CS-GY 6763: Lecture 5 Gradient Descent and Projected Gradient Descent

NYU Tandon School of Engineering, Prof. Christopher Musco

PROJECT

- Choose your partner and email me by end of this week (deadline was originally today).
- Sign-up to present or lead discussion for 1 reading group slot. We need presenters for next week!

Have some function $f : \mathbb{R}^d \to \mathbb{R}$. Want to find \mathbf{x}^* such that:

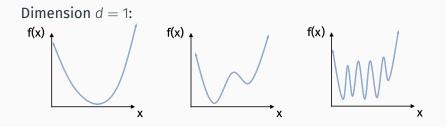
$$f(\mathbf{x}^*) = \min_{\mathbf{x}} f(\mathbf{x}).$$

Or at least $\hat{\mathbf{x}}$ which is close to a minimum. E.g. $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x}} f(\mathbf{x}) + \epsilon$

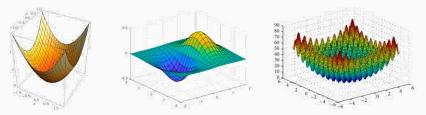
Often we have some additional constraints:

- **x** > 0.
- $\|\mathbf{x}\|_{2} \le R$, $\|\mathbf{x}\|_{1} \le R$.
- $\mathbf{a}^T \mathbf{x} > c$.

CONTINUOUS OPTIMIZATION



Dimension d = 2:



Continuouos optimization is the foundation of modern machine learning.

Supervised learning: Want to learn a model that maps inputs

- numerical data vectors
- images, video
- text documents

to predictions

- numerical value (probability stock price increases)
- label (is the image a cat? does the image contain a car?)
- decision (turn car left, rotate robotic arm)

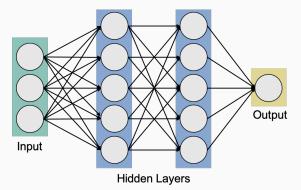
Let M_x be a model with parameters $\mathbf{x} = \{x_1, \dots, x_k\}$, which takes as input a data vector \mathbf{a} and outputs a prediction.

Example:

$$M_{\mathbf{x}}(\mathbf{a}) = \operatorname{sign}(\mathbf{a}^{\mathsf{T}}\mathbf{x})$$

MACHINE LEARNING MODEL

Example:



 $x \in \mathbb{R}^{(\text{\# of connections})}$ is the parameter vector containing all the network weights.

Classic approach in <u>supervised learning</u>: Find a model that works well on data that you already have the answer for (labels, values, classes, etc.).

- Model M_x parameterized by a vector of numbers x.
- Dataset $\mathbf{a}^{(1)}, \ldots, \mathbf{a}^{(n)}$ with outputs $y^{(1)}, \ldots, y^{(n)}$.

Want to find $\hat{\mathbf{x}}$ so that $M_{\hat{\mathbf{x}}}(\mathbf{a}^{(i)}) \approx y^{(i)}$ for $i \in 1, ..., n$. How do we turn this into a function minimization problem? **Loss function** $L(M_x(\mathbf{a}), y)$: Some measure of distance between prediction $M_x(\mathbf{a})$ and target output y. Increases if they are further apart.

- Squared (ℓ_2) loss: $|M_x(\mathbf{a}) y|^2$
- Absolute deviation (ℓ_1) loss: $|M_x(a) y|$
- Hinge loss: $1 y \cdot M_x(a)$
- Cross-entropy loss (log loss).
- Etc.

Empirical risk minimization:

$$f(\mathbf{x}) = \sum_{i=1}^{n} L\left(M_{\mathbf{x}}(\mathbf{a}^{(i)}), y^{(i)}\right)$$

Solve the optimization problem $\min_{\mathbf{x}} f(\mathbf{x})$.

• $M_x(a) = x^T a$. x contains the regression coefficients.

•
$$L(z, y) = |z - y|^2$$
.

•
$$f(\mathbf{x}) = \sum_{i=1}^{n} |\mathbf{x}^{T} \mathbf{a}^{(i)} - y^{(i)}|^2$$

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2$$

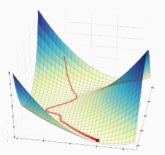
where **A** is a matrix with $\mathbf{a}^{(i)}$ as its *i*th row and **y** is a vector with $y^{(i)}$ as its *i*th entry.

The choice of algorithm to minimize $f(\mathbf{x})$ will depend on:

- The form of $f(\mathbf{x})$ (is it linear, is it quadratic, does it have finite sum structure, etc.)
- If there are any additional constraints imposed on **x**. E.g. $\|\mathbf{x}\|_2 \leq c$.

What are some example algorithms for continuous optimization?

Gradient descent: A greedy algorithm for minimizing functions of multiple variables that often works amazingly well.



(and sometimes we can prove it works)

For i = 1, ..., d, let x_i be the i^{th} entry of **x**. Let $e^{(i)}$ be the i^{th} standard basis vector.

Partial derivative:

$$\frac{\partial f}{\partial x_i}(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{e}^{(i)}) - f(\mathbf{x})}{t}$$

Directional derivative:

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t}$$

Gradient:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} rac{\partial f}{\partial x_1}(\mathbf{x}) \\ rac{\partial f}{\partial x_2}(\mathbf{x}) \\ \vdots \\ rac{\partial f}{\partial x_d}(\mathbf{x}) \end{bmatrix}$$

7

Directional derivative:

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t} = \nabla f(\mathbf{x})^{\mathsf{T}}\mathbf{v}$$

Given a function *f* to minimize, assume we have:

- Function oracle: Evaluate f(x) for any x.
- Gradient oracle: Evaluate $\nabla f(\mathbf{x})$ for any \mathbf{x} .

We view the implementation of these oracles as black-boxes, but they can often require a fair bit of computation.

Linear least-squares regression:

- Given $\mathbf{a}^{(1)}, \dots \mathbf{a}^{(n)} \in \mathbb{R}^d$, $y^{(1)}, \dots y^{(n)} \in \mathbb{R}$.
- Want to minimize:

$$f(\mathbf{x}) = \sum_{i=1}^{n} \left(\mathbf{x}^{T} \mathbf{a}^{(i)} - \mathbf{y}^{(i)} \right)^{2} = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2}.$$

$$\frac{\partial f}{\partial x_j} = \sum_{i=1}^n 2\left(\mathbf{x}^{\mathsf{T}} \mathbf{a}^{(i)} - \mathbf{y}^{(i)}\right) \cdot a_j^{(i)} = (2\mathbf{A}\mathbf{x} - \mathbf{y})^{\mathsf{T}} \boldsymbol{\alpha}^{(j)}$$

where $\alpha^{(j)}$ is the *j*th <u>column</u> of **A**.

$$\nabla f(\mathbf{x}) = 2\mathbf{A}^T (\mathbf{A}\mathbf{x} - \mathbf{y})$$

What is the time complexity of a gradient oracle for $\nabla f(\mathbf{x})$?

Greedy approach: Given a starting point **x**, make a small adjustment that decreases $f(\mathbf{x})$. In particular, $\mathbf{x} \leftarrow \mathbf{x} + \eta \mathbf{v}$ and $f(\mathbf{x}) \leftarrow f(\mathbf{x} + \eta \mathbf{v})$.

What property do I want in **v**?

Leading question: When η is small, what's an approximation for $f(\mathbf{x} + \eta \mathbf{v}) - f(\mathbf{x})$?

$$f(\mathbf{x} + \eta \mathbf{v}) - f(\mathbf{x}) \approx$$

DIRECTIONAL DERIVATIVES

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{t\to 0} \frac{f(\mathbf{x}+t\mathbf{v})-f(\mathbf{x})}{t} = \nabla f(\mathbf{x})^T \mathbf{v}.$$

So:

$$f(\mathbf{x} + \eta \mathbf{v}) - f(\mathbf{x}) \approx$$

How should we choose v so that $f(x + \eta v) < f(x)$?

Prototype algorithm:

- Choose starting point $\mathbf{x}^{(0)}$.
- For i = 0, ..., T:

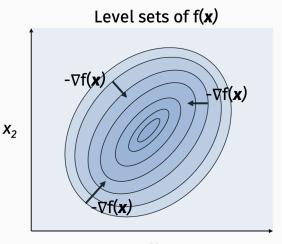
•
$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$$

• Return $\mathbf{x}^{(T)}$.

 η is a step-size parameter, which is often adapted on the go. For now, assume it is fixed ahead of time.

1 dimensional example:

2 dimensional example:



For a convex function $f(\mathbf{x})$: For sufficiently small η and a sufficiently large number of iterations *T*, gradient descent will converge to a near global minimum:

 $f(\mathbf{x}^{(T)}) \leq f(\mathbf{x}^*) + \epsilon.$

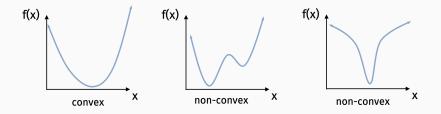
Examples: least squares regression, logistic regression, kernel regression, SVMs.

For a non-convex function $f(\mathbf{x})$: For sufficiently small η and a sufficiently large number of iterations *T*, gradient descent will converge to a near stationary point:

 $\|\nabla f(\mathbf{x}^{(T)})\|_2 \leq \epsilon.$

Examples: neural networks, matrix completion problems, mixture models.

CONVEX VS. NON-CONVEX



One issue with non-convex functions is that they can have **local minima**. Even when they don't, convergence analysis requires different assumptions than convex functions.

We care about <u>how fast</u> gradient descent and related methods converge, not just that they do converge.

- Bounding iteration complexity requires placing some assumptions on *f*(**x**).
- Stronger assumptions lead to better bounds on the convergence.

Understanding these assumptions can help us design faster variants of gradient descent (there are many!).

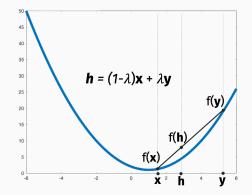
Today, we will start with **convex functions** only.

CONVEXITY

Definition (Convex)

A function *f* is convex iff for any $\mathbf{x}, \mathbf{y}, \lambda \in [0, 1]$:

$$(1 - \lambda) \cdot f(\mathbf{x}) + \lambda \cdot f(\mathbf{y}) \ge f((1 - \lambda) \cdot \mathbf{x} + \lambda \cdot \mathbf{y})$$



GRADIENT DESCENT

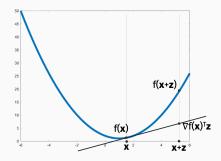
Definition (Convex)

A function *f* is convex if and only if for any **x**, **y**:

 $f(\mathbf{x} + \mathbf{z}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{z}$

Equivalently:

$$f(\mathbf{x}) - f(\mathbf{y}) \leq \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{x} - \mathbf{y})$$



GRADIENT DESCENT ANALYSIS

Assume:

- *f* is convex.
- Lipschitz function: for all \mathbf{x} , $\|\nabla f(\mathbf{x})\|_2 \leq \mathbf{G}$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(0)}\|_2 \leq R$.

Gradient descent:

- Choose number of steps T.
- Starting point $\mathbf{x}^{(0)}$. E.g. $\mathbf{x}^{(0)} = \vec{0}$.
- $\eta = \frac{R}{G\sqrt{T}}$
- For i = 0, ..., T:

•
$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$$

• Return $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}^{(i)}} f(\mathbf{x}^{(i)})$.

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound) If $T \ge \frac{R^2G^2}{\epsilon^2}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Proof is made tricky by the fact that $f(\mathbf{x}^{(i)})$ does not improve monotonically. We can "overshoot" the minimum.

Claim (GD Convergence Bound) If $T \ge \frac{R^2G^2}{\epsilon^2}$ and $\eta = \frac{R}{G\sqrt{T}}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Claim 1: For all i = 0, ..., T,

$$f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound) If $T \ge \frac{R^2G^2}{\epsilon^2}$ and $\eta = \frac{R}{G\sqrt{T}}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Claim 1: For all *i* = 0, ..., *T*,

$$f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$

Telescoping sum:

$$\sum_{i=0}^{T-1} \left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \right] \le \frac{\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{T\eta G^2}{2}$$
$$\frac{1}{T} \sum_{i=0}^{T-1} \left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \right] \le \frac{R^2}{2T\eta} + \frac{\eta G^2}{2}$$

GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound) If $T \ge \frac{R^2G^2}{\epsilon^2}$ and $\eta = \frac{R}{G\sqrt{T}}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Final step:

$$\frac{1}{T} \sum_{i=0}^{T-1} \left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \right] \le \epsilon$$
$$\left[\frac{1}{T} \sum_{i=0}^{T-1} f(\mathbf{x}^{(i)}) \right] - f(\mathbf{x}^*) \le \epsilon$$

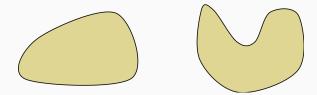
We always have that $\min_i f(\mathbf{x}^{(i)}) \leq \frac{1}{T} \sum_{i=0}^{T-1} f(\mathbf{x}^{(i)})$, so this is what we return:

$$f(\hat{\mathbf{x}}) = \min_{i \in 1, \dots, T} f(\mathbf{x}^{(i)}) \le f(\mathbf{x}^*) + \epsilon.$$

Typical goal: Solve a <u>convex minimization problem</u> with additional <u>convex constraints</u>.

 $\min_{\mathbf{x}\in\mathcal{S}}f(\mathbf{x})$

where \mathcal{S} is a **convex set**.



Which of these is convex?

CONSTRAINED CONVEX OPTIMIZATION



Definition (Convex set)

A set S is convex if for any $\mathbf{x}, \mathbf{y} \in S, \lambda \in [0, 1]$:

 $(1-\lambda)\mathbf{x} + \lambda \mathbf{y} \in \mathcal{S}.$

Gradient descent:

- For i = 0, ..., T:
 - $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \arg\min_i f(\mathbf{x}^{(i)})$.

Even if we start with $\mathbf{x}^{(0)} \in S$, there is no guarantee that $\mathbf{x}^{(0)} - \eta \nabla f(\mathbf{x}^{(0)})$ will remain in our set.

Extremely simple modification: Force $\mathbf{x}^{(i)}$ to be in S by **projecting** onto the set.

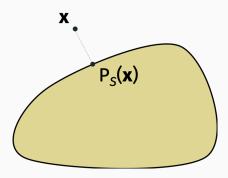
Given a function f to minimize and a convex constraint set S, assume we have:

- Function oracle: Evaluate $f(\mathbf{x})$ for any \mathbf{x} .
- Gradient oracle: Evaluate $\nabla f(\mathbf{x})$ for any \mathbf{x} .
- **Projection oracle**: Evaluate $P_{\mathcal{S}}(\mathbf{x})$ for any \mathbf{x} .

 $P_{\mathcal{S}}(\mathbf{x}) = \underset{\mathbf{y} \in \mathcal{S}}{\arg\min} \|\mathbf{x} - \mathbf{y}\|_2$

PROJECTION ORACLES

- How would you implement $P_{\mathcal{S}}$ for $\mathcal{S} = \{\mathbf{y} : \|\mathbf{y}\|_2 \leq 1\}$.
- How would you implement $P_{\mathcal{S}}$ for $\mathcal{S} = \{y : y = Qz\}$.



Given function $f(\mathbf{x})$ and set S, such that $\|\nabla f(\mathbf{x})\|_2 \leq G$ for all $\mathbf{x} \in S$ and starting point $\mathbf{x}^{(0)}$ with $\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2 \leq R$.

Projected gradient descent:

- Select starting point $\mathbf{x}^{(0)}$, $\eta = \frac{R}{G\sqrt{T}}$.
- For i = 0, ..., T:

$$\cdot \mathbf{z} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$$

- $\cdot \mathbf{x}^{(l+1)} = P_{\mathcal{S}}(\mathbf{z})$
- Return $\hat{\mathbf{x}} = \arg\min_i f(\mathbf{x}^{(i)})$.

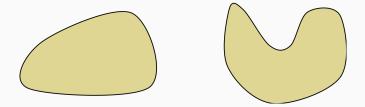
Claim (PGD Convergence Bound)

If f, S are convex and $T \ge \frac{R^2G^2}{\epsilon^2}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Analysis is almost identical to standard gradient descent! We just need one additional claim:

Claim (Contraction Property of Convex Projection) If S is convex, then for any $y \in S$,

 $\|\mathbf{y} - P_{\mathcal{S}}(\mathbf{x})\|_2 \leq \|\mathbf{y} - \mathbf{x}\|_2.$



GRADIENT DESCENT ANALYSIS

Claim (PGD Convergence Bound)

If f, S are convex and $T \ge \frac{R^2 G^2}{\epsilon^2}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Claim 1: For all i = 0, ..., T, $f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{z} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$ $\le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$

Same telescoping sum argument:

$$\left[\frac{1}{T}\sum_{i=0}^{T-1}f(\mathbf{x}^{(i)})\right]-f(\mathbf{x}^*)\leq \frac{R^2}{2T\eta}+\frac{\eta G^2}{2}.$$

Conditions:

- **Convexity:** *f* is a convex function, *S* is a convex set.
- · Bounded initial distant:

$$\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2 \le R$$

• Bounded gradients (Lipschitz function):

 $\|\nabla f(\mathbf{x})\|_2 \leq \mathbf{G} \text{ for all } \mathbf{x} \in \mathcal{S}.$

Theorem

GD Convergence Bound] (Projected) Gradient Descent returns $\hat{\mathbf{x}}$ with $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x} \in S} f(\mathbf{x}) + \epsilon$ after

$$T = \frac{R^2 G^2}{\epsilon^2}$$
 iterations.

Can our convergence bound be tightened for certain functions? Can it guide us towards faster algorithms?

Goals:

- Improve ϵ dependence below $1/\epsilon^2$.
 - Ideally $1/\epsilon$ or $\log(1/\epsilon)$.
- Reduce or eliminate dependence on *G* and *R*.
- **Next class:** Take advantage of additional problem structure (e.g. repetition in features and data points in ML problems).

SMOOTHNESS

Definition (β -smoothness)

A function f is β smooth if, for all \mathbf{x}, \mathbf{y}

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le \beta \|\mathbf{x} - \mathbf{y}\|_2$$

After some calculus (see Lem. 3.4 in **Bubeck's book**), this implies: $[f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \le \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2$

For a scalar valued function f, equivalent to $f''(x) \leq \beta$.

Recall from definition of convexity that:

$$f(\mathbf{y}) - f(\mathbf{x}) \ge \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x})$$

So now we have an upper and lower bound.

$$0 \leq [f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2$$

Previously learning rate/step size η depended on *G*. Now choose it based on β :

$$\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} - \frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})$$

Progress per step of gradient descent:

$$\left[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)})\right] - \nabla f(\mathbf{x}^{(t)})^{\mathsf{T}}(\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)}) \le \frac{\beta}{2} \|\mathbf{x}^{(t)} - \mathbf{x}^{(t+1)}\|_2^2$$

$$\left[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)})\right] + \frac{1}{\beta} \|\nabla f(\mathbf{x}^{(t)})\|_{2}^{2} \le \frac{\beta}{2} \|\frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})\|_{2}^{2}$$

$$f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t+1)}) \ge \frac{1}{2\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2$$

Theorem (GD convergence for β -smooth functions.) Let f be a β smooth convex function and assume we have $\|\mathbf{x}^* - \mathbf{x}^{(1)}\|_2 \leq R$. If we run GD for T steps with $\eta = \frac{1}{\beta}$ we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{2\beta R^2}{T}$$

Corollary: If $T = O\left(\frac{\beta R^2}{\epsilon}\right)$ we have $f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$.

STRONG CONVEXITY

Definition (α -strongly convex)

A convex function f is α -strongly convex if, for all \mathbf{x}, \mathbf{y}

$$[f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) \geq \frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}$$

α is a parameter that will depend on our function.

For a twice-differentiable scalar valued function f, equivalent to $f''(x) \ge \alpha$.

Gradient descent for strongly convex functions:

- Choose number of steps T.
- For i = 1, ..., T:

•
$$\eta = \frac{2}{\alpha \cdot (i+1)}$$

• $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$

• Return
$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}^{(i)}} f(\mathbf{x}^{(i)})$$
.

Theorem (GD convergence for α -strongly convex functions.) Let f be an α -strongly convex function and assume we have that, for all \mathbf{x} , $\|\nabla f(\mathbf{x})\|_2 \leq \mathbf{G}$. If we run GD for T steps (with adaptive step sizes) we have:

$$f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \frac{2G^2}{\alpha(T-1)}$$

Corollary: If $T = O\left(\frac{G^2}{\alpha\epsilon}\right)$ we have $f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \epsilon$

What if *f* is both β -smooth and α -strongly convex?

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \leq [f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{y} - \mathbf{x}) \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2.$$

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \leq [f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2.$$

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2 \le e^{-(T-1)\frac{\alpha}{\beta}} \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2$$

 $\kappa = \frac{\beta}{\alpha}$ is called the "condition number" of *f*. Is it better if κ is large or small? Converting to more familiar form: Using that fact the $\nabla f(x^*) = 0$ along with

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \leq \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2,$$

we have:

$$\|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2 \le \frac{2}{\alpha} \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$
$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2 \ge \frac{2}{\beta} \left[f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \right]$$

CONVERGENCE GUARANTEE

Corollary (GD for β **-smooth,** α **-strongly convex.)** Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{\beta}{\alpha} e^{-(T-1)\frac{\alpha}{\beta}} \cdot \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$

Corollary: If $T = O\left(\frac{\beta}{\alpha}\log(\beta/\alpha\epsilon)\right) = O(\kappa\log(\kappa/\epsilon))$ we have: $f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*)\right]$

Alternative Corollary: If $T = O\left(\frac{\beta}{\alpha}\log(R\beta/\epsilon)\right)$ we have:

 $f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$

Let *f* be a twice differentiable function from $\mathbb{R}^d \to \mathbb{R}$. Let the **Hessian** $\mathbf{H} = \nabla^2 f(\mathbf{x})$ contain all of its second derivatives at a point \mathbf{x} . So $\mathbf{H} \in \mathbb{R}^{d \times d}$. We have:

$$\mathsf{H}_{i,j} = \left[\nabla^2 f(\mathsf{x})\right]_{i,j} = \frac{\partial^2 f}{\partial x_i x_j}.$$

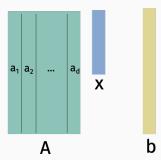
For vector **x**, **v**:

$$abla f(\mathbf{x} + t\mathbf{v}) \approx
abla f(\mathbf{x}) + t \left[
abla^2 f(\mathbf{x}) \right] \mathbf{v}.$$

Let *f* be a twice differentiable function from $\mathbb{R}^d \to \mathbb{R}$. Let the Hessian $H = \nabla^2 f(\mathbf{x})$ contain all of its second derivatives at a point \mathbf{x} . So $H \in \mathbb{R}^{d \times d}$. We have:

$$\mathsf{H}_{i,j} = \left[\nabla^2 f(\mathsf{x})\right]_{i,j} = \frac{\partial^2 f}{\partial x_i x_j}.$$

Example: Let $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$. Recall that $\nabla f(\mathbf{x}) = 2\mathbf{A}^T(\mathbf{A}\mathbf{x} - \mathbf{b})$.



Claim: If *f* is twice differentiable, then it is convex if and only if the matrix $\mathbf{H} = \nabla^2 f(\mathbf{x})$ is positive semidefinite for all \mathbf{x} .

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$ is <u>positive semidefinite</u> (PSD) for any vector $\mathbf{y} \in \mathbb{R}^d$, $\mathbf{y}^T \mathbf{H} \mathbf{y} \ge 0$.

This is a natural notion of "positivity" for symmetric matrices. To denote that **H** is PSD we will typically use "Loewner order" notation (**succeq** in LaTex):

$\mathbf{H} \succeq \mathbf{0}.$

We write $B \succeq A$ or equivalently $A \preceq B$ to denote that (B - A) is positive semidefinite. This gives a <u>partial ordering</u> on matrices.

Claim: If *f* is twice differentiable, then it is convex if and only if the matrix $\mathbf{H} = \nabla^2 f(\mathbf{x})$ is positive semidefinite for all \mathbf{x} .

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$ is <u>positive semidefinite</u> (PSD) for any vector $\mathbf{y} \in \mathbb{R}^d$, $\mathbf{y}^T \mathbf{H} \mathbf{y} \ge 0$.

For the least squares regression loss function: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$, $\mathbf{H} = \nabla^2 f(\mathbf{x}) = 2\mathbf{A}^T \mathbf{A}$ for all \mathbf{x} . Is \mathbf{H} PSD? If *f* is β -smooth and α -strongly convex then at any point **x**, $\mathbf{H} = \nabla^2 f(\mathbf{x})$ satisfies:

 $\alpha \mathbf{I}_{d \times d} \preceq \mathbf{H} \preceq \beta \mathbf{I}_{d \times d},$

where $I_{d \times d}$ is a $d \times d$ identity matrix.

This is the natural matrix generalization of the statement for scalar valued functions:

 $\alpha \leq f''(\mathbf{X}) \leq \beta.$

 $\alpha \mathsf{I}_{d \times d} \preceq \mathsf{H} \preceq \beta \mathsf{I}_{d \times d}.$

Equivalently for any **z**,

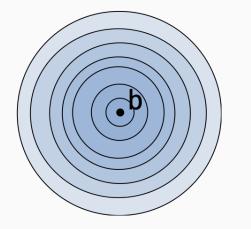
 $\alpha \|\mathbf{z}\|_2^2 \le \mathbf{z}^{\mathsf{T}} \mathbf{H} \mathbf{z} \le \beta \|\mathbf{z}\|_2^2.$

Let $f(\mathbf{x}) = \|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ where **D** is a diagaonl matrix. For now imagine we're in two dimensions: $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\mathbf{D} = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}$.

What are α, β for this problem?

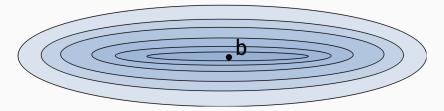
 $\alpha \|\mathbf{z}\|_2^2 \le \mathbf{z}^T \mathbf{H} \mathbf{z} \le \beta \|\mathbf{z}\|_2^2$

GEOMETRIC VIEW



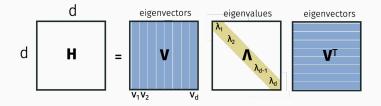
Level sets of $\|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ when $d_1^2 = 1, d_2^2 = 1$.

GEOMETRIC VIEW



Level sets of $\|\mathbf{D}\mathbf{x} - \mathbf{b}\|_{2}^{2}$ when $d_{1}^{2} = \frac{1}{3}, d_{2}^{2} = 2$.

Any symmetric matrix **H** has an <u>orthogonal</u>, real valued eigendecomposition.

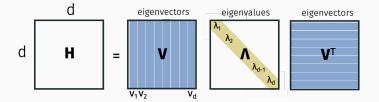


Here V is square and orthogonal, so $V^T V = V V^T = I$. And for each v_i , we have:

 $\mathbf{H}\mathbf{v}_i = \lambda_i \mathbf{v}_i.$

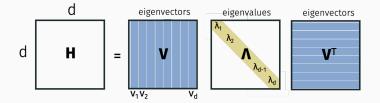
By definition, that's what makes $\mathbf{v}_1, \ldots, \mathbf{v}_d$ eigenvectors.

Recall $VV^T = V^T V = I$.



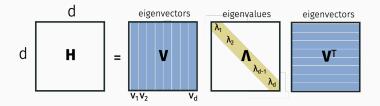
Claim: H is PSD $\Leftrightarrow \lambda_1, ..., \lambda_d \ge 0$.

Recall $VV^{T} = V^{T}V = I$.



Claim: $\alpha I \preceq H \preceq \beta I \Leftrightarrow \alpha \leq \lambda_1, ..., \lambda_d \leq \beta$.

Recall $VV^{T} = V^{T}V = I$.



In other words, if we let $\lambda_{max}(H)$ and $\lambda_{min}(H)$ be the smallest and largest eigenvalues of H, then for all z we have:

$$\begin{split} \mathbf{z}^{\mathsf{T}}\mathbf{H}\mathbf{z} &\leq \lambda_{\mathsf{max}}(\mathbf{H}) \cdot \|\mathbf{z}\|^2 \\ \mathbf{z}^{\mathsf{T}}\mathbf{H}\mathbf{z} &\geq \lambda_{\mathsf{min}}(\mathbf{H}) \cdot \|\mathbf{z}\|^2 \end{split}$$

If the maximum eigenvalue of $\mathbf{H} = \nabla^2 f(\mathbf{x}) = \beta$ and the minimum eigenvalue of $\mathbf{H} = \nabla^2 f(\mathbf{x}) = \alpha$ then $f(\mathbf{x})$ is β -smooth and α -strongly convex.

 $\lambda_{\max}(\mathsf{H}) = \beta$ $\lambda_{\min}(\mathsf{H}) = \alpha$

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{2}{\beta}$) we have:

$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2 \le e^{-T/\kappa} \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2$$

Goal: Prove for $f(x) = ||Ax - b||_2^2$.

Let $\lambda_{\max} = \lambda_{\max}(\mathbf{A}^{\mathsf{T}}\mathbf{A})$. Gradient descent update is:

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \frac{1}{2\lambda_{\max}} 2\mathbf{A}^{\mathsf{T}} (\mathbf{A} \mathbf{x}^{(t)} - \mathbf{b})$$

Richardson Iteration view:

$$(\mathbf{x}^{(t+1)} - \mathbf{x}^*) = \left(\mathbf{I} - \frac{1}{\lambda_{\max}} \mathbf{A}^T \mathbf{A}\right) (\mathbf{x}^{(t)} - \mathbf{x}^*)$$

What is the maximum eigenvalue of the symmetric matrix $\left(I - \frac{1}{\lambda_{max}} \mathbf{A}^T \mathbf{A}\right)$ in terms of the eigenvalues $\lambda_{max} = \lambda_1 \ge \ldots \ge \lambda_d = \lambda_{min}$ of $\mathbf{A}^T \mathbf{A}$?

UNROLLED GRADIENT DESCENT

$$(\mathbf{x}^{(T+1)} - \mathbf{x}^*) = \left(\mathbf{I} - \frac{1}{\lambda_{\max}} \mathbf{A}^T \mathbf{A}\right)^T (\mathbf{x}^{(1)} - \mathbf{x}^*)$$

What is the maximum eigenvalue of the symmetric matrix $\left(I - \frac{1}{\lambda_{max}} \mathbf{A}^T \mathbf{A}\right)^T$?

So we have
$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2 \leq 1$$

We now have a pretty good understanding of gradient descent. Number of iterations for ϵ error:

	G-Lipschitz	eta-smooth
R bounded start	$O\left(\frac{G^2R^2}{\epsilon^2}\right)$	$O\left(\frac{\beta R^2}{\epsilon}\right)$
lpha-strong convex	$O\left(\frac{G^2}{\alpha\epsilon}\right)$	$O\left(\frac{\beta}{\alpha}\log(1/\epsilon)\right)$

ACCELERATION

Nesterov's accelerated gradient descent:

•
$$\mathbf{x}^{(1)} = \mathbf{y}^{(1)} = \mathbf{z}^{(1)}$$

For
$$t = 1, ..., T$$

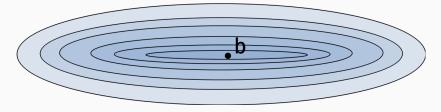
• $\mathbf{y}^{(t+1)} = \mathbf{x}^{(t)} - \frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})$
• $\mathbf{x}^{(t+1)} = \left(1 + \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right) \mathbf{y}^{(t+1)} + \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \left(\mathbf{y}^{(t+1)} - \mathbf{y}^{(t)}\right)$

Theorem (AGD for β **-smooth,** α **-strongly convex.)** Let f be a β -smooth and α -strongly convex function. If we run AGD for T steps we have:

$$f(\mathbf{x}^{(t)}) - f(\mathbf{x}^*) \le \kappa e^{-(t-1)\sqrt{\kappa}} \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$

Corollary: If $T = O(\sqrt{\kappa} \log(\kappa/\epsilon))$ achieve error ϵ .

INTUITION BEHIND ACCELERATION



Level sets of $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$.

Other terms for similar ideas:

- Momentum
- Heavy-ball methods

What if we look back beyond two iterates?