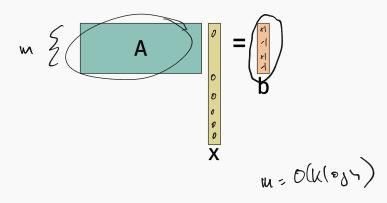
CS-GY 6763: Lecture 13
Finish Sparse Recovery and Compressed
Sensing, Introduction to Spectral Sparsification

NYU Tandon School of Engineering, Prof. Christopher Musco

SPARSE RECOVERY/COMPRESSED SENSING PROBLEM SETUP

- Design a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $m < n, \mathbf{b} \in \mathbb{R}^m$.
- "Measure" $\mathbf{b} = \mathbf{A}\mathbf{x}$ for some \underline{k} -sparse $\mathbf{x} \in \mathbb{R}^n$.



• Recover **x** from **b**.

PERFORMANCE GOALS

Sample complexity: Can achieve $m = O(k \log n)$ or similar.

 Usually corresponds to some application-dependent cost (eg. length of time to acquire MRI, space complexity for heavy hitters problem)

Computational complexity: Naive methods take $O(\sqrt{k})$ time to recover k-sparse \mathbf{x} from \mathbf{b} .

SAMPLE COMPLEXITY

Typically design **A** with as few rows as possible that fulfills some desired property.

- A has Kruskal rank r. All sets of r columns in A are linearly independent.
 - Recover vectors **x** with sparsity k = r/2.
- A is μ -incoherent. $|\mathbf{A}_i^{\mathsf{T}}\mathbf{A}_j| \leq \mu \|\mathbf{A}_i\|_2 \|\mathbf{A}_j\|_2$ for all columns $\mathbf{A}_i, \mathbf{A}_j, i \neq j$.
 - Recover vectors **x** with sparsity $k = 1/\mu$.
 - A obeys the (q, ϵ) -Restricted Isometry Property.
 - Recover vectors \mathbf{x} with sparsity k = O(q).

RESTRICTED ISOMETRY PROPERTY

Definition (Restricted Isometry Property)

A matrix **A** satisfies (q, ϵ) -RIP if, for all **x** with $\|\mathbf{x}\|_0 \leq \underline{q}$

$$(1 - \epsilon) \|\mathbf{x}\|_{2}^{2} \le \|\mathbf{A}\mathbf{x}\|_{2}^{2} \le (1 + \epsilon) \|\mathbf{x}\|_{2}^{2}$$

Argued this holds for random matrices (JL matrices) and subsampled Fourier matrices with roughly $m = O\left(\frac{k \log n}{\epsilon^2}\right)$ rows.

5

FIRST SPARSE RECOVERY RESULT

Theorem (ℓ_0 -minimization)

Suppose we are given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} = \mathbf{A}\mathbf{x}$ for an unknown k-sparse $\mathbf{x} \in \mathbb{R}^n$. If \mathbf{A} is $2k \underbrace{\epsilon}$ -RIP for any $\underbrace{\epsilon < 1}$ then \mathbf{x} is the unique minimizer of:



• Establishes that information theoretically we can recover \mathbf{x} in $O(n^k)$ time from $O(k \log n)$ measurements.

Proof by correction;

$$\frac{Ay = Ax}{y - x} = b \quad \text{but} \quad || \lambda ||_0 \leq || x ||_0 = k$$

$$\frac{Ay = Ax}{y - x} = \Delta \quad 0 = || Ax - Ay || = || AA || \quad y \quad (1 - 0) || \Delta || \neq 0$$

POLYNOMIAL TIME SPARSE RECOVERY

Convex relaxation of the ℓ_0 minimization problem:

Problem (Basis Pursuit, i.e. ℓ_1 minimization.)

subject to

· Objective is convex.

· Optimizing over convex set.

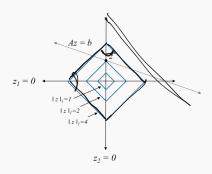


Two surprising things about this result:

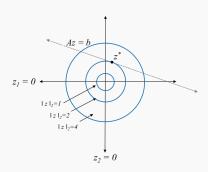
- Exponentially improve computational complexity with only a constant factor overhead in measurement complexity.
- Typical "relax-and-round" algorithm, but rounding is not even necessary! Just return the solution of the relaxed problem.

BASIS PURSUIT INTUITION

Suppose A is 2×1 , so b is just a scalar and x is a 2-dimensional vector.



Vertices of level sets of ℓ_1 norm correspond to sparse solutions.



This is not the case e.g. for the ℓ_2 norm.

Theorem

If **A** is $(3k,\epsilon)$ -RIP for $\epsilon < .17$ and $\|\mathbf{x}\|_0 = k$, then **x** is the unique optimal solution of the Basis Pursuit LP).

Similar proof to ℓ_0 minimization:

- By way of contradiction, assume x is <u>not the optimal</u> solution. Then there exists some non-zero Δ such that:
 - $\cdot \ \|\underline{x + \Delta}\|_1 \le \|\underline{x}\|_1$ $\cdot \ \ A(\overline{x + \Delta}) = A\overline{x}. \ \ l.e$ $A\Delta = 0.$

Difference is that we can no longer assume that Δ is sparse.

We will argue that Δ is approximately sparse.

TOOLS NEEDED

First tool:
$$\| \omega \|_{2} : \mathcal{S}^{T} \omega \quad \text{where} \quad \mathcal{S}: \mathcal{S}: \mathcal{S}: (\omega)$$

For any q -sparse vector \mathbf{w} , $\| \mathbf{w} \|_{2} \leq \| \mathbf{w} \|_{1} \leq \sqrt{q} \| \mathbf{w} \|_{2}$

$$\| \mathbf{w} \|_{2} \leq \| \mathbf{w} \|_{1} \leq \sqrt{q} \| \mathbf{w} \|_{2}$$

$$\| \mathbf{w} \|_{2} \leq \| \mathbf{w} \|_{1} \leq \sqrt{q} \| \mathbf{w} \|_{2}$$

Second tool:

For any norm and vectors \mathbf{a} , \mathbf{b} , $\| \mathbf{a} + \mathbf{b} \| \geq \| \mathbf{a} \| - \| \mathbf{b} \|$

$$\| \mathbf{a} \|_{2} = \| \mathbf{a} + \mathbf{b} - \mathbf{b} \| \leq \| \mathbf{a} + \mathbf{b} \| + \| - \mathbf{b} \|$$

$$\| \mathbf{a} \|_{2} = \| \mathbf{a} + \mathbf{b} - \mathbf{b} \| \leq \| \mathbf{a} + \mathbf{b} \| + \| - \mathbf{b} \|$$

$$\| \mathbf{a} \|_{2} = \| \mathbf{a} + \mathbf{b} - \mathbf{b} \| \leq \| \mathbf{a} + \mathbf{b} \| + \| - \mathbf{b} \|$$

Some definitions: √11-K 11-K 12K 12K 4.1 $T_{(n-k)/2k}$

Claim 1:
$$\|\Delta_{S}\|_{1} \ge \|\Delta_{\overline{S}}\|_{1}$$

$$\|X_{1} + \Delta \|_{2} \le \|X\|_{1}$$

$$\|X_{2} + \Delta_{3}\|_{1} + \|X_{3}\|_{2} \le \|X\|_{1}$$

$$\|X_{3} + \Delta_{3}\|_{1} + \|X_{3}\|_{2} \le \|X\|_{1}$$

$$\|X_{3} + \Delta_{3}\|_{1} + \|\Delta_{\overline{S}}\|_{2}$$

$$\|X_{3} + \Delta_{3}\|_{1} + \|\Delta_{\overline{S}}\|_{1}$$

$$\|X_{3} + \Delta_{3}\|_{1} + \|\Delta_{\overline{S}}\|_{1}$$

$$\|X_{3} + \Delta_{3}\|_{1} + \|\Delta_{\overline{S}}\|_{1} \le \|X_{3}\|_{1}$$

Claim 2:
$$\|\Delta_S\|_2 \ge \sqrt{2} \sum_{j \ge 2} \|\Delta_{T_j}\|_2$$
: $\Rightarrow \frac{1}{\sqrt{2}} \|\Delta_S\|_2$

$$\|\underline{\boldsymbol{\Delta}}_{S}\|_{2} \geq \frac{1}{\sqrt{k}} \|\underline{\boldsymbol{\Delta}}_{S}\|_{1} \geq \frac{1}{\sqrt{k}} \|\underline{\boldsymbol{\Delta}}_{\overline{S}}\|_{1} = \frac{1}{\sqrt{k}} \sum_{j \geq 1}^{M} \|\underline{\boldsymbol{\Delta}}_{T_{j}}\|_{1}.$$
Claim: $\|\underline{\boldsymbol{\Delta}}_{T_{j}}\|_{1} \geq \sqrt{2k} \|\underline{\boldsymbol{\Delta}}_{T_{j+1}}\|_{2}$

$$\lim_{N \to \infty} (\|\underline{\boldsymbol{\Delta}}_{T_{j}}\|_{1}) \geq 2k \cdot \ell$$

$$\lim_{N \to \infty} (\|\underline{\boldsymbol{\Delta}}_{T_{j}}\|_{1}) \geq 2k \cdot \ell$$

$$\lim_{N \to \infty} (\|\underline{\boldsymbol{\Delta}}_{T_{j}}\|_{1}) \leq 2k \cdot \ell$$

$$\frac{\|\Delta_{T_j}\|_{2}}{5x\|T_{j_{j_{1}}}\|_{2}} \leq \sqrt{2k \cdot \lambda^{2}} = \sqrt{2k \cdot \lambda}$$

Finish up proof by contradiction: Recall that **A** is assumed to have the $(36, \epsilon)$ RIP property. $(-\epsilon) - (1+\epsilon) \frac{1}{12} = 0$

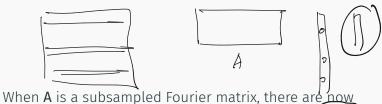
$$||A\Delta||_{2} \ge ||A\Delta_{S\cup T_{1}}||_{2} - \sum_{j\geq 2} ||A\Delta_{j}||_{2} ||_{2} \sum_{j\geq 2} ||A\Delta_{j}||_{2} ||_{2}$$

FASTER METHODS

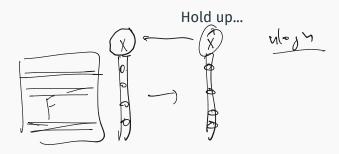
A lot of interest in developing even faster algorithms that avoid using the "heavy hammer" of linear programming and run in even faster than $O(n^{3.5})$ time.

- Iterative Hard Thresholding: Looks a lot like projected gradient descent. Solve $\min_z \|Az b\|$ with gradient descent while continually projecting z back to the set of k-sparse vectors. Runs in time $\sim O(nk\log n)$ for Gaussian measurement matrices and $O(n\log n)$ for subsampled Fourer matrices.
- Other "first order" type methods: Orthogonal Matching Pursuit, CoSaMP, Subspace Pursuit, etc.

FASTER METHODS



methods that run in <u>O(k log^c n)</u> time [Hassanieh Indyk, Kapralov, Katabi, Price, Shi, etc. 2012+].

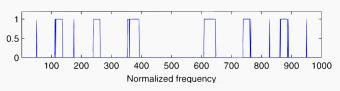


SPARSE FOURIER TRANSFORM

Corollary: When **x** is k-sparse, we can compute the inverse Fourier transform $\mathbf{F}^*\mathbf{F}\mathbf{x}$ of $\mathbf{F}\mathbf{x}$ in $O(k\log^c n)$ time!

- Randomly subsample Fx.
- Feed that input into our sparse recovery algorithm to extract x.

Fourier and inverse Fourier transforms in <u>sublinear time</u> when the output is sparse.



Applications in: Wireless communications, GPS, protein imaging, radio astronomy, etc. etc.

SUBSPACE EMBEDDINGS REWORDED

Theorem (Subspace Embedding)

Let $\underline{\mathbf{A}} \in \mathbb{R}^{n \times d}$ be a matrix. If $\mathbf{\Pi} \in \mathbb{R}^{m \times n}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{A}\mathbf{x}\|_2^2 \le \|\mathbf{\underline{\mathsf{\Pi}}}\mathbf{A}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{A}\mathbf{x}\|_2^2$$

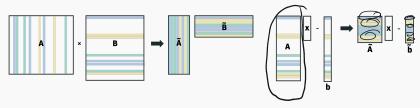
for all $\mathbf{x} \in \mathbb{R}^d$, as long as $m = O\left(\frac{O + \log(1/\delta)}{\epsilon^2}\right)$.

Implies regression result, and more.

Example: The any singular value $\tilde{\sigma}_i$ of $\Pi \tilde{A}$ s a $(1 \pm \epsilon)$ approximation to the true singular value σ_i of B.

SUBSAMPLING METHODS

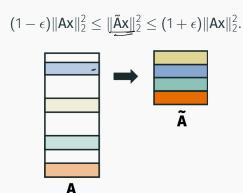
Recurring research interest: Replace random projection methods with <u>random sampling methods</u>. Prove that for essentially all problems of interest, can obtain same asymptotic runtimes.



Sampling has the added benefit of <u>preserving matrix sparsity</u> or structure, and can be applied in a <u>wider variety of settings</u> where random projections are too expensive.

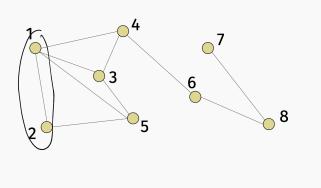
SUBSAMPLING METHODS

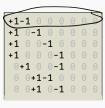
Goal: Can we use sampling to obtain subspace embeddings? I.e. for a given A find $\tilde{\underline{A}}$ whose rows are a (weighted) subset of rows in A and:

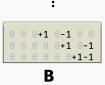


EXAMPLE WHERE STRUCTURE MATTERS

Let **B** be the edge-vertex incidence matrix of a graph *G* with vertex set V, |V| = d. Recall that $\mathbf{B}^T \mathbf{B} = \mathbf{L}$.

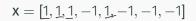


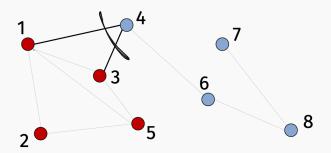




Recall that if $\mathbf{x} \in \{-1,1\}^n$ is the <u>cut indicator vector</u> for a cut S in the graph, then $\frac{1}{4} ||\mathbf{B}\mathbf{x}||_2^2 = \mathbf{cut}(S, V \setminus S)$.

LINEAR ALGEBRAIC VIEW OF CUTS

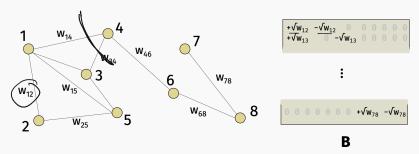




 $\mathbf{x} \in \{-1,1\}^d$ is the <u>cut indicator vector</u> for a cut S in the graph, then $\frac{1}{4} \|\mathbf{B}\mathbf{x}\|_2^2 = \mathbf{cut}(S, V \setminus S)$

WEIGHTED CUTS

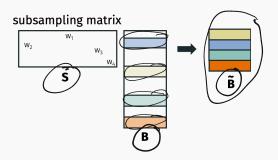
Extends to weighted graphs, as long as square root of weights is included in **B**. Still have the $\mathbf{B}^T\mathbf{B} = \underline{\mathbf{L}}$.



And still have that if $\mathbf{x} \in \{-1, 1\}^d$ is the <u>cut indicator vector</u> for a cut S in the graph, then $\frac{1}{4} \|\mathbf{B}\mathbf{x}\|_2^2 = \mathbf{cut}(S, V \setminus S)$.

SPECTRAL SPARSIFICATION

Goal: Approximate **B** by a weighted subsample. I.e. by $\tilde{\mathbf{B}}$ with $m \ll |E|$ rows, each of which is a scaled copy of a row from **B**.

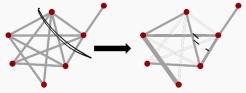


Natural goal: \tilde{B} is a subspace embedding for B. In other words, \tilde{B} has $\approx \mathcal{O}(d)$ rows and for all x,

$$(1-\epsilon)\|\mathbf{B}\mathbf{x}\|_{2}^{2} \leq \|\underline{\underline{\tilde{\mathbf{B}}\mathbf{x}}}\|_{2}^{2} \leq (1+\epsilon)\|\mathbf{B}\mathbf{x}\|_{2}^{2}.$$

HISTORY SPECTRAL SPARSIFICATION

 $\tilde{\mathbf{B}}$ is itself an edge-vertex incidence matrix for some <u>sparser</u> graph \tilde{G} , which preserves many properties about G! \tilde{G} is called a <u>spectral sparsifier</u> for G.



For example, we have that for any set S,

$$(1-\epsilon)\operatorname{cut}_G(S,V\setminus S)\leq\operatorname{cut}_{\widetilde{G}}(S,V\setminus S)\leq (1+\epsilon)\operatorname{cut}_G(S,V\setminus S).$$

So \tilde{G} can be used in place of G in solving e.g. max/min cut problems, balanced cut problems, etc.

In contrast ΠB would look nothing like an edge-vertex incidence matrix if Π is a JL matrix.

HISTORY OF SPECTRAL SPARSIFICATION

Spectral sparsifiers were introduced in 2004 by Spielman and Teng in an influential paper on faster algorithms for solving Laplacian linear systems. $\bigcirc \left(\frac{\log_2 C}{\log^2 C} \right)$

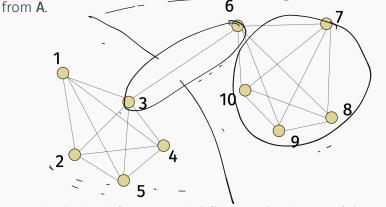
- · Generalize the cut sparsifiers of Benczur, Karger '96.
- Further developed in work by Spielman, Srivastava + Batson, '08.
- Have had huge influence in algorithms, and other areas of mathematics – this line of work lead to the 2013 resolution of the Kadison-Singer problem in functional analysis by Marcus, Spielman, Srivastava.

Rest of class: Learn about an important random sampling algorithm for constructing spectral sparsifiers, and subspace embeddings for matrices more generally.

NATURAL FIRST ATTEMPT

Goal: Find $\underline{\tilde{\mathbf{A}}}$ such that $\|\tilde{\mathbf{A}}\mathbf{x}\|_2^2 = (1 \pm \epsilon)\|\underline{\mathbf{A}}\mathbf{x}\|_2^2$ for all \mathbf{x} .

Possible Approach: Construct $\tilde{\mathbf{A}}$ by uniformly sampling rows



Can check that this approach fails even for the special case of a graph vertex-edge incidence matrix.

IMPORTANCE SAMPLING FRAMEWORK

Key idea: Importance sampling. Select some rows with higher probability.

Suppose $\underline{\mathbf{A}}$ has n rows $\underline{\mathbf{a}}_1, \dots, \underline{\mathbf{a}}_n$. Let $\underline{p}_1, \dots, \underline{p}_n \in [0, 1]$ be sampling probabilities. Construct $\underline{\tilde{\mathbf{A}}}$ as follows:

- For $i = 1, \ldots, n$
 - Select $\underline{\mathbf{a}}_i$ with probability \underline{p}_i .
 - If \mathbf{a}_i is selected, add the scaled row $\frac{1}{\sqrt{p_i}}\mathbf{a}_i$ to $\tilde{\mathbf{A}}$.

Remember, ultimately want that $\|\tilde{\mathbf{A}}\mathbf{x}\|_2^2 = (1 \pm \epsilon)\|\mathbf{A}\mathbf{x}\|_2^2$ for all \mathbf{x} .

Claim 1:
$$\mathbb{E}[\|\tilde{\mathbf{A}}\mathbf{x}\|_2^2] = \|\mathbf{A}\mathbf{x}\|_2^2$$
.

$$\stackrel{\stackrel{1}{\succeq}}{\underset{1:1}{\succeq}} \left(\stackrel{1}{\longleftarrow} \mathbf{q}_1^{\top} \mathbf{x} \right)^2 \cdot \mathbb{I} \quad \text{in was where}$$

Claim 2: Expected number of rows in $\tilde{\mathbf{A}}$ is $\sum_{i=1}^{n} p_i$.

LECTURE OUTLINE

How should we choose the probabilities p_1, \ldots, p_n ?

- 1. Introduce the idea of row leverage scores.
- 2. Motivate why these scores make for good sampling probabilities.
- 3. Prove that sampling with probabilities proportional to these scores yields a subspace embedding (or a spectral sparsifier) with a near optimal number of rows.

MAIN RESULT

Let $\mathbf{a}_1, \dots, \mathbf{a}_n$ be \mathbf{A} 's rows. We define the statistical leverage score τ_i of row \mathbf{a}_i as:

$$\underline{\tau_i} = \mathbf{a}_i^{\mathsf{T}} (\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} \mathbf{a}_i.$$

We will show that τ_i is a natural <u>importance measure</u> for each row in **A**.

We have that $\tau_i \in [0,1]$ and $\sum_{i=1}^n \tau_i = d$ if **A** has *d* columns.

MAIN RESULT

For i = 1, ..., n,

$$\tau_i = \mathbf{a}_i^\mathsf{T} (\mathbf{A}^\mathsf{T} \mathbf{A})^{-1} \mathbf{a}_i.$$

Theorem (Subspace Embedding from Subsampling)

For each i, and fixed constant c, let $\underline{p_i} = \min\left(1, \frac{c \log d}{e^2}\right) \tau_i$. Let $\tilde{\mathbf{A}}$ have rows sampled from \mathbf{A} with probabilities p_1, \ldots, p_n . With probability 9/10,

$$\frac{(1-\epsilon)\|\mathbf{A}\mathbf{x}\|_2^2 \leq \|\tilde{\mathbf{A}}\mathbf{x}\|_2^2 \leq (1+\epsilon)\|\mathbf{A}\mathbf{x}\|_2^2,}{\text{and } \tilde{\mathbf{A}} \text{ has } O(d\log d/\epsilon^2) \text{ ows in expectation.}}$$

VECTOR SAMPLING

How should we choose the probabilities p_1, \ldots, p_n ?

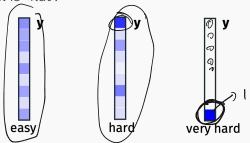
As usual, consider a single vector \mathbf{x} and understand how to sample to preserve norm of \mathbf{y} (Ax:)

$$\|\tilde{\mathbf{A}}\mathbf{x}\|_2^2 = \|\mathbf{S}\mathbf{A}\mathbf{x}\|_2^2 = \underline{\|\mathbf{S}\mathbf{y}\|_2^2} \approx \underline{\|\mathbf{y}\|_2^2} = \|\mathbf{A}\mathbf{x}\|_2^2.$$

Then we can union bound over an ϵ -net to extend to all **x**.

VECTOR SAMPLING

As discussed a few lectures ago, uniform sampling only works well if $\mathbf{v} = \mathbf{A}\mathbf{x}$ is "flat".



Instead consider sampling with probabilities at least proportional to the magnitude of **y**'s entries:

$$p_i > c \cdot \frac{y_i^2}{\|y\|_2^2}$$
 for constant c to be determined.

VARIANCE ANALYSIS

Let $\tilde{\mathbf{y}}$ be the subsampled \mathbf{y} . Recall that, when sampling with probabilities p_1, \ldots, p_n , for $i = 1, \ldots, n$ we add y_i to $\tilde{\mathbf{y}}$ with probability p_i and reweight by $\frac{1}{\sqrt{p_i}}$.

$$\|\widetilde{\mathbf{y}}\|_{2}^{2} = \sum_{i=1}^{n} \frac{y_{i}^{2}}{p_{i}} \cdot Z_{i} \quad \text{where} \quad Z_{i} = \begin{cases} 1 \text{ with probability } p_{i} \\ 0 \text{ otherwise} \end{cases}$$

$$Var[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \sum_{i=1}^{n} \frac{y_{i}^{2}}{p_{i}} \cdot Var[Z_{i}] \le \sum_{i=1}^{n} \frac{y_{i}^{4}}{p_{i}^{2}} \cdot p_{i} = \frac{y_{i}^{4}}{p_{i}}$$

We set $p_i \neq c$ $\frac{y_i^2}{\|\mathbf{y}\|_2^2}$ so get total variance:

$$\frac{1}{c} ||y||_2^4$$

VARIANCE ANALYSIS

Using a Bernstein bound (or Chebyshev's inequality if you don't care about the δ dependence) we have that if $c = \frac{\log(1/\delta)}{\epsilon^2}$ then:

$$\Pr[\left|\|\tilde{\mathbf{y}}\|_{2}^{2} - \|\mathbf{y}\|_{2}^{2}\right| \ge \epsilon \|\mathbf{y}\|_{2}^{2}] \le \delta.$$

The number of samples we take in expectation is:

$$\sum_{i=1}^{n} p_{i} = \sum_{i=1}^{n} c \cdot \frac{y_{i}^{2}}{\|y_{\ell}\|_{2}^{2}} = \underbrace{\log(1/\delta)}_{\epsilon^{2}}.$$

MAJOR CAVEAT!

We don't know $y_1, \ldots, y_n!$ And in fact, these values aren't fixed. We wanted to prove a bound for $\mathbf{y} = \mathbf{A}\mathbf{x}$ for any \mathbf{x} .

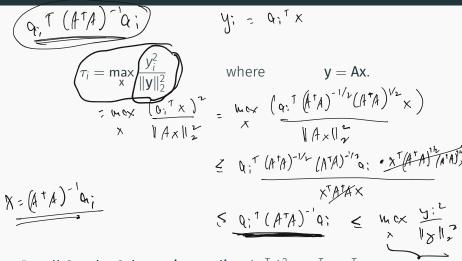
Idea behind leverage scores: Sample row *i* from **A** using the worst case (largest necessary) sampling probability:

If we sample with probability $p_i = \frac{1}{\epsilon^2} \cdot \tau_i$, then we will be sampling by at least $\frac{1}{\epsilon^2} \cdot \frac{y_i^2}{\|\mathbf{y}\|_2^2}$, no matter what \mathbf{y} is.

Two concerns:

- 1) How to compute τ_1, \ldots, τ_n ?
- 2) the number of samples we take will be roughly $\sum_{i=1}^{n} \tau_i$. How do we bound this?

SENSITIVITY SAMPLING



Recall Cauchy-Schwarz inequality: $(\mathbf{w}^T \mathbf{z})^2 \leq \mathbf{w}^T \mathbf{w} \cdot \mathbf{z}^T \mathbf{z}$

Leverage score sampling:

- For i = 1, ..., n,
 - Compute $\tau_i = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{a}_i$.
 - Set $p_i = \frac{c \log(1/\delta)}{\epsilon^2} \cdot \tau_i$.
 - Add row \mathbf{a}_i to $\tilde{\mathbf{A}}$ with probability p_i and reweight by $\frac{1}{\sqrt{p_i}}$.

For any fixed x, we will have that

$$(1-\epsilon)\|\mathbf{A}\mathbf{x}\|_2^2 \leq \|\tilde{\mathbf{A}}\mathbf{x}\|_2^2 \leq (1+\epsilon)\|\mathbf{A}\mathbf{x}\|_2^2$$
 with probability $(1-\delta)$.

How many rows do we sample in expectation?

SUM OF LEVERAGE SCORES

Claim: No matter how large n is, $\sum_{i=1}^{n} \tau_i = d$ a matrix $\mathbf{A} \in \mathbb{R}^d$.

$$\sum_{i=1}^{n} q_{i}^{+} \frac{(A^{\dagger}A)^{-i} q_{i}}{2} = + r \left(A \left(A^{\dagger}A \right)^{-i} A^{\dagger} \right)$$

$$= + r \left(A^{\dagger}A \right)^{-i} A^{\dagger} A$$

$$= + r \left(A^{\dagger}A \right)^{-i} A^{\dagger} A$$

"Zero-sum" law for the importance of matrix rows.

LEVERAGE SCORE SAMPLING

Leverage score sampling:

- For i = 1, ..., n,
 - Compute $\tau_i = \mathbf{a}_i^\mathsf{T} (\mathbf{A}^\mathsf{T} \mathbf{A})^{-1} \mathbf{a}_i$.
 - Set $p_i = \frac{c \log(1/\delta)}{\epsilon^2} \cdot \tau_i$.
 - · Add row \mathbf{a}_i to $\tilde{\mathbf{A}}$ with probability p_i and reweight by $\frac{1}{\sqrt{p_i}}$.

For any fixed x, we will have that

$$(1-\epsilon)\|\mathbf{A}\mathbf{x}\|_2^2 \leq \|\tilde{\mathbf{A}}\mathbf{x}\|_2^2 \leq (1+\epsilon)\|\mathbf{A}\mathbf{x}\|_2^2$$
 with high probability.

And since $\sum_{i=1}^{n} p_i = \frac{c \log(1/\delta)}{\epsilon^2} \cdot \sum_{i=1}^{n} \tau_i$, $\tilde{\mathbf{A}}$ contains $O\left(\frac{d \log(1/\delta)}{\epsilon^2}\right)$ rows in expectation.

Last step: need to extend to all x.

$$=0\left(\frac{d^2}{dr}\right)$$

MAIN RESULT

Naive ϵ -net argument leads to d^2 dependence since we need to set $\delta = c^d$. Getting the right $d \log d$ dependence below requires a "matrix Chernoff bound" (see e.g. Tropp 2015).

Theorem (Subspace Embedding from Subsampling)

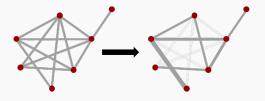
For each i, and fixed constant c, let $p_i = \min\left(1, \frac{c \log d}{\epsilon^2} \cdot \tau_i\right)$. Let $\tilde{\mathbf{A}}$ have rows sampled from \mathbf{A} with probabilities p_1, \ldots, p_n . With probability 9/10,

$$(1 - \epsilon) \|\mathbf{A}\mathbf{x}\|_2^2 \le \|\tilde{\mathbf{A}}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{A}\mathbf{x}\|_2^2,$$

and $\tilde{\mathbf{A}}$ has $O(d \log d/\epsilon^2)$ rows in expectation.

SPECTRAL SPARSIFICATION COROLLARY

For any graph G with d nodes, there exists a graph \tilde{G} with $O(d \mathbb{W}(d/\epsilon^2))$ edges such that, for all \mathbf{x} , $\|\tilde{\mathbf{B}}\mathbf{x}\|_2^2 = (1 \pm \epsilon)\|\mathbf{B}\mathbf{x}\|_2^2$.



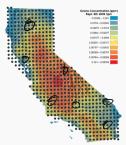
As a result, the value of any cut in \tilde{G} is within a $(1 \pm \epsilon)$ factor of the value in G, the Laplacian eigenvalues are with a $(1 \pm \epsilon)$ factors, etc.

ANOTHER APPLICATION: ACTIVE REGRESSION

In many applications, computational costs are second order to data collection costs. We have a huge range of possible data points $\mathbf{a}_1, \ldots, \mathbf{a}_n$ that we can collect labels/values b_1, \ldots, b_n for. Goal is to learn \mathbf{x} such that:

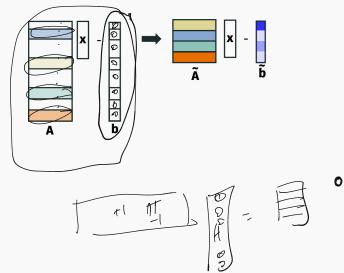
$$\mathbf{a}_i^\mathsf{T}\mathbf{x}\approx b_i.$$

Want to do so after observing as few b_1, \ldots, b_n as possible. Applications include healthcare, environmental science, etc.



ANOTHER APPLICATION: ACTIVE REGRESSION

Can be solved via random sampling for linear models.



ANOTHER APPLICATION: ACTIVE REGRESSION

Claim: Let $\tilde{\mathbf{A}}$ is an O(1)-factor subspace embedding for \mathbf{A} (obtained via leverage score sampling). Then $\tilde{\mathbf{X}} = \arg\min \|\tilde{\mathbf{A}}\mathbf{X} - \tilde{\mathbf{b}}\|_2^2$ satisfies:

$$\|\underline{A}(\hat{\mathbf{x}}) - \underline{\mathbf{b}}\|_2^2 \le O(1) \|\mathbf{A}\mathbf{x}^* - \mathbf{b}\|_2^2$$

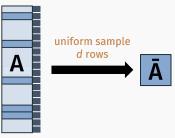
where $\mathbf{x}^* = \arg\min \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$. Computing $\tilde{\mathbf{x}}$ only requires collecting $O(d \log d)$ labels (independent of n).

Lots of applications:

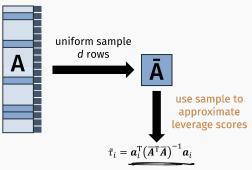
- · Robust bandlimited and multiband interpolation [STOC 2019].
- · Active learning for Gaussian process regression [NeurIPS 2020].
- Active learning beyond the ℓ_2 norm [Preprint 2021]
- · Active learning for polynomial regression [Preprint 2021]
- DOE Grant on "learning based" algorithms for solving parametric partial differential equations.

Problem: Computing leverage scores $\tau_i = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{a}_i$ s expensive.

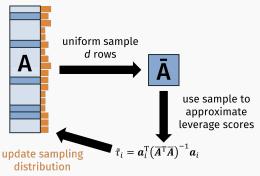
Problem: Computing leverage scores $\tau_i = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{a}_i$ is expensive.



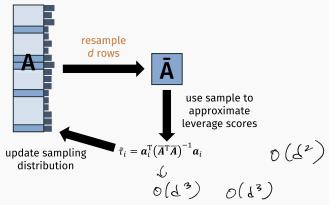
Problem: Computing leverage scores $\tau_i = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{a}_i$ is expensive.



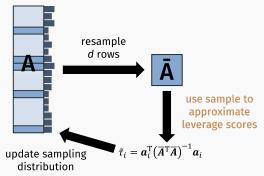
Problem: Computing leverage scores $\tau_i = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{a}_i$ is expensive.



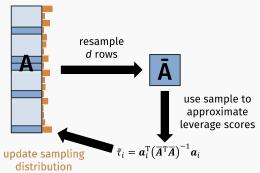
Problem: Computing leverage scores $\tau_i = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{a}_i$ is expensive.



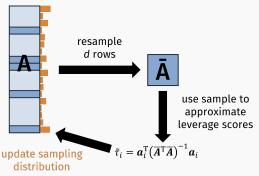
Problem: Computing leverage scores $\tau_i = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{a}_i$ is expensive.



Problem: Computing leverage scores $\tau_i = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{a}_i$ is expensive.



Problem: Computing leverage scores $\tau_i = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{a}_i$ is expensive.

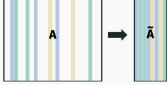


After $O(\log n)$ rounds, $\tilde{\tau}_i \approx \tau_i$ for all i.

Problem: Sometimes we want to compress down to $\ll d$ rows or columns. E.g. we don't need a full subspace embedding, but just want to find a near optimal rank k approximation.

Approach: Use "regularized" version of the leverage scores:

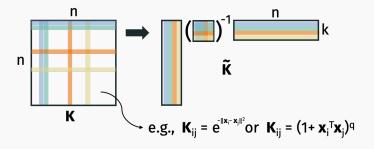
$$\bar{\tau}_i = \mathbf{a}_i^\mathsf{T} (\mathbf{A}^\mathsf{T} \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{a}_i$$



Result: Sample $O(k \log k/\epsilon)$ columns whose span contains a near-optimal low-approximation to **A** (SODA 2017).

EXAMPLE RESULT: SUBLINEAR TIME KERNEL APPROXIMATION

The first $O(nk^2/\epsilon^2)$ time algorithm¹ for near optimal rank-k approximation of any $n \times n$ positive semidefinite kernel matrix:



Based on the classic Nyström method. Importantly, does not even require constructing K explicitly, which takes $O(n^2)$ time.

¹NeurIPS 2017.

Highlights of the semester for me:

- · Very active office hours!
- Large number of students presenting at the feading group. Got to learn about a lot of your reseach interests.
- · Lots of collaboration between students.

