CS-GY 6763: Lecture 13
Finish Sparse Recovery and Compressed
Sensing, Introduction to Spectral Sparsification

NYU Tandon School of Engineering, Prof. Christopher Musco



SPARSE RECOVERY/COMPRESSED SENSING PROBLEM SETUP

- Design a matrix A € R™" withm < n, b € R™,
- “Measure” b = Ax for some R-sparse x € R".
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- Recover x from b.



PERFORMANCE GOALS

Sample complexity: Can achieve m = O(Rlogn) or similar.

- Usually corresponds to some application-dependent cost
(eg. length of time to acquire MRI, space complexity for
heavy hitters problem)

Computational complexity: Naive methods take O(@time to
recover k-sparse x from b.



SAMPLE COMPLEXITY

Typically design A with as few rows as possible that fulfills
some desired property.

- A has Kruskal rank r. All sets of r columns in A are linearly
independent.

- Recover vectors x with sparsity R = r/2.
- Ais p-incoherent. |[ATA;| < u||A;||2||A;ll2 for all columns
A,‘,Aj, ] 75 j
- _Recaver vectors x with sparsity R = 1/p.
A obeys the (g, €)-Restricted Isometry Property.
- Recover vectors x with sparsity k = 0(q).




RESTRICTED ISOMETRY PROPERTY

Definition @Restricted Isometry Property)
A matrix A satisfies (g, €)-RIP if, for all x with ||x||o <g.

Argued this holds for random matrices (JL matrices) and
subsampled Fourier matrices with roughly m = O (@) rows.



FIRST SPARSE RECOVERY RESULT

Theorem (¢o-minimization)

Suppose we are given A € R™*" and b = Ax for an unknown
k-sparse x € R". If A is @Q-RIP forany e < 1then x is the
unigue minimizer of:

subject to

- Establishes that information theoretically we can recover x
in O(n*®) time from O(klog n) measurements.
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POLYNOMIAL TIME SPARSE RECOVERY

Convex relaxation of the /o minimization problem:

Problem (Basis Pursuit, i.e. ¢; minimization.)

- Objective is convex. 0 k\,\\‘>

- Optimizing over convex set.
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BASIS PURSUIT ANALYSIS

W 2z L
Theorem » M

If Ais (3R, €)-RIP for e < 17 and ||x|lo = k, then x is the unique
optimal solution of the Basis Pursuit LP).

Two surprising things about this result:

- Exponentially improve computational complexity with only
a constant factor overhead in measurement complexity.

- Typical “relax-and-round” algorithm, but rounding is not
even necessary! Just return the solution of the relaxed
problem.



BASIS PURSUIT INTUITION

Suppose Ais 2 x 1,50 b isjust a scalarand x is a
2-dimensional vector.

o dz=b
wer LB
1z1,=1 1z1,=1
Iz1,=2 1z1,=2
Izl,=4 lzl,=4
z,=0 z,=0
Vertices of level sets of ¢ norm This is not the case e.g. for the ¢,
correspond to sparse solutions. norm.



BASIS PURSUIT ANALYSIS

Theorem
If A is (Bk,2)-RIP for e < .17 and X]lo = k, then x is the unique
optimal solution of the Basis Pursuit LP).

Similar proof to £g minimization:

- By way of contradiction, assume x is not the optimal
solution. Then there exists some non-zero A such that:

©lx Al < Xl
- A(x+A) = AX. I.e

Difference is that we can no longer assume that A is sparse.




TOOLS NEEDED
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For any g-sparse vector w, w2 < |lwllh < +/qllwl|2
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BASIS PURSUIT ANALYSIS

Some definitions: 7+
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BASIS PURSUIT ANALYSIS

Claim 1: || As|l > [|As; gD VLR 2% VR FAY

a I,

I xs Aty £ Vb3, e Uxllg

3 3 A\ €20
ng\ré +\£;/S *}/
- \\)(6 '\Ds\\l r WAz W,

k\l/.xg\\l < “ 5\\’1.

\ms |y A, L—/



BASIS PURSUIT ANALYSIS

Claim 2: | As|, > V23, |AT 1 )g\ Ao,

W
1 1 1
[As]l2 > WHASHW = ﬁ”éﬁﬂ“ = ﬁz AT .

j>1 (
1 WZ/
~ v
Claim: ||AT}.H12\/ﬁ\  — g AN,

0~ vou (\01}\)
u- \Nwﬂu ATWD )

14



BASIS PURSUIT ANALYSIS

Finish up proof by contradiction: Recall that Ais assumed to
have the (38, ) RIP property. ¢ fre) L
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FASTER METHODS

A lot of interest in developing even faster algorithms that
avoid using the “heavy hammer” of linear programming and
run in even faster than &lme b —]//;’_\ B
- Iterative Hard Thresholding: Looks a lot like projécted
gradient descent. Solve min; ||Az — b|| with gradient
descent while continually projecting z back to the set of

k-sparse vectors. Runs in time ~ O(nklogn) for Gaussian

measurement matrices and O(n log n) for subsampled
Fourer matrices.

- Other “first order” type methods: Orthogonal Matching
Pursuit, CoSaMP, Subspace Pursuit, etc.
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FASTER METHODS

/_’- @

A
When A is a subsampled Fourier matrix, there aré na
methods that run in O(klog® n) time [Hassanieh
Kapralov, Katabi, Price, Shi, etc. 2012+].

Hold up...
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SPARSE FOURIER TRANSFORM

Corollary: When x is k-sparse, we can compute the inverse
Fourier transform F*Fx of Fx in O(klog® n) time!
=

- Randomly subsample Fx.
- Feed that input into our sparse recovery algorithm to
extract x.

Fourier and inverse Fourier transforms in sublinear time when
the output Is sparse.
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Applications in: Wireless communications, GPS, protein
imaging, radio astronomy, etc. etc. e



A LITTLE ABOUT MY RESEARCH



SUBSPACE EMBEDDINGS REWORDED

Theorem (Subspace Embedding)
Let A € R4 be a matrix. If M € R™" is chosen from any
distribution D satisfying the Distributional /L Lemma, then

with probability 1 — 6,

(1— e@< ImAX|3 < (1+

forallx e RY as longasm =0 @"’g 1/9)

Implies regression result, and more.

Example: The any singular value &; o@s a(1+xe)
approximation to the true singular value o; of B.
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SUBSAMPLING METHODS

Recurring research interest: Replace random projection
methods with random sampling methods. Prove that for
essentially all problems of interest, can obtain same
asymptotic runtimes.

= ih "GHE

A x B -—) A i

b

Sampling has the added benefit of preserving matrix sparsity
or structure, and can be applied in a wider variety of settings
where random projections are too expensive.
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SUBSAMPLING METHODS

Goal: Can we use sampling to obtain subspace embeddings?
l.e. for a given A find A whose,rows are a (weighted) subset of
rows in A and: ()

(1= e)llAx3 < |Ax||3 < (1 + €)l|AX]I3.

1 -

I
A
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EXAMPLE WHERE STRUCTURE MATTERS

Let B be the edge-vertex incidence matrix of a graph G with
vertex set V, |V| = d. Recall that BTE =L

Recall that if x € {—1,1}" is the cut indicator vector for a cut S
—

in the graph, then 1||Bx||3 = cut(S, V\ S).
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LINEAR ALGEBRAIC VIEW OF CUTS

X = uv lv_:]v _17 L—_17 _17 _1]
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x € {—1,1}% is the cut indicator vector for a cut S in the graph,
then 1||Bx||3 = cut(S,V\ S)

\_//

23



WEIGHTED CUTS

Extends to weighted graphs, as long as square root of weights
is included in B. Still have the B'B = L.

g, -V,
+Vwy, -y,

’ +Wuzg ~Vigg

And still have that if x € {—1,1}¢ is the cut indicator vector for
a cut Sin the graph, then 1{|Bx||3 = cut(S, V'\ S).
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SPECTRAL SPARSIFICATION

Goal: Approximate B by a weighted subsample. l.e. by B with
m < |E| rows, each of which is a scaled copy of a row from B.

subsampling matrix

W,

Wy

W3

Wy

&

(=

@)

Natural goal: B is a subspace embedding for B. In other words,
B has ~ O(d) rows and for all x,

(1= e)lIBx[3 < [IBx[l2 < (1+ )lBx]3.

—
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HISTORY SPECTRAL SPARSIFICATION

B is itself an edge-vertex incidence matrix for some sparser
graph G, which preserves many properties about G! G is called

a spectral sparsifier for G.

For example, we have that for any set S,
(1—€)cutg(S,V\S) <cutg(S,V\S) < (14 ¢€)cuts(S,V\S).

So G can be used in place of G in solving e.g. max/min cut

problems, balanced cut problems, etc.
In contrast MB would look nothing like an edge-vertex

incidence matrix if M is a JL matrix.
26



HISTORY OF SPECTRAL SPARSIFICATION

Spectral sparsifiers were introduced in 2004 by Spielman and
Teng in an influential paper on faster algorlthms for solving
Laplacian linear systems. kl?i—t )

- Generalize the cut sparsiﬁers of Benczur, Karger ‘96.
-fFurther developed in work by Spielman, Srivastava +
(Batson, ‘08.

- Have had huge influence in algorithms, and other areas of
mathematics - this line of work lead to the 2013 resolution
of the Kadison-Singer problem in functional analysis by
Marcus, Spielman, Srivastava.

Rest of class: Learn about an important random sampling
algorithm for constructing spectral sparsifiers, and subspace

embeddings for matrices more generally. .



NATURAL FIRST ATTEMPT

Goal: Find A such that ||Ax||2 = (1 & €)[|Ax|[3 for all x.

_—
Possible Approach: Construct A by uniformly sampling rows

from A. 6 )

Can check that this approach fails even for the special case of
a graph vertex-edge incidence matrix. 28



IMPORTANCE SAMPLING FRAMEWORK

Key idea: Importance sampling. Select some rows with higher
probability.

Suppose A has nrows a;...,an. Let py,...,pn €[0,1] be
sampling probabilities. Construct__,& as follows:
- Fori=1,...,n
- Select a; with probability p;.
- If a; is selected, add the scaled row ﬁa,‘ to A.

Remember, ultimately want that ||Ax|)3 = (1+ €)||Ax||3 forall x.
Claim 1: E[||Ax|[3] = [|Ax|}3.

—Z(‘-‘— q;Tx>L . [] wes h&é«g

[P l?{ [
Claim 2: Expected number of rows in Ais Y7 . p;.
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LECTURE OUTLINE

How should we choose the probabilities p, ..., Bt

—

1. Introduce the idea of row

2. Motivate why these scores make for good sampling
probabilities.

3. Prove that sampling with probabilities proportional to
these scores yields a subspace embedding (or a spectral
sparsifier) with a near optimal number of rows.
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MAIN RESULT

Let a,...,an be A's rows. We define the statistical leverage

score 7 of row a; as:
I I . é [O/ )’S
/
o AT(ATAY=1a4
7i=a;(A'A)" a;.

We will show that 7; is a natural importance measure for each
row in A.

We have that 7; € [0,1] and >, 7; = d if A has d columns.
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MAIN RESULT

Fori=1,...,n,

i :_a,T(ATA)*1a/.

—_————,

Theorem (Subspace Embedding from Subsampling)

For each i, and fixed constant ¢, let p; = min (1, Clogd

62
A have rows sampled from A with probabilities pr,..
With probability 9/10,

(1= e)llAx3 < |AX]|3 < (1 + €)l|AX]13,

—_—
and A has (d/e2) ows in expectation.

d

—
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VECTOR SAMPLING

How should we choose the probabilities pq,...,pn?

As usual, consider a single vector x and understand how to
sample to preserve norm o@-

1AX]|3 = [|SAX|I3 = |SylI3 ~ llyl3 = [|Ax]j.

Then we can union bound over an e-net to extend to all x.

33



VECTOR SAMPLING

As discussed a few lectures ago, uniform sampling only works
well if y = Ax is “flat”.

-

easy

Instead consider sampling with probabilities at least

proportional to the magnitude of y's entries:
N
2
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VARIANCE ANALYSIS

y N 54 o
Let y be the subsampledy.*Récall that, when sampling with
probabilities p1,...,pn, fori=1,...,n we add y; to y with

probability p; and reweight by ﬁ

1 with probability p;
where Z; = )
0 otherwise

n L

~ y? n Vv y
Va2 = 3% variz < 3 % = X
=1 p/ i=1 p[ P,

2
We set p; @H%ﬁ so get total variance:

1
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VARIANCE ANALYSIS

Using a Bernstein bound (or Chebyshev's inequality if you don’t
care about the § dependence) we have that if c = "’giw then:

PrIIFIIZ — lIvl2] > ellyllz] < a.

The number of samples we take in expectation is:

2 log(1/0
> o= e i -tEl/d

lvall3 ~
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MAJOR CAVEAT!

C(]T (ﬁfﬂ)/|§}
We don't know y4,...,y,! And in fact, these values aren't fixed.
We wanted to prove a bound fory = Ax for any x.

Idea behind leverage scores: Sample row i from A using the
worst case (largest necessary) sampling probability:

where y = AX.

If we sample with probability p; = 2 - 7;, then we will be
sampling by at least -

no matter whaty is.

Ty IIZ'
Two concerns:

1) How to compute 7, ..., 7?
ﬁ

2) the number of samples we take will be roughly >°7, ;. How
do we bound this? -



SENSITIVITY SAMPLING

where y = Ax.

s Cq»T @f/‘)- I/VUJfrA>\/,,X >
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Recall Cauchy-Schwarz inequality: (w'z)? <w'w-z'z
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LEVERAGE SCORE SAMPLING

Leverage score sampling:

- Fori=1,...,n,

- Compute 7, = a/ (ATA)a;.
. Set p; = Clos(1/9)

€2

- Add row a; to A with probability p; and reweight by ﬁ.

For any fixed x, we will have that
(1— e)|AX|13 < [|AX]|3 < (1 + €)||AX||3 with probability (1 — §).

How many rows do we sample in expectation?

A N
6\950/5). %ﬂ’(ﬁ A YO
\/\/
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SUM OF LEVERAGE SCORES

Claim: No matter how large n'is, .1, 7, = d a matrix A € R
v ; i = _ (T ST
Py = b A H)
e (T Ap)
= 47 ( I&N) z &

“Zero-sum” law for the importance of matrix rows.
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LEVERAGE SCORE SAMPLING

Leverage score sampling: /h‘ = 2,

- Fori=1,...,n,
- Compute 7; = a (ATA)~"
. Setp _ Clog(1/6 T

- Add row a; to A with probability p; and reweight by —! 7

For any fixed x, we will have that
(1— e)|AX|13 < [|AX||3 < (1 + €)||Ax]]3 with high probability.

And since Y0, p; = <80/2 5~ 7 K contains O (M)

rows in expectation.
s C d \35,(7/&))
Last step: need to extend to all x.

;QC%E)




MAIN RESULT

Naive e-net argument leads to d? dependence since we need
to set § = c9. Getting the right d log d dependence below
requires a “matrix Chernoff bound” (see e.g. Tropp 2015).

Theorem (Subspace Embedding from Subsampling)

For each i, and fixed constant c, let p; = min (1, C'Z’zgd '7','). Let

A have rows sampled from A with probabilities p1, . .., pn.
With probability 9/10,

(1= e)llAx3 < |AX]|3 < (1 + €)l|AX]|3,

and A has O(d log d/€?) rows in expectation.
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SPECTRAL SPARSIFICATION COROLLARY

For any graph G with d nodes, there exists a graph G with
O(d W /) edges such that, for all x, ||Bx|3 = (1= €)||Bx||3.

As a result, the value of any cut in G is within a (1 + ) factor of
the value in G, the Laplacian eigenvalues are with a (1 =+ ¢€)
factors, etc.
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ANOTHER APPLICATION: ACTIVE REGRESSION

In many applications, computational costs are second order to
data collection costs. We have a huge range of possible data
points aq, ..., an that we can collect labels/values by, ..., b,
for. Goal is to learn x such that:

a,Tx ~ b,‘.

Want to do so after observing as few bs, ..., b, as possible.
Applications include healthcare, environmental science, etc.

4




ANOTHER APPLICATION: ACTIVE REGRESSION

Can be solved via random sampling for linear models.

=3\~ EF |
‘ S 7 b
= o

A 5
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ANOTHER APPLICATION: ACTIVE REGRESSION

Claim: Let A is an O(1)-factor subspace embedding for A
(obtained via leverage score sampling). Then
X = arg min ||Ax — E)||§ satisfies:

|45 bl < o(n)lax* — b3,
where x* = arg min ||AXx — b||3. Computing X only requires
collecting O(d log d) labels (independent of n).

Lots of applications:

- Robust bandlimited and multiband interpolation [STOC 2019].

- Active learning for Gaussian process regression [NeurlPS 2020].
- Active learning beyond the ¢, norm [Preprint 2021]

- Active learning for polynomial regression [Preprint 2021]

- DOE Grant on “learning based” algorithms for solving
parametric partial differential equations.
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SOME OTHER THINGS | HAVE WORKED ON

Problem: Computing leverage scores 7; =/a/(ATA)'a;)s
expensive.

Olud™>)

Main algorithmic idea: Bootstrap leverage score sampling from
uniform sampling (ITCS 2015). i




SOME OTHER THINGS | HAVE WORKED ON

Problem: Computing leverage scores 7; = a (ATA)'a; is
expensive.

Main algorithmic idea: Bootstrap leverage score sampling from
uniform sampling (ITCS 2015). i




SOME OTHER THINGS | HAVE WORKED ON

Problem: Computing leverage scores 7; = a (ATA)'a; is
expensive.

uniform sample

A d rows

p~1!

i =a; (ATA) a;

Main algorithmic idea: Bootstrap leverage score sampling from
uniform sampling (ITCS 2015). i




SOME OTHER THINGS | HAVE WORKED ON

Problem: Computing leverage scores 7; = a (ATA)'a; is
expensive.

uniform sample

d rows =
2 A

use sample to
approximate
leverage scores

—
\ % = ol (A7) 'a

Main algorithmic idea: Bootstrap leverage score sampling from
uniform sampling (ITCS 2015). i




SOME OTHER THINGS | HAVE WORKED ON

Problem: Computing leverage scores 7; = a (ATA)'a; is
expensive.

use sample to
approximate
leverage scores

update samplmg i =a; (ATA) a; D C(gp)

distribution
© (A- ) ol4?)

Main algorithmic idea: Bootstrap leverage score sampling from
uniform sampling (ITCS 2015). i




SOME OTHER THINGS | HAVE WORKED ON

Problem: Computing leverage scores 7; = a (ATA)'a; is
expensive.

resample
d rows

—

p~1!

. !
update sampling t=aj(A"A) a
distribution

Main algorithmic idea: Bootstrap leverage score sampling from
uniform sampling (ITCS 2015). i




SOME OTHER THINGS | HAVE WORKED ON

Problem: Computing leverage scores 7; = a (ATA)'a; is
expensive.

resample
d rows

A

use sample to
approximate
leverage scores

—
\ # = al (A7) 'a

Main algorithmic idea: Bootstrap leverage score sampling from
uniform sampling (ITCS 2015). i




SOME OTHER THINGS | HAVE WORKED ON

Problem: Computing leverage scores 7; = a (ATA)'a; is
expensive.

resample
d rows

A

use sample to
approximate
leverage scores

—
\ # = al (A7) 'a

After O(log n) rounds, 7; =~ 7; for all /.

Main algorithmic idea: Bootstrap leverage score sampling from
uniform sampling (ITCS 2015). i




SOME THINGS | HAVE WORKED ON

Problem: Sometimes we want to compress down to < d rows
or columns. E.g. we don't need a full subspace embedding, but
just want to find a near optimal rank k approximation.

Approach: Use “regularized” version of the leverage scores:

7 =al (ATA + M) a

Result: Sample O(klog k/€) columns whose span contains a

near-optimal low-approximation to A (SODA 2017).
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EXAMPLE RESULT: SUBLINEAR TIME KERNEL APPROXIMATION

The first O(nk?/€?) time algorithm' for near optimal rank-k
approximation of any n x n positive semidefinite kernel matrix:

- [T](E) =

K

\ e.g.' KIJ = e‘llXi'Xi||20r K” = (1+ x|ij)q

Based on the classic Nystrom method. Importantly, does not
even require constructing K explicitly, which takes O(n?) time.
"NeurlPS 2017.
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THANKS FOR BEING A GREAT CLASS!

v
Highlights of the semester for me: S 1=
- Very active office hours! =

- Large number of students presenting at thg-réading group.
Got to learn about a lot of your reseach interests.

- Lots of collaboration between students.
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