
CS-GY 6763: : Lecture 4
Near neighbor search in high dimensions +
locality sensitive hashing

NYU Tandon School of Engineering, Prof. Christopher Musco

ࠀ

SIMILARITY SKETCHING

Given two length d vectors y and q, construct compact
representations (sketches) ỹ and q̃ such that dist(y,q) can be
estimated accurately from ỹ and q̃.

Each of ỹ and q̃ should require k ! d space.

ࠁ

= :
-

EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)
For any two data points y,q ∈ Rd there exists a linear map
Π : Rd → Rk where k = O

(
log(ࠀ/δ)

εࠁ

)
such that with probability

−ࠀ δ,

−ࠀ) ε)‖q− y‖ࠁ ≤ ‖Πq−Πy‖ࠁ ≤ +ࠀ) ε)‖q− y‖ࠁ.

ࠂ

=
(I-E) H E E¥µ'sa tE) " x "r

* q-Y

I%. ios:# I

EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points qࠀ, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log(n/δ)

εࠁ

)
such that with

probability −ࠀ) δ), for all i, j,

−ࠀ) ε)‖qi − qj‖ࠁ ≤ ‖Πqi −Πqj‖ࠁ ≤ +ࠀ) ε)‖qi − qj‖ࠁ.

Extends to approximating all pairwise distances in a set of n
vectors via a union bound.

ࠃ

_

JACCARD SIMILARITY

Another distance measure (actually a similarity measure)
between binary vectors in ,߿} d{ࠀ :

Definition (Jaccard Similarity)

J(q, y) = |q ∩ y|
|q ∪ y| =

of non-zero entries in common
total # of non-zero entries

Natural similarity measure for binary vectors. ߿ ≤ J(q, y) ≤ .ࠀ

Can be applied to any data which has a natural binary
representation (more than you might think).

y =
[
ࠀ ߿ ࠀ ࠀ ߿ ߿

]

q =
[
ࠀ ࠀ ߿ ࠀ ߿ ߿

]

ࠄ

E

DDB ÷ ÷

SIMILARITY ESTIMATION

How does Shazam match a song clip against a library of ࠇ
million songs ࠁࠂ) TB of data) in a fraction of a second?

Spectrogram extracted
from audio clip.

Processed spectrogram:
used to construct audio
“fingerprint” q ∈ ,߿} .d{ࠀ

Each clip is represented by a high dimensional binary vector q.

ࠅ

±.

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

How many words do a pair of documents have in common?

ࠆ

✓=
vocabulary

s i z e

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

How many bigrams do a pair of documents have in common?

ࠇ

D '

0 0 0

APPLICATIONS: DOCUMENT SIMILARITY

• Finding duplicate or new duplicate documents or
webpages.

• Change detection for high-speed web caches.
• Finding near-duplicate emails or customer reviews which
could indicate spam.

ࠈ

MINHASH

MinHash (Broder, ’97):

• Choose k random hash functions
hࠀ, . . . ,hk : ,ࠀ} . . . ,n} → ,߿] .[ࠀ

• For i ∈ ,ࠀ . . . , k,
• Let ci = minj,qj=ࠀ hi(j).

• C(q) = [cࠀ, . . . , ck].

߿ࠀ

-
f = { o ,13h

((q) →
compressed

repression,

y
, } - =

g l y i n 1 6

1 0 I

MINHASH

• Choose k random hash functions
hࠀ, . . . ,hk : ,ࠀ} . . . ,n} → ,߿] .[ࠀ

• For i ∈ ,ࠀ . . . , k,
• Let ci = minj,qj=ࠀ hi(j).

• C(q) = [cࠀ, . . . , ck].

ࠀࠀ

O

• 0 5 . 3

MINHASH ANALYSIS

Claim: Pr[ci(q) = ci(y)] = J(q, y).

Proof:

.ࠀ For ci(q) = ci(y), we need that argmini∈q h(i) = argmini∈y h(i).

ࠁࠀ

- -

49)= GIL,-24,. 0 5 , . I](ly):#-3,-7,#

¥¥!!.li:@
- ,

" " ° u u ✓

icq⇒ i s t qi--I

MINHASH ANALYSIS

Claim: Pr[ci(q) = ci(y)] = J(q, y).

.ࠁ Every non-zero index in q ∪ y is equally likely to produce the
lowest hash value. ci(q) = ci(y) only if this index is ࠀ in both q
and y. There are q ∩ y such indices. So:

Pr[ci(q) = ci(y)] =
q ∩ y
q ∪ y = J(q, y)

ࠂࠀ

MINHASH ANALYSIS

Let J = J(q, y) denote the Jaccard similarity between q and y.

Return: J̃ = ࠀ
k
∑k

i=ࠀ [ci(q) = ci(y)].

Unbiased estimate for Jaccard similarity:

ẼJ =

The more repetitions, the lower the variance.

ࠃࠀ

i = l , . . . ,K

-

f,EE,left(Cicco):cityB) = #EiI

=)

MINHASH ANALYSIS

Let J = J(q, y) denote the true Jaccard similarity.

Estimator: J̃ = ࠀ
k
∑k

i=ࠀ [ci(q) = ci(y)].

Var[̃J] =

Plug into Chebyshev inequality. How large does k need to be
so that with probability > −ࠀ δ:

|J− J̃| ≤ ε?

ࠄࠀ

F -{°, I:P;¥" tue, E h = P
Vcrfr)=p-PI

¥,
Fe,borat(ciao)⇐ cos]]=L.Ei,I - I -

E ¥ I s t

P r4J-'ETI>z.fr,] e I ,
t
= first

I z-tru-e ¥µ¥=¥⇒

MINHASH ANALYSIS

Chebyshev inequality: As long as k = O
(ࠀ
εࠁδ

)
, then with prob.

−ࠀ δ,

J(q, y)− ε ≤ J̃ (C(q), C(y)) ≤ J(q, y) + ε.

And J̃ only takes O(k) time to compute! Independent of
original fingerprint dimension d.

Can be improved to log(ࠀ/δ) dependence. Can anyone tell me
how?

ࠅࠀ

Zoo5 2 (e-11117/62Plugin Igh.

Y u -

i : * :i n '

SIMILARITY SKETCHING

ࠆࠀ

BREAK

ࠆࠀ

NEAR NEIGHBOR SEARCH

Common goal: Find all vectors in database qࠀ, . . . ,qn ∈ Rd that
are close to some input query vector y ∈ Rd. I.e. find all of y’s
“nearest neighbors” in the database.

• The Shazam problem.
• Audio + video search.
• Finding duplicate or near duplicate documents.
• Detecting seismic events.

How does similarity sketching help in these applications?

• Improves runtime of “linear scan” from O(nd) to O(nk).
• Improves space complexity from O(nd) to O(nk). This can
be super important – e.g. if it means the linear scan only
accesses vectors in fast memory.

ࠇࠀ

e

BEYOND A LINEAR SCAN

New goal: Sublinear o(n) time to find near neighbors.

ࠈࠀ

BEYOND A LINEAR SCAN

This problem can already be solved for a small number of
dimensions using space partitioning approaches (e.g. kd-tree).

Runtime is roughly O(d ·min(n, ,((dࠁ which is only sublinear for
d = o(log n).

߿ࠁ

"

=

-

HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

Only been attacked much more recently:

• Locality-sensitive hashing [Indyk, Motwani, 1998]
• Spectral hashing [Weiss, Torralba, and Fergus, [ࠇ߿߿ࠁ
• Vector quantization [Jégou, Douze, Schmid, [ࠈ߿߿ࠁ

Key Insight: Trade worse space-complexity for better
time-complexity.

ࠀࠁ

approx.int#Olud)
Oard)

p

LOCALITY SENSITIVE HASH FUNCTIONS

Let h : Rd → ,ࠀ} . . . ,m} be a random hash function.

We call h locality sensitive for similarity function s(q, y) if
Pr [h(q) == h(y)] is:

• Higher when q and y are more similar, i.e. s(q, y) is higher.
• Lower when q and y are more dissimilar, i.e. s(q, y) is
lower.

ࠁࠁ

O
- -

8
8

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q, y) equal to Jaccard similarity:

• Let c : ,߿} d{ࠀ → ,߿] [ࠀ be a single instantiation of MinHash.
• Let g : ,߿] [ࠀ → ,ࠀ} . . . ,m} be a uniform random hash
function.

• Let h(q) = g(c(q)).

ࠂࠁ

- -

- -

I m u 8

O

O

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

• Let c : ,߿} d{ࠀ → ,߿] [ࠀ be a single instantiation of MinHash.
• Let g : ,߿] [ࠀ → ,ࠀ} . . . ,m} be a uniform random hash
function.

• Let h(x) = g(c(x)).

If J(q, y) = v,

Pr [h(q) == h(y)] =

ࠃࠁ

h i 0 (n)

- °
, + a i r , . ÷ x r

1 .(Cx)toppers with prob.r .
2 .CK)# (l y) happensv .p . l - r

NEAR NEIGHBOR SEARCH

Basic approach for near neighbor search in a database.

Pre-processing:

• Select random LSH function h : ,߿} d{ࠀ → ,ࠀ . . . ,m.
• Create table T with m = O(n) slots.ࠀ

• For i = ,ࠀ . . . ,n, insert qi into T(h(qi)).

Query:

• Want to find near neighbors of input y ∈ ,߿} .d{ࠀ
• Linear scan through all vectors q ∈ T(h(y)) and return any
that are close to y. Time required is O(d · |T(h(y)|).

Enoughࠀ to make the O(ࠀ/m) term negligible.

ࠄࠁ

Gi, . .- ,Gn

=

=
-

NEAR NEIGHBOR SEARCH

ࠅࠁ

-
.

÷

NEAR NEIGHBOR SEARCH

Two main considerations:

• False Negative Rate: What’s the probability we do not find
a vector that is close to y?

• False Positive Rate: What’s the probability that a vector in
T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime – we
need to compute J(q, y) for every q ∈ T(h(y)) to check if it’s
actually close to y.

Note: The meaning of “close” and “not close” is application
dependent. E.g. we might specify that we want to find anything
with Jaccard similarity > ,ࠃ. but not with Jaccard similarity < .ࠁ.

ࠆࠁ

- -

REDUCING FALSE NEGATIVE RATE

Suppose the nearest database point q has J(y,q) = .ࠃ.

What’s the probability we find q?

ࠇࠁ

±....

'
" '
"

I - . Y = .
6

REDUCING FALSE NEGATIVE RATE

Pre-processing:

• Select t independent LSH’s hࠀ, . . . ,ht : ,߿} d{ࠀ → ,ࠀ . . . ,m.
• Create tables Tࠀ, . . . , Tt, each with m slots.
• For i = ,ࠀ . . . ,n, j = ,ࠀ . . . , t,

• Insert qi into Tj(hj(qi)).

ࠈࠁ

" I T . .

REDUCING FALSE NEGATIVE RATE

Query:

• Want to find near neighbors of input y ∈ ,߿} .d{ࠀ
• Linear scan through all vectors in
Tࠀ(hࠀ(y)) ∪ Tࠁ(hࠁ(y)) ∪ . . . , Tt(ht(y)).

Suppose the nearest database point q has J(y,q) = .ࠃ.

What’s the probability we find q?

߿ࠂ

"a'a°
%

t . I O

d . 11740))u echoes))... I mute

- - o

1 - s o
Gt 7 . 99 f o r t . 1 0 .

I

WHAT HAPPENS TO FALSE POSITIVES?

Suppose there is some other database point z with J(y, z) = .ࠁ.

What is the probability we will need to compute J(z, y) in our
hashing scheme with one table? I.e. the probability that y
hashes into at least one bucket containing z.

In the new scheme with t = ߿ࠀ tables?

ࠀࠂ

REDUCING FALSE POSITIVES

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let cࠀ, . . . , cr : ,߿} d{ࠀ → ,߿] [ࠀ be random MinHash.

• Let g : ,߿] r[ࠀ → ,ࠀ} . . . ,m} be a uniform random hash function.

• Let h(x) = g(cࠀ(x), . . . , cr(x)).

ࠁࠂ

h (q):g1490))

= -
a

-

REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let cࠀ, . . . , cr : ,߿} d{ࠀ → ,߿] [ࠀ be random MinHash.

• Let g : ,߿] r[ࠀ → ,ࠀ} . . . ,m} be a uniform random hash function.

• Let h(x) = g(cࠀ(x), . . . , cr(x)).

If J(q, y) = v, then Pr [h(q) == h(y)] =

ࠂࠂ

=

" ↳ a

""¥ii÷÷.
1 . c .(g)= L ,(y) and 48)=Lucy) and E rCG)-(rly)

TUNABLE LSH

ࠃࠂ

' I

TUNABLE LSH

Full LSH cheme has two parameters to tune:

ࠄࠂ

TUNABLE LSH

Effect of increasing number of tables t on:

False Negatives False Positives

Effect of increasing number of bands r on:

False Negatives False Positives

ࠅࠂ

Decrease Increase

Increase Decrease

SOME EXAMPLES

Choose tables t large enough so false negative rate to .%ࠀ

Parameter: r = 1.

Chance we find q with J(y,q) = :ࠇ.

Chance we need to check z with J(y, z) = :ࠃ.

ࠆࠂ

t;-4.

I

= t : 3

k l - .2 t 295%
-

=

I - (l . .a)t - - I - .G t K 7 8 %

SOME EXAMPLES

Choose tables t large enough so false negative rate to .%ࠀ

Parameter: r = 2.

Chance we find q with J(y,q) = :ࠇ.

Chance we need to check z with J(y, z) = :ࠃ.

ࠇࠂ

SOME EXAMPLES

Choose tables t large enough so false negative rate to .%ࠀ

Parameter: r = 5.

Chance we find q with J(y,q) = :ࠇ.

Chance we need to check z with J(y, z) = :ࠃ.

ࠈࠂ

tiff.

I - a . .
sgt,!÷¥

f- (I - , yr)t = . 1 2

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ −ࠀ −ࠀ) vr)t

r = ,ࠄ t = ࠄ
߿ࠃ

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ −ࠀ −ࠀ) vr)t

r = ,ࠄ t = ߿ࠃ
ࠀࠃ

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ −ࠀ −ࠀ) vr)t

r = ,߿ࠃ t = ࠄ
ࠁࠃ

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

−ࠀ −ࠀ) vr)t

Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity. ࠂࠃ

I
• 65

FIXED THRESHOLD

Use Case 1: Fixed threshold.

• Shazam wants to find match to audio clip y in a database of ߿ࠀ
million clips.

• There are ߿ࠀ true matches with J(y,q) > .ࠈ.

• There are ߿߿߿,߿ࠀ near matches with J(y,q) ∈ ,ࠆ.] .[ࠈ.

• All other items have J(y,q) < .ࠆ.

With r = ࠄࠁ and t = ,߿ࠃ

• Hit probability for J(y,q) > ࠈ. is ! −ࠀ −ࠀ) ߿ࠃ(ࠄࠁࠈ. = ࠄࠈ.

• Hit probability for J(y,q) ∈ ,ࠆ.] [ࠈ. is " −ࠀ −ࠀ) ߿ࠃ(ࠄࠁࠈ. = ࠄࠈ.

• Hit probability for J(y,q) < ࠆ. is " −ࠀ −ࠀ) ߿ࠃ(ࠄࠁࠆ. = ࠄ߿߿.

Upper bound on total number of items checked:

ࠄࠈ. · +߿ࠀ ࠄࠈ. · ,߿ࠀ +߿߿߿ ࠄ߿߿. · ,ࠈ ,ࠈࠇࠈ ߿ࠈࠈ ≈ ,߿ࠅ ߿߿߿ ! ,߿ࠀ ,߿߿߿ .߿߿߿ ࠃࠃ

-
.

- - -
=

0 0 0 0

FIXED THRESHOLD

Space complexity: ߿ࠃ hash tables ≈ ߿ࠃ · O(n).

Directly trade space for fast search.

ࠄࠃ

FIXED THRESHOLD R

Near Neighbor Search Problem

Concrete worst case result:

Theorem (Indyk, Motwani, 1998)
If there exists some q with ‖q− y‖߿ ≤ R, return a vector q̃ with
‖q̃− y‖߿ ≤ C · R in:

• Time: O
(
nࠀ/C).

• Space: O
(
nࠀ+ࠀ/C).

‖q− y‖߿ = ”hamming distance” = number of elements that
differ between q and y.

ࠅࠃ

o - 8 "
=

-

APPROXIMATE NEAREST NEIGHBOR SEARCH

Theorem (Indyk, Motwani, 1998)
Let q be the closest database vector to y. Return a vector q̃
with ‖q̃− y‖߿ ≤ C · ‖q− y‖߿ in:

• Time: Õ
(
nࠀ/C).

• Space: Õ
(
nࠀ+ࠀ/C).

ࠆࠃ

- e -

OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other
similarity measures.

Cosine similarity cos (θ(x, y)) = 〈x,y〉
‖x‖ࠁ‖y‖ࠁ :

ࠀ− ≤ cos (θ(x, y)) ≤ .ࠀ

ࠇࠃ

-

COSINE SIMILARITY

Cosine similarity is natural “inverse” for Euclidean distance.

Euclidean distance ‖x− y‖ࠁࠁ:

• Suppose for simplicity that ‖x‖ࠁࠁ = ‖y‖ࠁࠁ = .ࠀ

ࠈࠃ

= (X-DtLx-2)= X X -2×52
t y t y

- - - =
11×1122-2xtz
+11211,2

= 2-2%17)

SIMHASH

Locality sensitive hash for cosine similarity:

• Let g ∈ Rd be randomly chosen with each entry N ,߿) .(ࠀ
• Let f : ,ࠀ−} {ࠀ → ,ࠀ} . . . ,m} be a uniformly random hash
function.

• h : Rd → ,ࠀ} . . . ,m} is definied h(x) = f (sign(〈g, x〉)).

If cos(θ(x, y)) = v, what is Pr[h(x) == h(y)]?

߿ࠄ

1 c o sCx,y) = I
Cleanh e r 2 0 0 7

- -

= 0

= 1

i ly. .

SIMHASH ANALYSIS

Theorem: If cos(θ(x, y)) = v, then

Pr[h(x) == h(y)] = −ࠀ θ

π
+ O(ࠀ

m
) = −ࠀ cos−ࠀ(v)

π
+ O(ࠀ

m
)

Not a linear function in v, as we had for MinHash, but still
suffices for locality sensitive hashing.

ࠀࠄ

÷

SIMHASH

SimHash can be tuned, just like our MinHash based LSH
function for Jaccard similarity:

• Let gࠀ, . . . , gr ∈ Rd be randomly chosen with each entry
N ,߿) .(ࠀ

• Let f : ,ࠀ−} r{ࠀ → ,ࠀ} . . . ,m} be a uniformly random hash
function.

• h : Rd → ,ࠀ} . . . ,m} is defined
h(x) = f ([sign(〈gࠀ, x〉), . . . , sign(〈gr, x〉)]).

Pr[h(x) == h(y)] =
(
−ࠀ θ

Π

)r

ࠁࠄ

SIMHASH ANALYSIS

To prove:

Pr[h(x) == h(y)] = −ࠀ θ
π , where h(x) = f (sign(〈g, x〉)).

Pr[h(x) == h(y)] = z+ −ࠀ v
m

≈ z.

where z = Pr[sign(〈g, x〉) == sign(〈g, y〉)] ࠂࠄ

-

signccg,x7)= - I

| s i n k s , >3)= L"÷÷p÷t
e÷÷÷⇒.different1 -¥

SIMHASH ANALYSIS

Pr[h(x) == h(y)] ≈ probability x and y are on the same side of
hyperplane orthogonal to g.

ࠃࠄ

