
CS-GY 6763: Lecture 3
High Dimensional Geometry, the
Johnson-Lindenstrauss Lemma, MinHash

NYU Tandon School of Engineering, Prof. Christopher Musco
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UNIFYING THEME OF THE COURSE

How do we deal with data (vectors) in high dimensions?

• Locality sensitive hashing for similarity search.
• Iterative methods for optimizing functions that depend on
many variables.

• SVD + low-rank approximation to find and visualize
low-dimensional structure.

• Convert large graphs to high dimensional vector data.
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HIGH DIMENSIONAL IS NOT LIKE LOW DIMENSIONAL

Often visualize data and algorithms in 1,2, or 3 dimensions.

First part of lecture: Prove that high-dimensional space looks
very different from low-dimensional space. These images are

rarely very informative!
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SKETCHING AND DIMENSIONALITY REDUCTION

Second part of lecture: Ignore our own advice.

Learn about sketching, aka dimensionality reduction
techniques that seek to approximate high-dimensional vectors
with much lower dimensional vectors.

• Johnson-Lindenstrauss lemma for ℓ2 space.
• MinHash for binary vectors.

First part of lecture should help you understand the potential
and limitations of these methods. 4



ORTHOGONAL VECTORS

Recall the inner product between two d dimensional vectors:

⟨x, y⟩ = xTy = yTx =
d∑
i=1

xiyi

⟨x, y⟩ = cos(θ) · ∥x∥2 · ∥y∥2
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ORTHOGONAL VECTORS

What is the largest set of mutually orthogonal unit vectors
x1, . . . , xt in d-dimensional space? I.e. with inner product

|xTi xj| = 0 for all i, j.
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ORTHOGONAL VECTORS

What is the largest set nearly orthogonal unit vectors x1, . . . , xt
in d-dimensional space. I.e., with inner product |xTi xj| ≤ ϵ for all

i, j.
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ORTHOGONAL VECTORS

What is the largest set nearly orthogonal unit vectors x1, . . . , xt
in d-dimensional space. I.e., with inner product |xTi xj| ≤ ϵ for all

i, j.

1. d 2. Θ(d) 3. Θ(d2) 4. 2Θ(d)

8



ORTHOGONAL VECTORS

Claim: There is an exponential number (i.e., ∼ 2d) of nearly
orthogonal unit vectors in d dimensional space.

Proof strategy: Use the Probabilistic Method! For t = O(2d),
define a random process which generates random vectors
x1, . . . , xt that are unlikely to have large inner product.

1. Claim that, with non-zero probability, |xTi xj| ≤ ϵ for all i, j.
2. Conclude that there must exists some set of t unit vectors

with all pairwise inner-products bounded by ϵ.
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PROBABILISTIC METHOD

Claim: There is an exponential number (i.e., ∼ 2d) of nearly
orthogonal unit vectors in d dimensional space.

Proof: Let x1, . . . , xt all have independent random entries, each
set to ± 1√

d
with equal probability.

• ∥xi∥2 =

• E[xTi xj] =

• Var[xTi xj] =

10



PROBABILISTIC METHOD

Let Z = xTi xj =
∑d

i=1 Ci where each Ci is + 1
d or − 1

d with equal
probability.

Z is a sum of many i.i.d. random variables, so looks
approximately Gaussian. Roughly, we expect that:

Pr[|Z− EZ| ≥ α · σ] ≤ O(e−α2
)

Note that we can transform to binary random variable:

Z =
d∑
i=1

Ci =
2
d

d∑
i=1

d
2 · Ci

=
2
d ·

(
−d
2 +

d∑
i=1

Bi

)
where each Bi is uniform in {0, 1}. 11



CHERNOFF BOUND

Theorem (Chernoff Bound)
Let X1, X2, . . . , Xk be independent {0, 1}-valued random
variables and let S =

∑k
i=1 Xi. We have for any ϵ < 1 :

Pr[|S− E[S]| ≥ ϵE[S]] ≤ 2e
−ϵ2E[S]

3 .

Pr[|B− E[B]| ≥ ] ≤

12



PROBABILISTIC METHOD

Formally, using a Chernoff bound:

Pr[|Z− EZ| ≥ ϵ] ≤ 2e−ϵ2d/6

For any i, j pair, Pr[|xTi xj| < ϵ] ≥ 1− 2e−ϵ2d/6.

By a union bound:

For all i, j pairs simultaneously, Pr[|xTi xj| < ϵ] ≥ 1−
(
t
2

)
· 2e−ϵ2d/6.
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ORTHOGONAL VECTORS

Final result: In d-dimensional space, there are 2θ(ϵ2d) unit
vectors with all pairwise inner products ≤ ϵ.

Corollary of proof: Random vectors tend to be far apart in
high-dimensions.
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CURSE OF DIMENSIONALITY

Curse of dimensionality: Suppose we want to use e.g.
k-nearest neighbors to learn a function or classify points in Rd.
If our data distribution is truly random, we typically need an
exponential amount of data.

The existence of lower dimensional structure is our data is
often the only reason we can hope to learn.
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CURSE OF DIMENSIONALITY

Low-dimensional structure.

For example, data lies on low-dimensional subspace, or does
so after transformation. Or function can be represented by a
restricted class of functions, like neural net with specific

structure.

16



UNIT BALL IN HIGH DIMENSIONS

Let Bd be the unit ball in d dimensions:

Bd = {x ∈ Rd : ∥x∥2 ≤ 1}.

What percentage of volume of Bd falls with ϵ of its surface?

Volume of radius R ball is πd/2

(d/2)! · R
d.
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ISOPERIMETRIC INEQUALITY

All but an 1
2
Θ(ϵd) fraction of a unit ball’s volume is within ϵ of

its surface.

Isoperimetric Inequality: the ball has the maximum surface
area/volume ratio of any shape.

• If we randomly sample points from any high-dimensional
shape, nearly all will fall near its surface.

• ‘All points are outliers.’ 18



INTUITION

1D: surface cubes
total cubes =

2D: surface cubes
total cubes =

3D: surface cubes
total cubes =
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SLICES OF THE UNIT BALL

What percentage of the volume of Bd falls within ϵ of its
equator?

S = {x ∈ Bd : |x1| ≤ ϵ}
20



SLICES OF THE UNIT BALL

What percentage of the volume of Bd falls within ϵ of its
equator? Answer: all but a 1

2
Θ(ϵ2d) fraction.

By symmetry, this is true for any equator:
St = {x ∈ Bd : xTt ≤ ϵ}. 21



BIZARRE SHAPE OF UNIT BALL

1. (1− 1
2
Θ(ϵd)

) fraction of volume lies ϵ close to surface.
2. (1− 1

2
Θ(−ϵ2d)

) fraction of volume lies ϵ close to any equator.

High-dimensional ball looks nothing like 2D ball! 22



CONCENTRATION AT EQUATOR

Claim: All but a 1
2
Θ(ϵ2d) fraction of the volume of the ball falls

within ϵ of its equator.

Equivalent: If we draw a point x randomly from the unit ball,
|x1| ≤ ϵ with probability ≥ 1− 1

2
Θ(ϵ2d).
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CONCENTRATION AT EQUATOR

Let w = x
∥x∥2 . Because ∥x∥2 ≤ 1,

Pr [|x1| ≤ ϵ] ≥ Pr [|w1| ≤ ϵ] .

Claim: |w1| ≤ ϵ with probability ≥ 1− 1
2
Θ(ϵ2d), which then proves

our statement from the previous slide.

How can we generate w, which is a random vector taken from
the unit sphere (the surface of the ball)?
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IMPORTANT FACT IN HIGH DIMENSIONAL GEOMETRY

Rotational Invariance of Gaussian distribution: Let g be a
random Gaussian vector, with each entry drawn from N (0, 1).
Then w = g/∥g∥2 is distributed uniformly on the unit sphere.
Proof:
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CONCENTRATION AT EQUATOR

Let g be a random Gaussian vector and w = g/∥g∥2.

• E[∥g∥22] =

• Pr
[
|∥g∥22 ≤ 1

2E[∥g∥22]
]
≤ 1

2
θ(d)
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CONCENTRATION AT EQUATOR

For 1− 1
2
θ(d) fraction of vectors g, ∥g∥2 ≥

√
d/2. Condition on

the event that we get a random vector in this set.

Pr [|w1| ≤ ϵ] = Pr
[
|w1| ·

√
d/2 ≤ ϵ ·

√
d/2
]

≥ Pr
[
|g1| ≤ ϵ ·

√
d/2
]

≥ 1− 1
2
θ
(
(ϵ·
√

d/2)2
)

Recall: w = g
∥g∥2 . So after conditioning, we have w ≤ g√

d/2
. 27



BIZARRE SHAPE OF UNIT BALL

1. (1− 1
2
Θ(ϵd)

) fraction of volume lies ϵ close to surface.
2. (1− 1

2
Θ(ϵ2d)

) fraction of volume lies ϵ close to any equator.

High-dimensional ball looks nothing like 2D ball! 28



HIGH DIMENSIONAL CUBE

Let Cd be the d-dimensional cube:

Cd = {x ∈ Rd : |x(i)| ≤ 1 ∀i}.

In two dimensions, the cube is pretty similar to the ball.

But volume of Cd is 2d while volume of unit ball is
√
π
d

(d/2)! .

This is a huge gap! Cube has O(d)O(d) more volume. 29



HIGH DIMENSIONAL CUBE

Some other ways to see these shapes are very different:

• maxx∈Bd ∥x∥22 =
• maxx∈Cd ∥x∥22 =
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HIGH DIMENSIONAL CUBE

Some other ways to see these shapes are very different:

• Ex∼Bd∥x∥22
• Ex∼Cd∥x∥22 =
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HIGH DIMENSIONAL CUBE

Almost all of the volume of the unit cube falls in its corners,
and these corners lie far outside the unit ball.
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RECENT ARTICLE

See The Journey to Define Dimension from Quanta Magazine
for another fun example comparing cubes to balls! Article

posted last week.

33

https://www.quantamagazine.org/a-mathematicians-guided-tour-through-high-dimensions-20210913/


DIMENSIONALITY REDUCTION

Despite all this warning that low-dimensional space looks
nothing like high-dimensional space, next we are going to
learn about how to compress high dimensional vectors to low
dimensions.

We will be very careful not to compress things too far. An
extremely simple method known as Johnson-Lindenstrauss
Random Projection pushes right up to the edge of how much
compression is possible.
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BREAK
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EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points q1, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
ϵ2

)
such that for all

i, j,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1+ ϵ)∥qi − qj∥2.
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EUCLIDEAN DIMENSIONALITY REDUCTION

Please remember: This is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points q1, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
ϵ2

)
such that for all

i, j,

(1− ϵ)∥qi − qj∥22 ≤ ∥Πqi −Πqj∥22 ≤ (1+ ϵ)∥qi − qj∥22.

because for small ϵ, (1+ ϵ)2 = 1+ O(ϵ) and (1− ϵ)2 = 1− O(ϵ).
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EUCLIDEAN DIMENSIONALITY REDUCTION

And this is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points q1, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
ϵ2

)
such that for all

i, j,

(1− ϵ)∥Πqi −Πqj∥22 ≤ ∥qi − qj∥22 ≤ (1+ ϵ)∥Πqi −Πqj∥22.

because for small ϵ, 1
1+ϵ = 1− O(ϵ) and 1

1−ϵ = 1+ O(ϵ).
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SAMPLE APPLICATION

k-means clustering: Give data points a1, . . . , an ∈ Rd, find
centers µ1, . . . ,µk ∈ Rd to minimize:

Cost(µ1, . . . ,µk) =
n∑
i=1

min
j=1,...,k

∥µj − ai∥22
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SAMPLE APPLICATION

k-means clustering: Give data points a1, . . . , an ∈ Rd, find
centers µ1, . . . ,µk ∈ Rd to minimize:
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SAMPLE APPLICATION

k-means clustering: Give data points a1, . . . , an ∈ Rd, find
centers µ1, . . . ,µk ∈ Rd to minimize:

Cost(µ1, . . . ,µk) =
n∑
i=1

min
j=1,...,k

∥µj − ai∥22
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K-MEANS CLUSTERING

NP hard to solve exactly, but there are many good
approximation algorithms. All depend at least linearly on the
dimension d.

Approximation scheme: Find clusters C̃1, . . . , C̃k for the
k = O

(
log n
ϵ2

)
dimension data set Πa1, . . . ,Πan.

Argue these clusters are near optimal for a1, . . . , an.
41



K-MEANS CLUSTERING

Equivalent formulation: Find clusters C1, . . . , Ck ⊆ {1, . . . ,n} to
minimize:

Cost(C1, . . . , Ck) =
k∑
j=1

1
2|Cj|

∑
u,v∈Cj

∥au − av∥22.
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K-MEANS CLUSTERING

Equivalent formulation: Find clusters C1, . . . , Ck ⊆ {1, . . . ,n} to
minimize:

Cost(C1, . . . , Ck) =
k∑
j=1

1
2|Cj|

∑
u,v∈Cj

∥au − av∥22.

Exercise: Prove this to your self.
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K-MEANS CLUSTERING

Cost(C1, . . . , Ck) =
k∑
j=1

1
2|Cj|

∑
u,v∈Cj

∥au − av∥22

C̃ost(C1, . . . , Ck) =
k∑
j=1

1
2|Cj|

∑
u,v∈Cj

∥Πau − Πav∥22

Claim: For any clusters C1, . . . , Ck:

(1− ϵ)Cost(C1, . . . , Ck) ≤ C̃ost(C1, . . . , Ck)
≤ (1+ ϵ)Cost(C1, . . . , Ck)
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K-MEANS CLUSTERING

Suppose we use an approximation algorithm to find clusters
B1, . . . ,Bk such that:

C̃ost(B1, . . . ,Bk) ≤ (1+ α)C̃ost
∗

Then:

Cost(B1, . . . ,Bk) ≤
1

1− ϵ
C̃ost(B1, . . . ,Bk)

≤ (1+ α)(1+ O(ϵ))C̃ost
∗

≤ (1+ α)(1+ O(ϵ))(1+ ϵ)Cost∗

= 1+ O(α+ ϵ)Cost∗

Cost∗ = minC1,...,Ck Cost(C1, . . . , Ck) and
C̃ost

∗
= minC1,...,Ck C̃ost(C1, . . . , Ck) 45



EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points q1, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
ϵ2

)
such that for all

i, j,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1+ ϵ)∥qi − qj∥2.
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EUCLIDEAN DIMENSIONALITY REDUCTION

Remarkably, Π can be chosen completely at random!

One possible construction: Random Gaussian.

Πi,j =
1√
k
N (0, 1)

The map Π is oblivious to the data set. This stands in contrast
to e.g. PCA, amoung other differences.

[Indyk, Motwani 1998] [Arriage, Vempala 1999] [Achlioptas 2001]
[Dasgupta, Gupta 2003].

Many other possible choices suffice – you can use random
{+1,−1} variables, sparse random matrices, pseudorandom Π.
Each with different advantages.
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RANDOMIZED JL CONSTRUCTIONS

Let Π ∈ Rk×d be chosen so that each entry equals 1√
k
N (0, 1).

... or each entry equals 1√
k
± 1 with equal probability.

A random orthogonal matrix also works. I.e. with ΠΠT = Ik×k.
For this reason, the JL operation is often called a “random

projection”, even though it technically isn’t a projection when
entries are i.i.d.
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RANDOM PROJECTION

Intuitively, close points will remain close after projection, and
far points will remain far.
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EUCLIDEAN DIMENSIONALITY REDUCTION

Intermediate result:
Lemma (Distributional JL Lemma)
Let Π ∈ Rk×d be chosen so that each entry equals 1√

k
N (0, 1),

where N (0, 1) denotes a standard Gaussian random variable.

If we choose k = O
(
log(1/δ)

ϵ2

)
, then for any vector x, with

probability (1− δ):

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1+ ϵ)∥x∥22

Given this lemma, how do we prove the traditional
Johnson-Lindenstrauss lemma?
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JL FROM DISTRIBUTIONAL JL

We have a set of vectors q1, . . . ,qn. Fix i, j ∈ 1, . . . ,n.

Let x = qi − qj. By linearity, Πx = Π(qi − qj) = Πqi −Πqj.

By the Distributional JL Lemma, with probability 1− δ,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1+ ϵ)∥qi − qj∥2.

Finally, set δ = 1
n2 . Since there are < n2 total i, j pairs, by a

union bound we have that with probability 9/10, the above will
hold for all i, j, as long as we compress to:

k = O
(
log(1/(1/n2))

ϵ2

)
= O

(
log n
ϵ2

)
dimensions.

51



PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability (1− δ),

(1− ϵ)∥x∥22 ≤ |Πx∥22 ≤ (1+ ϵ)∥x∥22

Claim: E∥Πx∥22 = ∥x∥22.
Some notation:

So each πi contains N (0, 1) entries. 52



PROOF OF DISTRIBUTIONAL JL

∥Πx∥22 =
k∑
i
s(i)2 =

k∑
i

(
1√
k
⟨πi, x⟩

)2
=

1
k

k∑
i
(⟨πi, x⟩)2

E
[
∥Πx∥22

]
=

1
k

k∑
i
E
[
(⟨πi, x⟩)2

]
= E

[
(⟨πi, x⟩)2

]

Goal: Prove E∥Πx∥22 = ∥x∥22.
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PROOF OF DISTRIBUTIONAL JL

⟨πi, x⟩ = Z1 · x(1) + Z2 · x(2) + . . .+ Zd · x(d)

where each Z1, . . . , Zd is a standard normal N (0, 1) random
variable.

This implies that Zi · x(i) is a normal N (0, x(i)2) random
variable.

Goal: Prove E∥Πx∥22 = ∥x∥22. Established: E∥Πx∥22 = E
[
(⟨πi, x⟩)2

]
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STABLE RANDOM VARIABLES

What type of random variable is ⟨πi, x⟩?

Fact (Stability of Gaussian random variables)

N (µ1, σ
2
1 ) +N (µ2, σ

2
2) = N (µ1 + µ2, σ

2
1 + σ2

2)

⟨πi, x⟩ = N (0, x(1)2) +N (0, x(2)2) + . . .+N (0, x(d)2)
= N (0, ∥x∥22).

So E∥Πx∥22 = E
[
(⟨πi, x⟩)2

]
= ∥x∥22, as desired.
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PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability (1− δ),

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1+ ϵ)∥x∥22

1. E∥Πx∥22 = ∥x∥22.
2. Need to use a concentration bound.

∥Πx∥22 =
1
k

k∑
i=1

(⟨πi, x⟩)2 =
1
k

k∑
i=1

N (0, ∥x∥22)

“Chi-squared random variable with k degrees of freedom.”

56



CONCENTRATION OF CHI-SQUARED RANDOM VARIABLES

Lemma
Let Z be a Chi-squared random variable with k degrees of
freedom.

Pr[|EZ− Z| ≥ ϵEZ] ≤ 2e−kϵ2/8

Goal: Prove ∥Πx∥22 concentrates within 1± ϵ of its expectation,
which equals ∥x∥22. 57



CONNECTION TO LAST LECTURE

If high dimensional geometry is so different from
low-dimensional geometry, why is dimensionality reduction
possible? Doesn’t Johnson-Lindenstrauss tell us that
high-dimensional geometry can be approximated in low
dimensions?
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CONNECTION TO DIMENSIONALITY REDUCTION

Hard case: x1, . . . , xn ∈ Rd are all mutually orthogonal unit
vectors:

∥xi − xj∥22 = 2 for all i, j.

From our result earlier, in O(log n/ϵ2) dimensions, there exists
2O(ϵ2·log n/ϵ2) ≥ n unit vectors that are close to mutually
orthogonal.

O(log n/ϵ2) = just enough dimensions.
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BREAK
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DIMENSIONALITY REDUCTION

The Johnson-Lindenstrauss Lemma let us sketch vectors and
preserve their ℓ2 Euclidean distance. We also have

dimensionality reduction techniques that preserve alternative
measures of similarity.
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SIMILARITY ESTIMATION

How does Shazam match a song clip against a library of 8
million songs (32 TB of data) in a fraction of a second?

Spectrogram extracted
from audio clip.

Processed spectrogram:
used to construct audio
“fingerprint” q ∈ {0, 1}d.

Each clip is represented by a high dimensional binary vector q.
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SIMILARITY ESTIMATION

Given q, find any nearby “fingerprint” y in a database – i.e. any
y with dist(y,q) small.

Challenges:

• Database is possibly huge: O(nd) bits.
• Expensive to compute dist(y,q): O(d) time.
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SIMILARITY ESTIMATION

Goal: Design a more compact sketch for comparing
q, y ∈ {0, 1}d. Ideally ≪ d space/time complexity.

C(q) ∈ Rk

C(y) ∈ Rk

Homomorphic Compression:

C(q) should be similar to C(y) if q is similar to y.
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JACCARD SIMILARITY

Definition (Jaccard Similarity)

J(q, y) = |q ∩ y|
|q ∪ y| =

# of non-zero entries in common
total # of non-zero entries

Natural similarity measure for binary vectors. 0 ≤ J(q, y) ≤ 1.

Can be applied to any data which has a natural binary
representation (more than you might think).
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JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

How many words do a pair of documents have in common?
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JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

How many bigrams do a pair of documents have in common?
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APPLICATIONS: DOCUMENT SIMILARITY

• Finding duplicate or new duplicate documents or
webpages.

• Change detection for high-speed web caches.
• Finding near-duplicate emails or customer reviews which
could indicate spam.
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SIMILARITY ESTIMATION

Goal: Design a compact sketch C : {0, 1} → Rk:

Homomorphic Compression: Want to use C(q), C(y) to
approximately compute the Jaccard similarity J(q, y).
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MINHASH

MinHash (Broder, ’97):

• Choose k random hash functions
h1, . . . ,hk : {1, . . . ,n} → [0, 1].

• For i ∈ 1, . . . , k, let ci = minj,qj=1 hi(j).
• C(q) = [c1, . . . , ck].
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MINHASH

• Choose k random hash functions
h1, . . . ,hk : {1, . . . ,n} → [0, 1].

• For i ∈ 1, . . . , k, let ci = minj,qj=1 hi(j).
• C(q) = [c1, . . . , ck].
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MINHASH ANALYSIS

Claim: Pr[ci(q) = ci(y)] = J(q, y).
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MINHASH ANALYSIS

Claim: Pr[ci(q) = ci(y)] = J(q, y).

Every non-zero index in q ∪ y is equally likely to produce the
lowest hash value. ci(q) = ci(y) only if this index is 1 in both q
and y. There are q ∩ y such indices. So:

Pr[ci(q) = ci(y)] =
q ∩ y
q ∪ y = J(q, y)
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MINHASH ANALYSIS

Return: J̃ = 1
k
∑k

i=1 1[ci(q) = ci(y)].

Unbiased estimate for Jaccard similarity:

ẼJ =

The more repetitions, the lower the variance.
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MINHASH ANALYSIS

Let J = J(q, y) denote the true Jaccard similarity.

Estimator: J̃ = 1
k
∑k

i=1 1[ci(q) = ci(y)].

Var[̃J] =

Plug into Chebyshev inequality. How large does k need to be
so that with probability > 1− δ:

|J− J̃| ≤ ϵ?
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Chebyshev inequality: As long as k = O
( 1
ϵ2δ

)
, then with prob.

1− δ,

J(q, y)− ϵ ≤ J̃ (C(q), C(y)) ≤ J(q, y) + ϵ.

And J̃ only takes O(k) time to compute! Independent of
original fingerprint dimension d.

Linear dependence on 1
δ is not good! Suppose we have a

database of n songs slips, and Shazam wants to ensure the
similarity between a query q and every song clip y is
approximated well. Cam be improved to log(1/δ) dependence
using exponential concentration inequalities.
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