small η and a
sufficiently large number of iterations T, gradient descent will
converge to a near stationary point:

‖∇f(x(T))‖ࠁ ≤ ε.

Examples: neural networks, matrix completion problems,
mixture models.
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CONVEX VS. NON-CONVEX

One issue with non-convex functions is that they can have
local minima. Even when they don’t, convergence analysis
requires different assumptions than convex functions.
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APPROACH FOR THIS UNIT

We care about how fast gradient descent and related methods
converge, not just that they do converge.

• Bounding iteration complexity requires placing some
assumptions on f(x).

• Stronger assumptions lead to better bounds on the
convergence.

Understanding these assumptions can help us design faster
variants of gradient descent (there are many!).

Today, we will start with convex functions only.

ࠄࠁ



CONVEXITY

Definition (Convex)
A function f is convex iff for any x, y,λ ∈ ,߿] :[ࠀ

−ࠀ) λ) · f(x) + λ · f(y) ≥ f −ࠀ)) λ) · x+ λ · y)
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GRADIENT DESCENT

Definition (Convex)
A function f is convex if and only if for any x, y:

f(x+ z) ≥ f(x) +∇f(x)Tz

Equivalently:
f(x)− f(y) ≤ ∇f(x)T(x− y)
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GRADIENT DESCENT ANALYSIS

Assume:

• f is convex.
• Lipschitz function: for all x, ‖∇f(x)‖ࠁ ≤ G.
• Starting radius: ‖x∗ − x(߿)‖ࠁ ≤ R.

Gradient descent:

• Choose number of steps T.
• Starting point x(߿). E.g. x(߿) = .߿&
• η = R

G
√
T

• For i = ,߿ . . . , T:
• x(i+ࠀ) = x(i) − η∇f(x(i))

• Return x̂ = argminx(i) f(x(i)).
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)

If T ≥ RࠁGࠁ

εࠁ
, then f(x̂) ≤ f(x∗) + ε.

Proof is made tricky by the fact that f(x(i)) does not improve
monotonically. We can “overshoot” the minimum.
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)

If T ≥ RࠁGࠁ

εࠁ
and η = R

G
√
T , then f(x̂) ≤ f(x∗) + ε.

Claim :ࠀ For all i = ,߿ . . . , T,

f(x(i))− f(x∗) ≤ ‖x
(i) − x∗‖ࠁࠁ − ‖x(i+ࠀ) − x∗‖ࠁࠁ

ηࠁ
+

ηGࠁ

ࠁ
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ RࠁGࠁ

εࠁ and η = R
G
√
T , then f(x̂) ≤ f(x∗) + ε.

Claim :ࠀ For all i = ,߿ . . . , T,

f(x(i))− f(x∗) ≤ ‖x
(i) − x∗‖ࠁࠁ − ‖x(i+ࠀ) − x∗‖ࠁࠁ

ηࠁ
+

ηGࠁ

ࠁ

Telescoping sum:

T−ࠀ∑

i=߿

[
f(x(i))− f(x∗)

]
≤ ‖x

(߿) − x∗‖ࠁࠁ − ‖x(T) − x∗‖ࠁࠁ
ηࠁ

+
TηGࠁ

ࠁ

ࠀ
T

T−ࠀ∑

i=߿

[
f(x(i))− f(x∗)

]
≤ Rࠁ

Tηࠁ
+

ηGࠁ

ࠁ

ࠀࠂ

O,§±§¥¥""""

1 , 0
(f-'ELswig]-HI's s 2¥t info= I f ft 1¥ = ¥1



GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)

If T ≥ RࠁGࠁ

εࠁ
and η = R

G
√
T , then f(x̂) ≤ f(x∗) + ε.

Final step:

ࠀ
T

T−ࠀ∑

i=߿

[
f(x(i))− f(x∗)

]
≤ ε

[
ࠀ
T

T−ࠀ∑

i=߿

f(x(i))
]
− f(x∗) ≤ ε

We always have that mini f(x(i)) ≤ ࠀ
T
∑T−ࠀ

i=߿ f(x(i)), so this is what
we return:

f(x̂) = min
i∈ࠀ,...,T

f(x(i)) ≤ f(x∗) + ε.
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CONSTRAINED CONVEX OPTIMIZATION

Typical goal: Solve a convex minimization problem with
additional convex constraints.

min
x∈S

f(x)

where S is a convex set.

Which of these is convex?
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CONSTRAINED CONVEX OPTIMIZATION

Definition (Convex set)
A set S is convex if for any x, y ∈ S,λ ∈ ,߿] :[ࠀ

−ࠀ) λ)x+ λy ∈ S.

ࠃࠂ
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PROBLEM WITH GRADIENT DESCENT

Gradient descent:

• For i = ,߿ . . . , T:
• x(i+ࠀ) = x(i) − η∇f(x(i))

• Return x̂ = argmini f(x(i)).

Even if we start with x(߿) ∈ S , there is no guarantee that
x(߿) − η∇f(x(߿)) will remain in our set.

Extremely simple modification: Force x(i) to be in S by
projecting onto the set.
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CONSTRAINED FIRST ORDER OPTIMIZATION

Given a function f to minimize and a convex constraint set S ,
assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.
• Projection oracle: Evaluate PS(x) for any x.

PS(x) = argmin
y∈S

‖x− y‖ࠁ

ࠅࠂ
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PROJECTION ORACLES

• How would you implement PS for S = {y : ‖y‖ࠁ ≤ .{ࠀ
• How would you implement PS for S = {y : y = Qz}.

ࠆࠂ
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PROJECTED GRADIENT DESCENT

Given function f(x) and set S , such that ‖∇f(x)‖ࠁ ≤ G for all
x ∈ S and starting point x(߿) with ‖x(߿) − x∗‖ࠁ ≤ R.

Projected gradient descent:

• Select starting point x(߿), η = R
G
√
T .

• For i = ,߿ . . . , T:
• z = x(i) − η∇f(x(i))
• x(i+ࠀ) = PS(z)

• Return x̂ = argmini f(x(i)).

Claim (PGD Convergence Bound)

If f,S are convex and T ≥ RࠁGࠁ

εࠁ
, then f(x̂) ≤ f(x∗) + ε.

ࠇࠂ
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PROJECTED GRADIENT DESCENT ANALYSIS

Analysis is almost identical to standard gradient descent! We
just need one additional claim:

Claim (Contraction Property of Convex Projection)
If S is convex, then for any y ∈ S ,

‖y− PS(x)‖ࠁ ≤ ‖y− x‖ࠁ.
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GRADIENT DESCENT ANALYSIS

Claim (PGD Convergence Bound)
If f,S are convex and T ≥ RࠁGࠁ

εࠁ , then f(x̂) ≤ f(x∗) + ε.

Claim :ࠀ For all i = ,߿ . . . , T,

f(x(i))− f(x∗) ≤ ‖x
(i) − x∗‖ࠁࠁ − ‖z− x∗‖ࠁࠁ

ηࠁ
+

ηGࠁ

ࠁ

≤ ‖x
(i) − x∗‖ࠁࠁ − ‖x(i+ࠀ) − x∗‖ࠁࠁ

ηࠁ
+

ηGࠁ

ࠁ

Same telescoping sum argument:[
ࠀ
T

T−ࠀ∑

i=߿

f(x(i))
]
− f(x∗) ≤ Rࠁ

Tηࠁ
+

ηGࠁ

ࠁ
.

߿ࠃ

U f " ) - n
o fexcisg

-

f(E) E E E .



GRADIENT DESCENT

Conditions:

• Convexity: f is a convex function, S is a convex set.
• Bounded initial distant:

‖x(߿) − x∗‖ࠁ ≤ R

• Bounded gradients (Lipschitz function):

‖∇f(x)‖ࠁ ≤ G for all x ∈ S.

Theorem
GD Convergence Bound] (Projected) Gradient Descent returns
x̂ with f(x̂) ≤ minx∈S f(x) + ε after

T =
RࠁGࠁ

εࠁ
iterations.
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BEYOND THE BASIC BOUND

Can our convergence bound be tightened for certain
functions? Can it guide us towards faster algorithms?

Goals:

• Improve ε dependence below .ࠁε/ࠀ
• Ideally ε/ࠀ or log(ࠀ/ε).

• Reduce or eliminate dependence on G and R.
• Next class: Take advantage of additional problem
structure (e.g. repetition in features and data points in ML
problems).

ࠁࠃ
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SMOOTHNESS

Definition (β-smoothness)
A function f is β smooth if, for all x, y

‖∇f(x)−∇f(y)‖ࠁ ≤ β‖x− y‖ࠁ

After some calculus (see Lem. ࠃ.ࠂ in Bubeck’s book), this
implies:

[f(y)− f(x)]−∇f(x)T(y− x) ≤ β

ࠁ
‖x− y‖ࠁࠁ

For a scalar valued function f, equivalent to f′′(x) ≤ β.
ࠂࠃ
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SMOOTHNESS

Recall from definition of convexity that:

f(y)− f(x) ≥ ∇f(x)T(y− x)

So now we have an upper and lower bound.

߿ ≤ [f(y)− f(x)]−∇f(x)T(y− x) ≤ β

ࠁ
‖x− y‖ࠁࠁ
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GUARANTEED PROGRESS

Previously learning rate/step size η depended on G. Now
choose it based on β:

x(t+ࠀ) ← x(t) − ࠀ
β
∇f(x(t))

Progress per step of gradient descent:
[
f(x(t+ࠀ))− f(x(t))

]
−∇f(x(t))T(x(t+ࠀ) − x(t)) ≤ β

ࠁ
‖x(t) − x(t+ࠀ)‖ࠁࠁ

[
f(x(t+ࠀ))− f(x(t))

]
+

ࠀ
β
‖∇f(x(t))‖ࠁࠁ ≤

β

ࠁ
‖ ࠀ
β
∇f(x(t))‖ࠁࠁ

f(x(t))− f(x(t+ࠀ)) ≥ ࠀ
βࠁ
‖∇f(x(t))‖ࠁࠁ ࠄࠃ
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CONVERGENCE GUARANTEE

Theorem (GD convergence for β-smooth functions.)
Let f be a β smooth convex function and assume we have
‖x∗ − x(ࠀ)‖ࠁ ≤ R. If we run GD for T steps with η = ࠀ

β we have:

f(x(T))− f(x∗) ≤ ࠁβRࠁ

T

Corollary: If T = O
(
βRࠁ

ε

)
we have f(x(T))− f(x∗) ≤ ε.

ࠅࠃ
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STRONG CONVEXITY

Definition (α-strongly convex)
A convex function f is α-strongly convex if, for all x, y

[f(y)− f(x)]−∇f(x)T(y− x) ≥ α

ࠁ
‖x− y‖ࠁࠁ

α is a parameter that will depend on our function.

For a twice-differentiable scalar valued function f, equivalent
to f′′(x) ≥ α.

ࠆࠃ
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GD FOR STRONGLY CONVEX FUNCTION

Gradient descent for strongly convex functions:

• Choose number of steps T.
• For i = ,ࠀ . . . , T:

• η = ࠁ
α·(i+ࠀ)

• x(i+ࠀ) = x(i) − η∇f(x(i))
• Return x̂ = argminx(i) f(x(i)).

ࠇࠃ
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CONVERGENCE GUARANTEE

Theorem (GD convergence for α-strongly convex functions.)
Let f be an α-strongly convex function and assume we have
that, for all x, ‖∇f(x)‖ࠁ ≤ G. If we run GD for T steps (with
adaptive step sizes) we have:

f(x̂)− f(x∗) ≤ ࠁGࠁ

α(T− (ࠀ

Corollary: If T = O
(

Gࠁ

αε

)
we have f(x̂)− f(x∗) ≤ ε

ࠈࠃ
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CONVERGENCE GUARANTEE

What if f is both β-smooth and α-strongly convex?

α

ࠁ
‖x− y‖ࠁࠁ ≤ [f(y)− f(x)]−∇f(x)T(y− x) ≤ β

ࠁ
‖x− y‖ࠁࠁ.

߿ࠄ
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CONVERGENCE GUARANTEE

α

ࠁ
‖x− y‖ࠁࠁ ≤ [f(y)− f(x)]−∇f(x)T(y− x) ≤ β

ࠁ
‖x− y‖ࠁࠁ.

Theorem (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = ࠀ

β ) we have:

‖x(T) − x∗‖ࠁࠁ ≤ e−(T−ࠀ)αβ ‖x(ࠀ) − x∗‖ࠁࠁ

κ = β
α is called the “condition number” of f.

Is it better if κ is large or small?

ࠀࠄ
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SMOOTH AND STRONGLY CONVEX

Converting to more familiar form: Using that fact the
∇f(x∗) = ߿ along with

α

ࠁ
‖x− y‖ࠁࠁ ≤ ∇f(x)T(x− y)− [f(x)− f(y)] ≤ β

ࠁ
‖x− y‖ࠁࠁ,

we have:

‖x(ࠀ) − x∗‖ࠁࠁ ≤
ࠁ
α

[
f(x(ࠀ))− f(x∗)

]

‖x(T) − x∗‖ࠁࠁ ≥
ࠁ
β

[
f(x(T))− f(x∗)

]

ࠁࠄ
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CONVERGENCE GUARANTEE

Corollary (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = ࠀ

β ) we have:

f(x(T))− f(x∗) ≤ β

α
e−(T−ࠀ)αβ ·

[
f(x(ࠀ))− f(x∗)

]

Corollary: If T = O
(
β
α log(β/αε)

)
= O(κ log(κ/ε)) we have:

f(x(T))− f(x∗) ≤ ε
[
f(x(ࠀ))− f(x∗)

]

Alternative Corollary: If T = O
(
β
α log(Rβ/ε)

)
we have:

f(x(T))− f(x∗) ≤ ε

ࠂࠄ
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THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from Rd → R. Let the
Hessian H = f(x)ࠁ∇ contain all of its second derivatives at a
point x. So H ∈ Rd×d. We have:

Hi,j =
[
f(x)ࠁ∇

]
i,j =

fࠁ∂
∂xixj

.

For vector x, v:

∇f(x+ tv) ≈ ∇f(x) + t
[
f(x)ࠁ∇

]
v.

ࠃࠄ
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THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from Rd → R. Let the
Hessian H = f(x)ࠁ∇ contain all of its second derivatives at a
point x. So H ∈ Rd×d. We have:

Hi,j =
[
f(x)ࠁ∇

]
i,j =

fࠁ∂
∂xixj

.

Example: Let f(x) = ‖Ax− b‖ࠁࠁ. Recall that ∇f(x) = −AT(Axࠁ b).

ࠄࠄ
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HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if
the matrix H = f(x)ࠁ∇ is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))
A square, symmetric matrix H ∈ Rd×d is positive semidefinite
(PSD) for any vector y ∈ Rd, yTHy ≥ .߿

This is a natural notion of “positivity” for symmetric matrices.
To denote that H is PSD we will typically use “Loewner order”
notation (\succeq in LaTex):

H * .߿

We write B * A or equivalently A + B to denote that (B− A) is
positive semidefinite. This gives a partial ordering on matrices.

ࠅࠄ
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HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if
the matrix H = f(x)ࠁ∇ is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))
A square, symmetric matrix H ∈ Rd×d is positive semidefinite
(PSD) for any vector y ∈ Rd, yTHy ≥ .߿

For the least squares regression loss function: f(x) = ‖Ax− b‖ࠁࠁ,
H = f(x)ࠁ∇ = ATAࠁ for all x. Is H PSD?

ࠆࠄ
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THE LINEAR ALGEBRA OF CONDITIONING

If f is β-smooth and α-strongly convex then at any point x,
H = f(x)ࠁ∇ satisfies:

αId×d + H + βId×d,

where Id×d is a d× d identity matrix.

This is the natural matrix generalization of the statement for
scalar valued functions:

α ≤ f′′(x) ≤ β.

ࠇࠄ



SMOOTH AND STRONGLY CONVEX HESSIAN

αId×d + H + βId×d.

Equivalently for any z,

α‖z‖ࠁࠁ ≤ zTHz ≤ β‖z‖ࠁࠁ.

ࠈࠄ



SIMPLE EXAMPLE

Let f(x) = ‖Dx− b‖ࠁࠁ where D is a diagaonl matrix. For now

imagine we’re in two dimensions: x =

[
xࠀ
xࠁ

]
, D =

[
dࠀ ߿
߿ dࠁ

]
.

What are α,β for this problem?

α‖z‖ࠁࠁ ≤ zTHz ≤ β‖z‖ࠁࠁ

߿ࠅ



GEOMETRIC VIEW

Level sets of ‖Dx− b‖ࠁࠁ when dࠁ
ࠀ = ࠁd,ࠀ

ࠁ = .ࠀ

ࠀࠅ



GEOMETRIC VIEW

Level sets of ‖Dx− b‖ࠁࠁ when dࠁ
ࠀ =

ࠀ
ࠂ ,d

ࠁ
ࠁ = .ࠁ

ࠁࠅ



EIGENDECOMPOSITION VIEW

Any symmetric matrix H has an orthogonal, real valued
eigendecomposition.

Here V is square and orthogonal, so VTV = VVT = I. And for
each vi, we have:

Hvi = λivi.

By definition, that’s what makes vࠀ, . . . , vd eigenvectors.
ࠂࠅ



EIGENDECOMPOSITION VIEW

Recall VVT = VTV = I.

Claim: H is PSD ⇔ λࠀ, ...,λd ≥ .߿

ࠃࠅ



EIGENDECOMPOSITION VIEW

Recall VVT = VTV = I.

Claim: αI + H + βI⇔ α ≤ λࠀ, ...,λd ≤ β.

ࠄࠅ



EIGENDECOMPOSITION VIEW

Recall VVT = VTV = I.

In other words, if we let λmax(H) and λmin(H) be the smallest
and largest eigenvalues of H, then for all z we have:

zTHz ≤ λmax(H) · ‖z‖ࠁ

zTHz ≥ λmin(H) · ‖z‖ࠁ

ࠅࠅ



EIGENDECOMPOSITION VIEW

If the maximum eigenvalue of H = f(x)ࠁ∇ = β and the
minimum eigenvalue of H = f(x)ࠁ∇ = α then f(x) is β-smooth
and α-strongly convex.

λmax(H) = β

λmin(H) = α

ࠆࠅ



POLYNOMIAL VIEW POINT

Theorem (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = ࠁ

β ) we have:

‖x(T) − x∗‖ࠁ ≤ e−T/κ‖x(ࠀ) − x∗‖ࠁ

Goal: Prove for f(x) = ‖Ax− b‖ࠁࠁ.

Let λmax = λmax(ATA). Gradient descent update is:

x(t+ࠀ) = x(t) − ࠀ
λmaxࠁ

AT(Ax(t)ࠁ − b)

ࠇࠅ



ALTERNATIVE VIEW OF GRADIENT DESCENT

Richardson Iteration view:

(x(t+ࠀ) − x∗) =
(
I− ࠀ

λmax
ATA

)
(x(t) − x∗)

What is the maximum eigenvalue of the symmetric matrix(
I− ࠀ

λmax
ATA

)
in terms of the eigenvalues

λmax = λࠀ ≥ . . . ≥ λd = λmin of ATA?
ࠈࠅ



UNROLLED GRADIENT DESCENT

(x(T+ࠀ) − x∗) =
(
I− ࠀ

λmax
ATA

)T
(x(ࠀ) − x∗)

What is the maximum eigenvalue of the symmetric matrix(
I− ࠀ

λmax
ATA

)T
?

So we have ‖x(T) − x∗‖ࠁ ≤

߿ࠆ



IMPROVING GRADIENT DESCENT

We now have a pretty good understanding of gradient descent.

Number of iterations for ε error:

G-Lipschitz β-smooth
R bounded start O

(
GࠁRࠁ

εࠁ

)
O
(
βRࠁ

ε

)

α-strong convex O
(

Gࠁ

αε

)
O
(
β
α log(ࠀ/ε)

)

ࠀࠆ



ACCELERATION

ࠀࠆ



ACCELERATED GRADIENT DESCENT

Nesterov’s accelerated gradient descent:

• x(ࠀ) = y(ࠀ) = z(ࠀ)

• For t = ,ࠀ . . . , T
• y(t+ࠀ) = x(t) − ࠀ

β∇f(x
(t))

• x(t+ࠀ) =
(
+ࠀ

√
κ−ࠀ√
κ+ࠀ

)
y(t+ࠀ) +

√
κ−ࠀ√
κ+ࠀ

(
y(t+ࠀ) − y(t)

)

Theorem (AGD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
AGD for T steps we have:

f(x(t))− f(x∗) ≤ κe−(t−ࠀ)
√
κ
[
f(x(ࠀ))− f(x∗)

]

Corollary: If T = O (
√
κ log(κ/ε)) achieve error ε.

ࠁࠆ



INTUITION BEHIND ACCELERATION

Level sets of ‖Ax− b‖ࠁࠁ.

Other terms for similar ideas:

• Momentum
• Heavy-ball methods

What if we look back beyond two iterates?

ࠂࠆ


