
CS-GY 6763: Lecture 4
Near neighbor search in high dimensions +
locality sensitive hashing

NYU Tandon School of Engineering, Prof. Christopher Musco

1

SIMILARITY SKETCHING

Given two length d vectors y and q, construct compact
representations (sketches) ỹ and q̃ such that dist(y,q) can be
estimated accurately from ỹ and q̃.

Each of ỹ and q̃ should require k ≪ d space.

2

EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)
For any two data points y,q ∈ Rd there exists a linear map
Π : Rd → Rk where k = O

(
log(1/δ)

ϵ2

)
such that with probability

1− δ,

(1− ϵ)∥q− y∥2 ≤ ∥Πq−Πy∥2 ≤ (1+ ϵ)∥q− y∥2.

3

EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points q1, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log(n/δ)

ϵ2

)
such that with

probability (1− δ), for all i, j,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1+ ϵ)∥qi − qj∥2.

Extends to approximating all pairwise distances in a set of n
vectors via a union bound.

4

JACCARD SIMILARITY

Another distance measure (actually a similarity measure)
between binary vectors in {0, 1}d :

Definition (Jaccard Similarity)

J(q, y) = |q ∩ y|
|q ∪ y| =

of non-zero entries in common
total # of non-zero entries

Natural similarity measure for binary vectors. 0 ≤ J(q, y) ≤ 1.

Can be applied to any data which has a natural binary
representation (more than you might think).

y =
[
1 0 1 1 0 0

]
q =

[
1 1 0 1 0 0

]
5

SIMILARITY ESTIMATION

How does Shazam match a song clip against a library of 8
million songs (32 TB of data) in a fraction of a second?

Spectrogram extracted
from audio clip.

Processed spectrogram:
used to construct audio
“fingerprint” q ∈ {0, 1}d.

Each clip is represented by a high dimensional binary vector q.

6

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

How many words do a pair of documents have in common?

7

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

How many bigrams do a pair of documents have in common?

8

APPLICATIONS: DOCUMENT SIMILARITY

• Finding duplicate or new duplicate documents or
webpages.

• Change detection for high-speed web caches.
• Finding near-duplicate emails or customer reviews which
could indicate spam.

9

MINHASH

MinHash (Broder, ’97):

• Choose k random hash functions
h1, . . . ,hk : {1, . . . ,n} → [0, 1].

• For i ∈ 1, . . . , k,
• Let ci = minj,qj=1 hi(j).

• C(q) = [c1, . . . , ck].

10

MINHASH

• Choose k random hash functions
h1, . . . ,hk : {1, . . . ,n} → [0, 1].

• For i ∈ 1, . . . , k,
• Let ci = minj,qj=1 hi(j).

• C(q) = [c1, . . . , ck].

11

MINHASH ANALYSIS

Claim: Pr[ci(q) = ci(y)] = J(q, y).

Proof:

1. For ci(q) = ci(y), we need that argmini∈q h(i) = argmini∈y h(i).

12

MINHASH ANALYSIS

Claim: Pr[ci(q) = ci(y)] = J(q, y).

2. Every non-zero index in q ∪ y is equally likely to produce the
lowest hash value. ci(q) = ci(y) only if this index is 1 in both q
and y. There are q ∩ y such indices. So:

Pr[ci(q) = ci(y)] =
q ∩ y
q ∪ y = J(q, y)

13

MINHASH ANALYSIS

Let J = J(q, y) denote the Jaccard similarity between q and y.

Return: J̃ = 1
k
∑k

i=1 1[ci(q) = ci(y)].

Unbiased estimate for Jaccard similarity:

ẼJ =

The more repetitions, the lower the variance.

14

MINHASH ANALYSIS

Let J = J(q, y) denote the true Jaccard similarity.

Estimator: J̃ = 1
k
∑k

i=1 1[ci(q) = ci(y)].

Var[̃J] =

Plug into Chebyshev inequality. How large does k need to be
so that with probability > 1− δ:

|J− J̃| ≤ ϵ?

15

MINHASH ANALYSIS

Chebyshev inequality: As long as k = O
(1
ϵ2δ

)
, then with prob.

1− δ,

J(q, y)− ϵ ≤ J̃ (C(q), C(y)) ≤ J(q, y) + ϵ.

And J̃ only takes O(k) time to compute! Independent of
original fingerprint dimension d.

Can be improved to log(1/δ) dependence. Can anyone tell me
how?

16

SIMILARITY SKETCHING

17

BREAK

17

NEAR NEIGHBOR SEARCH

Common goal: Find all vectors in database q1, . . . ,qn ∈ Rd that
are close to some input query vector y ∈ Rd. I.e. find all of y’s
“nearest neighbors” in the database.

• The Shazam problem.
• Audio + video search.
• Finding duplicate or near duplicate documents.
• Detecting seismic events.

How does similarity sketching help in these applications?

• Improves runtime of “linear scan” from O(nd) to O(nk).
• Improves space complexity from O(nd) to O(nk). This can
be super important – e.g. if it means the linear scan only
accesses vectors in fast memory.

18

BEYOND A LINEAR SCAN

New goal: Sublinear o(n) time to find near neighbors.

19

BEYOND A LINEAR SCAN

This problem can already be solved for a small number of
dimensions using space partitioning approaches (e.g. kd-tree).

Runtime is roughly O(d ·min(n, 2d)), which is only sublinear for
d = o(log n).

20

HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

Only been attacked much more recently:

• Locality-sensitive hashing [Indyk, Motwani, 1998]
• Spectral hashing [Weiss, Torralba, and Fergus, 2008]
• Vector quantization [Jégou, Douze, Schmid, 2009]

Key Insight: Trade worse space-complexity for better
time-complexity.

21

LOCALITY SENSITIVE HASH FUNCTIONS

Let h : Rd → {1, . . . ,m} be a random hash function.

We call h locality sensitive for similarity function s(q, y) if
Pr [h(q) == h(y)] is:

• Higher when q and y are more similar, i.e. s(q, y) is higher.
• Lower when q and y are more dissimilar, i.e. s(q, y) is
lower.

22

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q, y) equal to Jaccard similarity:

• Let c : {0, 1}d → [0, 1] be a single instantiation of MinHash.
• Let g : [0, 1] → {1, . . . ,m} be a uniform random hash
function.

• Let h(q) = g(c(q)).

23

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

• Let c : {0, 1}d → [0, 1] be a single instantiation of MinHash.
• Let g : [0, 1] → {1, . . . ,m} be a uniform random hash
function.

• Let h(x) = g(c(x)).

If J(q, y) = v,

Pr [h(q) == h(y)] =

24

NEAR NEIGHBOR SEARCH

Basic approach for near neighbor search in a database.

Pre-processing:

• Select random LSH function h : {0, 1}d → 1, . . . ,m.
• Create table T with m = O(n) slots.1

• For i = 1, . . . ,n, insert qi into T(h(qi)).

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors q ∈ T(h(y)) and return any
that are close to y. Time required is O(d · |T(h(y)|).

1Enough to make the O(1/m) term negligible.

25

NEAR NEIGHBOR SEARCH

26

NEAR NEIGHBOR SEARCH

Two main considerations:

• False Negative Rate: What’s the probability we do not find
a vector that is close to y?

• False Positive Rate: What’s the probability that a vector in
T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime – we
need to compute J(q, y) for every q ∈ T(h(y)) to check if it’s
actually close to y.

Note: The meaning of “close” and “not close” is application
dependent. E.g. we might specify that we want to find anything
with Jaccard similarity > .4, but not with Jaccard similarity < .2.

27

REDUCING FALSE NEGATIVE RATE

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we find q?

28

REDUCING FALSE NEGATIVE RATE

Pre-processing:

• Select t independent LSH’s h1, . . . ,ht : {0, 1}d → 1, . . . ,m.
• Create tables T1, . . . , Tt, each with m slots.
• For i = 1, . . . ,n, j = 1, . . . , t,

• Insert qi into Tj(hj(qi)).

29

REDUCING FALSE NEGATIVE RATE

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors in
T1(h1(y)) ∪ T2(h2(y)) ∪ . . . , Tt(ht(y)).

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we find q?

30

WHAT HAPPENS TO FALSE POSITIVES?

Suppose there is some other database point z with J(y, z) = .2.

What is the probability we will need to compute J(z, y) in our
hashing scheme with one table? I.e. the probability that y
hashes into at least one bucket containing z.

In the new scheme with t = 10 tables?

31

REDUCING FALSE POSITIVES

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let c1, . . . , cr : {0, 1}d → [0, 1] be random MinHash.

• Let g : [0, 1]r → {1, . . . ,m} be a uniform random hash function.

• Let h(x) = g(c1(x), . . . , cr(x)).

32

REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let c1, . . . , cr : {0, 1}d → [0, 1] be random MinHash.

• Let g : [0, 1]r → {1, . . . ,m} be a uniform random hash function.

• Let h(x) = g(c1(x), . . . , cr(x)).

If J(q, y) = v, then Pr [h(q) == h(y)] =

33

TUNABLE LSH

34

TUNABLE LSH

Full LSH cheme has two parameters to tune:

35

TUNABLE LSH

Effect of increasing number of tables t on:

False Negatives False Positives

Effect of increasing number of bands r on:

False Negatives False Positives

36

SOME EXAMPLES

Choose tables t large enough so false negative rate to 1%.

Parameter: r = 1.

Chance we find q with J(y,q) = .8:

Chance we need to check z with J(y, z) = .4:

37

SOME EXAMPLES

Choose tables t large enough so false negative rate to 1%.

Parameter: r = 2.

Chance we find q with J(y,q) = .8:

Chance we need to check z with J(y, z) = .4:

38

SOME EXAMPLES

Choose tables t large enough so false negative rate to 1%.

Parameter: r = 5.

Chance we find q with J(y,q) = .8:

Chance we need to check z with J(y, z) = .4:

39

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ 1− (1− vr)t

r = 5, t = 5
40

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ 1− (1− vr)t

r = 5, t = 40
41

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ 1− (1− vr)t

r = 40, t = 5
42

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

1− (1− vr)t

Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity. 43

FIXED THRESHOLD

Use Case 1: Fixed threshold.

• Shazam wants to find match to audio clip y in a database of 10
million clips.

• There are 10 true matches with J(y,q) > .9.

• There are 10,000 near matches with J(y,q) ∈ [.7, .9].

• All other items have J(y,q) < .7.

With r = 25 and t = 40,

• Hit probability for J(y,q) > .9 is ≳ 1− (1− .925)40 = .95

• Hit probability for J(y,q) ∈ [.7, .9] is ≲ 1− (1− .925)40 = .95

• Hit probability for J(y,q) < .7 is ≲ 1− (1− .725)40 = .005

Upper bound on total number of items checked:

.95 · 10+ .95 · 10, 000+ .005 · 9, 989, 990 ≈ 60, 000 ≪ 10, 000, 000. 44

FIXED THRESHOLD

Space complexity: 40 hash tables ≈ 40 · O(n).

Directly trade space for fast search.

45

FIXED THRESHOLD R

Near Neighbor Search Problem

Concrete worst case result:
Theorem (Indyk, Motwani, 1998)
If there exists some q with ∥q− y∥0 ≤ R, return a vector q̃ with
∥q̃− y∥0 ≤ C · R in:

• Time: O
(
n1/C).

• Space: O
(
n1+1/C).

∥q− y∥0 = ”hamming distance” = number of elements that
differ between q and y.

46

APPROXIMATE NEAREST NEIGHBOR SEARCH

Theorem (Indyk, Motwani, 1998)
Let q be the closest database vector to y. Return a vector q̃
with ∥q̃− y∥0 ≤ C · ∥q− y∥0 in:

• Time: Õ
(
n1/C).

• Space: Õ
(
n1+1/C).

47

OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other
similarity measures.

Cosine similarity cos (θ(x, y)) = ⟨x,y⟩
∥x∥2∥y∥2 :

−1 ≤ cos (θ(x, y)) ≤ 1.

48

COSINE SIMILARITY

Cosine similarity is natural “inverse” for Euclidean distance.

Euclidean distance ∥x− y∥22:

• Suppose for simplicity that ∥x∥22 = ∥y∥22 = 1.

49

SIMHASH

Locality sensitive hash for cosine similarity:

• Let g ∈ Rd be randomly chosen with each entry N (0, 1).
• Let f : {−1, 1} → {1, . . . ,m} be a uniformly random hash
function.

• h : Rd → {1, . . . ,m} is definied h(x) = f (sign(⟨g, x⟩)).

If cos(θ(x, y)) = v, what is Pr[h(x) == h(y)]?

50

SIMHASH ANALYSIS

Theorem: If cos(θ(x, y)) = v, then

Pr[h(x) == h(y)] = 1− θ

π
+ O(1m) = 1− cos−1(v)

π
+ O(1m)

Not a linear function in v, as we had for MinHash, but still
suffices for locality sensitive hashing.

51

SIMHASH

SimHash can be tuned, just like our MinHash based LSH
function for Jaccard similarity:

• Let g1, . . . , gr ∈ Rd be randomly chosen with each entry
N (0, 1).

• Let f : {−1, 1}r → {1, . . . ,m} be a uniformly random hash
function.

• h : Rd → {1, . . . ,m} is defined
h(x) = f ([sign(⟨g1, x⟩), . . . , sign(⟨gr, x⟩)]).

Pr[h(x) == h(y)] =
(
1− θ

Π

)r

52

SIMHASH ANALYSIS

To prove:

Pr[h(x) == h(y)] = 1− θ
π , where h(x) = f (sign(⟨g, x⟩)).

Pr[h(x) == h(y)] = z+ 1− v
m ≈ z.

where z = Pr[sign(⟨g, x⟩) == sign(⟨g, y⟩)] 53

SIMHASH ANALYSIS

Pr[h(x) == h(y)] ≈ probability x and y are on the same side of
hyperplane orthogonal to g.

54

