CS-GY 6763: : Lecture 4

Near neighbor search in high dimensions +
locality sensitive hashing

NYU Tandon School of Engineering, Prof. Christopher Musco

SIMILARITY SKETCHING

Given two length d vectors y and g, construct compact
representations (sketches) ¥ and g such that dist(y, q) can be

. N/ ~ ———
estimated accurately from y and q.

Each of y and q should require k < d space.

EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnsea=tindenstratss—3984)
For any two data points y, g€ RY there exists a linear map

—

M:RY— R*wherek =0 (M) such that with probability

€

120 (2] Il ¢ pxl, & Coes) [xls

(T=oalla-ylz < [Ng—Nyll> < (1+€)lla -yl

7&’/%/6 B- n {71

C}/«/ (obc" /£-> b
\ —

’ |

EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points qu, ..., qn € RY there exists a

linear map N : RY — R* where k = 0 ('ﬁg(?”/ﬂ> such that with
probability (1—19), for all i,],

(1=ellai —aqjll2 < INg; — Ngjll < (1+ €)lla; — qjll2-

Extends to approximating all pairwise distances in a set of n
vectors via a

JACCARD SIMILARITY

A
Another distance measure (actually a similarity measure) E_
between binary vectors in {0,1}¢:

Definition (Jaccard Similarity)

lgny| #of non-zero entries in common
lquy| total # of non-zero entries

Sa,y) =
Natural similarity measure for binary vectors. 0 < J(q,y) <1

Can be applied to any data which has a natural binary
representation (more than you might thm|<

i = - L
\1 2
q=|1p1

SIMILARITY ESTIMATION

How does Shazam match a song clip against a library of 8
million songs (32 TB of data) in a fraction of a second?

; . TN
Spectrogram extracted Processed spectrogram:
from audio clip. used to construct audio

“fingerprint” q € {0,1}°.
Each clip is represented by a high dimensional binary vector q.
1 111 1 111 1

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

\T ~ Yoo\~

L,\'tU

“Bag-of-words” model:

This|is|asentencel.

LTI I T T T T T T T T T T T T T I T T I T T T I T T I T AT T I T T ITT]

a aardvark Z00 zyzzyva

How many words do a pair of documents have in common?

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

[TTTTT T I I T I I T I I T T I T T T I I I T T I T T T T T I T T I T T T

How many bigrams do a pair of documents have in common?

APPLICATIONS: DOCUMENT SIMILARITY

- Finding duplicate or new duplicate documents or
webpages.
- Change detection for high-speed web caches.

- Finding near-duplicate emails or customer reviews which
could indicate spam.

MINHASH

n
MinHash (Broder, '97): & - 10,1%
— d
o H u,‘ ve 'S M
Choose k random hash functions C(%) MNK%%
h1,---7hh : {1,...,/’1}—) [071]
- Forie, ...k,
- Let@= ming_ hi()).
- C(q) =[c1,. .-, Crl-
1 Yy 4 Wy L6
1 111 1 111 1

MINHASH

- Choose k random hash functions
(@...,me {1,...,n} = [0,1].
- Forie, ...,k
- Letci = minj’qj:1 h,(})
cAa)=[c,..., Crl:

1101111 1 1T(1]0]|1

0 \ 1
241,09 .

I

MINHASH ANALYSIS

| @) = {1,205,
Claim: Prlci(q) = ci(y)] = J(a, V). UIQ Ai/,-%, 7,

Proof:

1. For ¢i(q) = ci(y), we need that arg min;cq h(i) = arg minjcy h(i).
'\6%) ¥ Eb; -1

MINHASH ANALYSIS

Claim: Prc;(q) = ci(y)] = J(q, V).

q
y

1 \\ /1 /1
\\ /
1\\/>(/1 7 \‘
0 ‘ 1

2. Every non-zero index in q Uy is equally likely to produce the
lowest hash value. ¢j(q) = ¢i(y) only if this index is 1in both q
andy. There are gNy such indices. So:

Prlci(a) = ci(y)

_qny _
]_EUV J(a,y) .

MINHASH ANALYSIS

\'/\/_../l/\

Let) = J(q,y) denote the Jaccard similarity between q and y.

Return: J = 1 3°F 1[ci(q) = ci(y)].

Unbiased estimate for Jaccard similarity:

lf(e(10vw 3] =

Ca)| 12|24 76|35 | c(y)|.12].98] 76|11 |

The more repetitions, the lower the variance.

[

=)

14

MINHASH ANALYSIS

Clzr) E(cY- ¢
T = .
Ve ey = [l
Let) =J(q,y) denote the true Jaccard similarity.
Estimator:] = ;zf ;]l[c-() = ci(y)].

¥
Var[f] = i Vee (1 (i (3) 6,37 - '; z

W
Plug into Chebyshev inequality. How large does k need to be
so that with probability > 1—4:

/—/|<e7f 71‘ . —(IE
P (5 -€7 >z &) <
|

y— ,,_

<
Lo @ W
A ¢
£ 2 vl Y I
a

MINHASH ANALYSIS

. Nl /e
@/w\w U%L((y 229 o=
Chebyshev inequality: As long as k = O (;), then with prob.
1—46,

J(@,y) — e <T(C(a), C(y)) <J(a,y) + .

And J only takes O(R) time to compute! Independent of
original fingerprint dimension d.

Can be improved to log(1/d) dependence. Can anyone tell me
how? ¥

N

16

SIMILARITY SKETCHING

WAV
input data

& =

high dimensional vector representation l

110111 1 1T(110]1

!

451.68(.10 |.92
sketched representation

17

BREAK

NEAR NEIGHBOR SEARCH

Common goal: Find all vectors in database qq,...,qn € RY that

are close to some input query vectory € RY. l.e. find all of y's
“nearest neighbors” in the database.

- The Shazam problem.
- Audio + video search.

- Finding duplicate or near duplicate documents.
- Detecting seismic events.

How does similarity sketching help in these applications?

- Improves runtime of “linear scan” from O(nY) to O(nk).

- Improves space complexity from Q@) to O_LM%). This can
be super important — e.g. if it means the linear scan only
accesses vectors in fast memory.

18

BEYOND A LINEAR SCAN

New goal: Sublinear o(n) time to find near neighbors.

19

BEYOND A LINEAR SCAN

This problem can already be solved for a small number of
dimensions using space partitioning approaches (e.g. kd-tree).

HE P "
I =
| T S
: : | e
. . & . . .
Runtime is roughly O(d - min(n, 24)), which is only sublinear for
=
d = o(logn).
——_’/-""

20

HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

- J\—vo—b
foxiwe
dpie—"" O(ud)

Only been attacked much more recently: 601-4 >

@ocality—sensitive hashing [Indyk, Motwani, 1998]
(Spectral hashing [Weiss, Torralba, and Fergus, 2008]
Vector quantization [Jégou, Douze, Schmid, 2009]

Key Insight: Trade worse space-complexity for better
time-complexity.

21

LOCALITY SENSITIVE HASH FUNCTIONS

Let h ‘—> {1,...,m} be a random hash function.
We call h ocallty sensitive for similarity function s(q,y) if
Prih(q) == h(y)] is:

- Higher when q and y are more similar, i.e. s(q,y) is higher.

- Lower when g and y are more dissimilar, i.e. s(q,y) is
lower.

Locality Sensitive Hash Function

LYBY~~~—0000

22

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q,y) equal to Jaccard similarity:

+ Let ¢: {0,1}9 — [0,1] be a single instantiation of MinHash.
- Letg: [_9_,_1] —{1,...,m} be a uniform random hash
function.

- Let h(g) = g(<(q)).

23

LOCALITY SENSITIVE HASH FUNCTIONS

" = @(W)

LSH for Jaccard similarity:

- Let c: {0,1}9 — [0,1] be a single instantiation of MinHash.
- Letg:[0,1 — {1,...,m} be a uniform random hash
function.

 Let h(x) =@(c(x))-
If)(g,y) =V,
Prin(@) == hy)l = V + (I—v)ojz %V
Lct) =<3 Noppos wihr pr

VB £ gD Megpess vep. \AC ”

NEAR NEIGHBOR SEARCH

Basic approach for near neighbor search in a database.

G- b

- Select random LSH function h: {0,1}4 = 1,...,m.
- Create table T with m = O(n) slots.”
- Fori=1,...,n, insert q; into T(h(q;)).

-

Pre-processing:

Query:

- Want to find near neighbors of inputy € {0,1}7.

+ Linear scan through all vectors q € T(h(y)) and return any
that are close toy. Time required is O(d - |T(h(y)|).

PE—
— (]

"Enough to make the O(1/m) term negligible.

25

NEAR NEIGHBOR SEARCH

1 d:|92|93|9,

Ga o a

26

NEAR NEIGHBOR SEARCH

Two main considerations:

- False Negative Rate: What's the probability we do not find
a vector that is close to y?

- False Positive Rate: What's the probability that a vector in
T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime — we
need to compute J(q,y) for every q € T(h(y)) to check if it's
actually close toy.

Note: The meaning of “close” and “not close” is application
dependent. E.g. we might specify that we want to find anything
with Jaccard similarity > .4, but not with Jaccard similarity < .2.

27

REDUCING FALSE NEGATIVE RATE

Suppose the nearest database point q has J(y,q) = .4.
AJD \19’\‘
What's the probability we'find g?

28

REDUCING FALSE NEGATIVE RATE

s

Pre-processing:

- Select t independent LSH's hy, ..., he: {0,1}9 = 1,....m
- Create tables Tq,..., T, each with m slots.
- Fori=1,...,n,j=1,....t

- Insert q; into T;(h;(q;)).

29

REDUCING FALSE NEGATIVE RATE

t=10
94%
Query:
- Want to find near neighbors of inputy € {0, 1}7.
- Linear scan through all vectors in }- (O
Ti(h(y)) U Ta(ha(y)) U ..., Te(he(y)) "
I hoes
do 1w o o) - | =

Suppose the nearest database point q has J(y, q) @

What's the probability we find q?

1-.6" 5 % fr reolo

A

—_—

30

WHAT HAPPENS TO FALSE POSITIVES?

49%
Suppose there is some other database point z with J(y,z) = .2.

What is the probability we will need to compute J(z,y) in our
hashing scheme with one table? l.e. the probability thaty
hashes into at least one bucket containing z.

- 10
In the new scheme with t = 10 tables?

- .37 = .95

31

REDUCING FALSE POSITIVES

Change our locality sensitive hash function. (
L . @
Tunable LSH for Jaccard similarity: \/‘ C@ - oa Z QQ)
- Choose parameterre Z™.
- Letcy,...,¢ {0,139 — [0,1] be random MinHash.
- Letg:[0,1]" — {1,...,m} be a uniform random hash function.
- —- —
+ Let h(x) = g(c1(X), -, G (X).

—_—
r “bands”
q o) cz(q)\ \ \ \ c,(q)\
|)
Y
gw c (@)
N\

REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

- Choose parameter r € Z*.

- Letcy,...,¢ {0,139 = [0,1] be random MinHash.

- Letg:[0,1]" — {1,...,m} be a uniform random hash function.
Ao
- Let h(x) = g(ci(X), - .., /(). s 5

Fh(a.y) = v, then Pr[n(@) == h)l = V'« (P07 o 7

1 6 -alY) ol W= G wd - Ce@)s Ge(y)

9/, '1\1\ o} A_‘bc)v 4 \-(_Iﬁ) pe-

33

TUNABLE LSH

collision probability

0 01 04 05 08 07 08 09 1
Jaccard similarity v
-

34

TUNABLE LSH

Full LSH cheme has two parameters to tune:

t tables

L T1
r “bands” L]
C1,1(q) ‘31,2(‘-1) C1,r(q) |
Ll T2
C2,1(q) Cz,z(q) Cz,r(q) \,:
Ceala)|ceo(q) o lq)—ou
Tt

35

TUNABLE LSH

Effect of increasing number of tables t on:

False Negatives False Positives

D&cuwb I\/z rooDe

Effect of increasing number of bands r on:
False Negatives False Positives

j: neres >& DLQA‘QQ%

36

SOME EXAMPLES

t+ 3

;c'/.
Choose tables t large enough so false negative rate to 1%.
Parameter: r = 1.
e

Chance we find q with J(y,q) = .8:

£:5
5 o
~]“»Z 2 99>

—_—

Chance we need to check z with J(y,z) = .4:

=

J- (-0 - -6 %

37

SOME EXAMPLES

-l"_ 1}
Choose tables t large enough so false negative rate to 1%.
Parameter: r = 2.

,{r = g

—
Chance we find q with J(y,q) = .8:

t r o
l/@—,cg‘) - 2¢)2 G6°%%

Chance we need to check z with J(y,z) = .4:

. B
- (-y)" = 58 2385
38

SOME EXAMPLES

-1
125/

Choose tables t large enough so false negative rate to 1%.

Parameter: r = 5.

2
Chance we find g with J(y, q) —

| - %>>/

Chance we need to check z with J(y,z) = .4:

(- (-)

39

S-CURVE TUNING

Probability we check q when queryingy if J(q,y) = v
~1—(1=V)t

collision probability
e o © © © o o o
5 %8 2 8 8 28 8 8

e

e

01 02 03 o4 05 08 07 08 03 1
Jaccard similarity v

r=51t=5

40

S-CURVE TUNING

Probability we check g when queryingy if J(q,y) = v:
~1—(1-v)

e e e o
5 S & B

collision probability
I

°
&

o o1 o0z 03 04 05 o068 07 08 03 1
Jaccard similarity v

r=>51t=40

41

S-CURVE TUNING

Probability we check g when queryingy if J(q,y) = v:
~1—(1-v)

e e
5 2

collision probability
°
5

04
03
02
01
5 " - - - . n
0 01 02 03 04 05 08 07 08 09 1

Jaccard similarity v

r=40,t=5

42

S-CURVE TUNING

Probability we check g when queryingy if J(q,y) = v:
1—(1 =Vt

e

e
&

collision probability
o o o
8 8 ¢

o
o

e

o
o o1 02 03 04 05 o6 07 08 083 1
Jaccard similarity v

]

Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity.

43

FIXED THRESHOLD

Use Case 1: Fixed threshold.

- Shazam wants to find match to audio clip y in a database of 10
million clips.

- There are 10 true matches with J(y,q) > .9.

* There are 10,000 near matches with J(y, q) € [.7,.9].

=

- All other items have J(y,q) < .7.
With r = 25 and t = 40,

- Hit probability for J(y,q) > .9is = 1— (1 —.9%)% = .95

—_—

+ Hit probability for J(y,q) € [.7,.9] is $1—(1—.9%)"* = .95
- Hit probability for J(y,q) < .7is <1—(1—.7%°)*0 = .005

D —

Upper bound on total number of items checked:

.95 -10)4(.95 - 10, 00y 4005 - 9,989, 990/~ 60, 0004 10,000, 000. 44

FIXED THRESHOLD

Space complexity: 40 hash tables ~ 40 - O(n).

Directly trade space for fast search.

45

FIXED THRESHOLD R

Near Neighbor Search Problem

C=Z2-

Concrete worst case result;
Theorem (Indyk, Motwani, 1998)

If there exists some@/\/ith lla—yllo ’etum a vector g with

d—yllo < CRin

/

+ Time: O (n"/©).

- Space: O (n™1/6).
——

lla — y|lo = "hamming distance” = number of elements that
differ between q andy.

46

APPROXIMATE NEAREST NEIGHBOR SEARCH

Theorem (Indyk, Motwani, 1998)
Let g be the closest database vector to'y. Return a vector q
with [|§ = yllo < C-lla = yllo in:
Al S
« Time: O (n"/©).
- Space: O (n™+/%).

47

OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other
similarity measures.

Cosine similarity cos (6(x,y)) = HXTIXVIXI?/IIz:

X
0
—2’; ﬁ/y'
—1 < cos(0(x,y)) <.

48

COSINE SIMILARITY

Cosine similarity is natural “inverse” for Euclidean distance.

T _ ~ T i T
Euclidean distance [x —y[z: = (k->) (x72) » X'& -2x7y

-~ i
- Suppose for simplicity that ||x||2 = |ly||3 = 1. 5
— < xW -2xTy
HID NE

= 2. -2 s(k9)

49

erlxs) =1

(Lto("\\/tuf 26671
Locality sensitive hash for cosine similarity:

letge]Rd be randomly chosen with each entry N/(0,1).
- Letf: {-1,1} — {1,...,m} be a uniformly random hash
function.

- h:RY = {1,...,m} is definied h(x) :,f()'

If cos(6(x,y)) = v, what is Pr[h(x) == h(y)]?
» =

50

SIMHASH ANALYSIS

Theorem: If cos(6(X,y)) = v, then

Pr{h(x) ==

collision probability

05

SIMHASH

SimHash can be tuned, just like our MinHash based LSH
function for Jaccard similarity:

- Letg,...,g € RY be randomly chosen with each entry
N(0,1).

- Letf: {-1,1}' — {1,...,m} be a uniformly random hash
function.

- h:RY— {1,...,m} is defined
h(x) = f([sign((g1,X)), - - -, sign((&r, X))])-

Prin) ==yl = (1- &)

52

SIMHASH ANALYSIS

To prove:
4]

Prih(x) == h(y)] =1~ &, wherd h(x) = f(sign((g.x))).

5 3a(C>/x7) = - |
975“‘<(5/7>>:l

%
g 28 .
O/TJ— J:qt—fwori'
|- e
-

Pr{A(x) == h(y)] = 2+ 1% ~ 2.

where z = Pr[sign((g, X)) == sign({g,y))] >

SIMHASH ANALYSIS

Pr[h(x) == h(y)] = probability x and y are on the same side of
hyperplane orthogonal to g.

54

